Metro transit is the core of urban transportation, and the mobility analysis of metro ridership can contribute to enhance the overall service level of the metro transit. Researchers studying metro ridership are focused on the spatiotemporal distribution characteristics of the ridership in the underground system of metro station by metro smart card data. However, limited by lack of travel mobility chain of ridership integrity, their activity patterns cannot be used to identify the heterogeneity of metro ridership's origin and transfer travel mode. In our research, we applied full spatiotemporal coverage of mobile phone data to identify the complete travel mobility of metro ridership in the perspective of ground and underground transit. First, the mobility of the boarding and alighting stations was extracted and the order of the transfer station was then extracted. Second, relying on the ridership flow identification method, the aboveground origin and destination of the ridership outside the metro system were extracted, and their transferred traffic mode was identified. The empirical results have shown that our proposed framework can accurately analyze the mobility patterns of metro ridership in an aboveground area and underground station.
Citation: Jiping Xing, Xiaohong Jiang, Yu Yuan, Wei Liu. Incorporating mobile phone data-based travel mobility analysis of metro ridership in aboveground and underground layers[J]. Electronic Research Archive, 2024, 32(7): 4472-4494. doi: 10.3934/era.2024202
Metro transit is the core of urban transportation, and the mobility analysis of metro ridership can contribute to enhance the overall service level of the metro transit. Researchers studying metro ridership are focused on the spatiotemporal distribution characteristics of the ridership in the underground system of metro station by metro smart card data. However, limited by lack of travel mobility chain of ridership integrity, their activity patterns cannot be used to identify the heterogeneity of metro ridership's origin and transfer travel mode. In our research, we applied full spatiotemporal coverage of mobile phone data to identify the complete travel mobility of metro ridership in the perspective of ground and underground transit. First, the mobility of the boarding and alighting stations was extracted and the order of the transfer station was then extracted. Second, relying on the ridership flow identification method, the aboveground origin and destination of the ridership outside the metro system were extracted, and their transferred traffic mode was identified. The empirical results have shown that our proposed framework can accurately analyze the mobility patterns of metro ridership in an aboveground area and underground station.
[1] | Q. Cheng, Y. Lin, X. Zhou, Z. Liu, Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters, Eur. J. Oper. Res., 12 (2023), 452–473. https://doi.org/10.1016/j.ejor.2023.07.005 doi: 10.1016/j.ejor.2023.07.005 |
[2] | Y. Lin, Y. Xu, Z. Zhao, S. Park, S. Su, M. Ren, Understanding changing public transit travel patterns of urban visitors during COVID-19: A multi-stage study, Travel Behav. Soc., 32 (2023), 100587. https://doi.org/10.1016/j.tbs.2023.100587 doi: 10.1016/j.tbs.2023.100587 |
[3] | M. Amirgholy, H. Gao, Optimal traffic operation for maximum energy efficiency in signal-free urban networks: A macroscopic analytical approach, Appl. Energy, 329 (2023), 120128. https://doi.org/10.1016/j.apenergy.2022.120128 doi: 10.1016/j.apenergy.2022.120128 |
[4] | M. Amirgholy, M. Shahabi, Traffic automation and lane management for communicant, autonomous, and human-driven vehicles, Transp. Res. Part C Emerging Technol., 111 (2020), 112–124. https://doi.org/10.1016/j.trc.2019.12.009 doi: 10.1016/j.trc.2019.12.009 |
[5] | T. Li, M. Xu, H. Sun, J. Xiong, X. Dou, Stochastic ridesharing equilibrium problem with compensation optimization, Transp. Res. Part E Logist. Transp. Rev., 170 (2023), 102999. https://doi.org/10.1016/j.tre.2022.102999 doi: 10.1016/j.tre.2022.102999 |
[6] | T. Li, Y. Cao, M. Xu, H. Sun, Optimal intersection design and signal setting in a transportation network with mixed HVs and CAVs, Transp. Res. Part E Logist. Transp. Rev., 175 (2023), 103173. https://doi.org/10.1016/j.tre.2023.103173 doi: 10.1016/j.tre.2023.103173 |
[7] | J. Zhang, W. Wu, Q. Cheng, W. Tong, A. Khadka, X. Fu, et al., Extracting the complete travel trajectory of subway passengers based on mobile phone data, J. Adv. Transp., 2022 (2022), 8151520. https://doi.org/10.1155/2022/8151520 doi: 10.1155/2022/8151520 |
[8] | Q. Du, Y. Zhou, Y. Huang, Y. Wang, L. Bai, Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership, J. Transp. Geogr., 102 (2022), 103380. https://doi.org/10.1016/j.jtrangeo.2022.103380 doi: 10.1016/j.jtrangeo.2022.103380 |
[9] | X. Fu, Y. Zuo, J. Wu, Y. Yuan, S. Wang, Short-term prediction of metro passenger flow with multi-source data: A neural network model fusing spatial and temporal features, Tunnelling Underground Space Technol., 124 (2022), 104486. https://doi.org/10.1016/j.tust.2022.104486 doi: 10.1016/j.tust.2022.104486 |
[10] | Y. Liu, Y. Ji, T. Feng, Z. Shi, A route analysis of metro-bikeshare users using smart card data, Travel Behav. Soc., 26 (2022), 108–120. https://doi.org/10.1016/j.tbs.2021.09.006 doi: 10.1016/j.tbs.2021.09.006 |
[11] | C. Yang, X. Fu, Z. Liu, Estimation of joint activity–travel benefit with metro smart card data, J. Transp. Eng. Part A. Syst., 148 (2022), 112–124. https://doi.org/10.1061/JTEPBS.0000751 doi: 10.1061/JTEPBS.0000751 |
[12] | L. Yang, B. Yu, Y. Liang, Y. Lu, W. Li, Time-varying and non-linear associations between metro ridership and the built environment, Tunnelling Underground Space Technol., 132 (2023), 104931. https://doi.org/10.1016/j.tust.2022.104931 doi: 10.1016/j.tust.2022.104931 |
[13] | P. Peng, Z. Liu, J. Guo, C. Wang, Dynamic metro stations importance evaluation based on network topology and real-time passenger flows, KSCE J. Civ. Eng., 7 (2023), 321–335. https://doi.org/10.1007/s12205-023-0954-7 doi: 10.1007/s12205-023-0954-7 |
[14] | Y. F. Luo, L. Bai, G. Chen, X. Yan, Analysis of space-time variation of passenger flow and commuting characteristics of residents using smart card data of Nanjing metro, Sustainability, 11 (2019), 4989. https://doi.org/10.3390/su11184989 doi: 10.3390/su11184989 |
[15] | E. Chen, Z. Ye, C. Wang, W. Zhang, Discovering the spatio-temporal impacts of built environment on metro ridership using smart card data, Cities, 95 (2019), 242–253. https://doi.org/10.1016/j.cities.2019.05.028 doi: 10.1016/j.cities.2019.05.028 |
[16] | Y. Zhang, E. Yao, J. Zhang, K. Zheng, Estimating metro passengers' path choices by combining self-reported revealed preference and smart card data, Transp. Res. Part C Emerging Technol., 92 (2018), 76–89. https://doi.org/10.1016/j.trc.2018.04.019 doi: 10.1016/j.trc.2018.04.019 |
[17] | J. Xing, R. Liu, Y. Zhang, C. F. Choudhury, X. Fu, Q. Cheng, Urban network-wide traffic volume estimation under sparse deployment of detectors, Transportmetrica A: Transp. Sci., 3 (2024), 112–140. https://doi.org/10.1080/23249935.2023.2197511 doi: 10.1080/23249935.2023.2197511 |
[18] | J. Xing, R. Liu, K. Anish, Z. Liu, A customized data fusion tensor approach for interval-wise missing network volume imputation, IEEE Trans. Intell. Transp. Syst., 10 (2023), 1–16. https://doi.org/10.1109/TITS.2023.3289193 doi: 10.1109/TITS.2023.3289193 |
[19] | A. M. Pitale, M. Parida, S. Sadhukhan, Factors influencing choice riders for using park-and-ride facilities: A case of Delhi, Multimodal Transp., 2 (2023), 100065. https://doi.org/10.1016/j.multra.2022.100065 doi: 10.1016/j.multra.2022.100065 |
[20] | X. Ma, Y. Ji, Y. Yuan, N. Van Oort, Y. Jin, S. Hoogendoorn, A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data, Transp. Res. Part A Policy Pract., 139 (2020), 148–173. https://doi.org/10.1016/j.tra.2020.06.022 doi: 10.1016/j.tra.2020.06.022 |
[21] | Z. Shi, W. Pan, M. He, Y. Liu, Understanding passenger route choice behavior under the influence of detailed route information based on smart card data, Transportation, 2023. https://doi.org/10.1007/s11116-023-10432-x doi: 10.1007/s11116-023-10432-x |
[22] | Z. Shi, J. Wang, K. Liu, Y. Liu, M. He, Exploring the usage efficiency of electric bike-sharing from a spatial-temporal perspective, Transp. Res. Part D Transp. Environ., 129 (2024), 104139. https://doi.org/10.1016/j.trd.2024.104139 doi: 10.1016/j.trd.2024.104139 |
[23] | Q. Cheng, Z. Liu, J. Guo, X. Wu, R. Pendyala, B. Belezamo, et al., Estimating key traffic state parameters through parsimonious spatial queue models, Transp. Res. Part C Emerging Technol., 137 (2022), 103596. https://doi.org/10.1016/j.trc.2022.103596 doi: 10.1016/j.trc.2022.103596 |
[24] | Q. Cheng, Z. Liu, Y. Lin, X. Zhou, An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship, Transp. Res. Part B Methodol., 153, (2021), 246–271. https://doi.org/10.1016/j.trb.2021.09.004 doi: 10.1016/j.trb.2021.09.004 |
[25] | M. Amirgholy, M. Nourinejad, H. Gao, Balancing the efficiency and robustness of traffic operations in signal-free networks, Transp. Res. Interdiscip. Perspect., 19 (2023), 100821. https://doi.org/10.1016/j.trip.2023.100821 doi: 10.1016/j.trip.2023.100821 |
[26] | M. Amirgholy, M. Nourinejad, Optimal traffic control at smart intersections: Automated network fundamental diagram, Transp. Res. Part B Methodol., 10 (2020), 1016. https://doi.org/10.1016/j.trb.2019.10.001 doi: 10.1016/j.trb.2019.10.001 |
[27] | X. Ma, S. Zhang, M. Zhu, T. Wu, M. He, H. Cui, Non-commuting intentions during COVID-19 in Nanjing, China: A hybrid latent class modeling approach, Cities, 137 (2023), 104341. https://doi.org/10.1016/j.cities.2023.104341 doi: 10.1016/j.cities.2023.104341 |
[28] | M. He, X. Ma, J. Wang, M. Zhu, Geographically weighted multinomial logit models for modelling the spatial heterogeneity in the bike-sharing renting-returning imbalance: A case study on Nanjing, China, Sustainable Cities Soc. , 83 (2022), 103967. https://doi.org/10.1016/j.scs.2022.103967 doi: 10.1016/j.scs.2022.103967 |
[29] | H. Cui, F. Wang, X. Ma, M. Zhu, A novel fixed-node unconnected subgraph method for calculating the reliability of binary-state networks, Reliab. Eng. Syst. Saf., 226 (2022), 108687. https://doi.org/10.1016/j.ress.2022.108687 doi: 10.1016/j.ress.2022.108687 |
[30] | Y. Sun, S. Jungang, P. Schonfeld, Identifying passenger flow characteristics and evaluating travel time reliability by visualizing AFC data: a case study of Shanghai Metro, Public Transp., 8 (2016), 23–34. https://doi.org/10.1007/s12469-016-0137-8 doi: 10.1007/s12469-016-0137-8 |
[31] | M. C. Chen, Y. Wei, Exploring time variants for short-term passenger flow, J. Transp. Geogr., 19 (2011), 488–498. https://doi.org/10.1016/j.jtrangeo.2010.04.003 doi: 10.1016/j.jtrangeo.2010.04.003 |
[32] | J. Kim, S. Tak, J. Lee, H. Yeo, Integrated design framework for on-demand transit system based on spatiotemporal mobility patterns, Transp. Res. Part C Emerging Technol., 150 (2023), 104087. https://doi.org/10.1016/j.trc.2023.104087 doi: 10.1016/j.trc.2023.104087 |
[33] | J. Liu, W. Shi, P. Chen, Exploring travel patterns during the holiday season—A case study of Shenzhen Metro system during the Chinese Spring festival, ISPRS Int. J. Geo-Inf., 9 (2020), 651–675. https://doi.org/10.3390/ijgi9110651 doi: 10.3390/ijgi9110651 |
[34] | Z. Shi, N. Zhang, Y. Liu, W. Xu, Exploring spatiotemporal variation in hourly metro ridership at station level: the influence of built environment and topological structure, Sustainability, 10 (2018), 12–34. https://doi.org/10.3390/su10124564 doi: 10.3390/su10124564 |
[35] | S. Jungang, L. Yang, Service-oriented train timetabling with collaborative passenger flow control on an oversaturated metro line: An integer linear optimization approach, Transp. Res. Part B Methodol., 110 (2018), 112–134. https://doi.org/10.1016/j.trb.2018.02.003 doi: 10.1016/j.trb.2018.02.003 |
[36] | R. Liu, S. Li, L. Yang, Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy, Omega, 90 (2018), 12–27. https://doi.org/10.1016/j.omega.2018.10.020 doi: 10.1016/j.omega.2018.10.020 |
[37] | S. Li, M. Dessouky, L. Yang, Z. Gao, Joint optimal train regulation and passenger flow control strategy for high-frequency metro lines, Transp. Res. Part B Methodol., 99 (2017), 113–137. https://doi.org/10.1016/j.trb.2017.01.010 doi: 10.1016/j.trb.2017.01.010 |
[38] | F. Jin, E. Yao, Y. Zhang, S. Liu, Metro passengers' route choice model and its application considering perceived transfer threshold, PloS One, 12 (2017), e0185349. https://doi.org/10.1371/journal.pone.0185349 doi: 10.1371/journal.pone.0185349 |
[39] | X. Wang, E. Yao, S. Liu, Travel choice analysis under metro emergency context: utility? regret? or both?, Sustainability, 10 (2018), 3852. https://doi.org/10.3390/su10113852 doi: 10.3390/su10113852 |
[40] | R. Cascajo, A. Garcia-Martinez, A. Monzón, Stated preference survey for estimating passenger transfer penalties: design and application to Madrid, Eur. Transp. Res. Rev., 9 (2017), 1–11. https://doi.org/10.1007/s12544-017-0260-x doi: 10.1007/s12544-017-0260-x |
[41] | L. Sun, Y. Lu, J. G. Jin, D. H. Lee, K. Axhausen, An integrated Bayesian approach for passenger flow assignment in metro networks, Transp. Res. Part C Emerging Technol., 52 (2015), 123–147. https://doi.org/10.1016/j.trc.2015.01.001 doi: 10.1016/j.trc.2015.01.001 |
[42] | J. Zhao, F. Zhang, L. Tu, C. Z. Xu, D. Shen, L. Ruyue, et al., Estimation of Passenger route choice pattern using smart card data for complex metro systems, IEEE Trans. Intell. Transp. Syst., 18 (2016), 231–246. https://doi.org/10.1109/TITS.2016.2587864 doi: 10.1109/TITS.2016.2587864 |
[43] | J. Wu, Y. Qu, H. Sun, H. Yin, X. Yan, J. Zhao, Data-driven model for passenger route choice in urban metro network, Physica A, 524 (2019), 351–366. https://doi.org/10.1016/j.physa.2019.04.231 doi: 10.1016/j.physa.2019.04.231 |
[44] | Q. Zhang, B. Han, Simulation model of passenger transfer behavior in metro station, Appl. Mech. Mater., 253 (2012), 1791–1796. https://doi.org/10.4028/AMM.253-255.1791 doi: 10.4028/AMM.253-255.1791 |
[45] | Y. H. Cheng, W. C. Tseng, Exploring the effects of perceived values, free bus transfer, and penalties on intermodal metro-bus transfer users' intention, Transp. Policy, 47 (2016), 127–138. https://doi.org/10.1016/j.tranpol.2016.01.001 doi: 10.1016/j.tranpol.2016.01.001 |
[46] | L. Yang, Y. Zhang, S. Li, Y. Gao, A two-stage stochastic optimization model for the transfer activity choice in metro networks, Transp. Res. Part B Methodol., 83 (2016), 271–297. https://doi.org/10.1016/j.trb.2015.11.010 doi: 10.1016/j.trb.2015.11.010 |
[47] | J. Schlaich, T. Otterstätter, M. Friedrich, Generating trajectories from mobile phone data, in Proceedings of the 89th Annual Meeting Compendium of Papers, Transportation Research Board of the National Academies, 1 (2010). |
[48] | S. Hoteit, S. Secci, S. Sobolevsky, C. Ratti, G. Pujolle, Estimating human trajectories and hotspots through mobile phone data, Comput. Networks, 64 (2014), 121–134. https://doi.org/10.1016/j.comnet.2014.02.011 doi: 10.1016/j.comnet.2014.02.011 |
[49] | M. Li, S. Gao, F. Lu, H. Zhang, Reconstruction of human movement trajectories from large-scale low- frequency mobile phone data, Comput. Environ. Urban Syst., 77 (2019), 112–134. https://doi.org/10.1016/j.compenvurbsys.2019.101346 doi: 10.1016/j.compenvurbsys.2019.101346 |
[50] | J. Steenbruggen, M. T. Borzacchiello, P. Nijkamp, H. Scholten, Mobile phone data from GSM networks for traffic parameter and urban spatial pattern assessment: a review of applications and opportunities, GeoJournal, 78 (2013), 223–243. https://doi.org/10.1007/s10708-011-9413-y doi: 10.1007/s10708-011-9413-y |
[51] | S. Phithakkitnukoon, Analysis of weather effects on people's daily activity patterns using mobile phone GPS data, in Urban Informatics Using Mobile Network Data: Travel Behavior Research Perspectives, Singapore, Springer Nature Singapore, (2022), 161–181. |
[52] | S. Jiang, J. Ferreira, M. C. Gonzalez, Activity-based human mobility patterns inferred from mobile phone data: A case study of Singapore, IEEE Trans. Big Data, 3 (2017), 208–219. https://doi.org/10.1109/TBDATA.2016.2631141 doi: 10.1109/TBDATA.2016.2631141 |
[53] | P. Widhalm, Y. Yang, M. Ulm, S. Athavale, M. C. Gonzalez, Discovering urban activity patterns in cell phone data, Transportation, 42 (2015), 597–623. https://doi.org/10.1007/s11116-015-9598-x doi: 10.1007/s11116-015-9598-x |
[54] | Y. Yuan, R. Martin, Extracting dynamic urban mobility patterns from mobile phone data, in Geographic Information Science: 7th International Conference, Springer Berlin Heidelberg, (2012), 354–367. |
[55] | M. Diao, Y. Zhu, J. Ferreira, C. Ratti, Inferring individual daily activities from mobile phone traces: A Boston example, Environ. Plann. B: Urban Anal. City Sci., 43 (2015), 122–134. https://doi.org/10.1177/0265813515600896 doi: 10.1177/0265813515600896 |
[56] | Y. Wang, J. Cong, P. Wang, X. Liu, H. Tang, A data-fusion approach for speed estimation and location calibration of a metro train based on low-cost sensors in smartphones, IEEE Sens. J., 19 (2019), 10744–10752. https://doi.org/10.1109/JSEN.2019.2933638 doi: 10.1109/JSEN.2019.2933638 |
[57] | Z. Duan, Z. Lei, H. Zhang, W. Li, J. Fang, J. Li, Understanding evacuation and impact of a metro collision on ridership using large-scale mobile phone data, IET Intel. Transp. Syst., 11 (2017), 156–173. https://doi.org/10.1049/iet-its.2016.0112 doi: 10.1049/iet-its.2016.0112 |
[58] | S. Liu, F. Zhang, Y. Ji, X. Ma, Y. Liu, S. Li, et al., Understanding spatial-temporal travel demand of private and shared e-bikes as a feeder mode of metro stations, J. Cleaner Prod., 398 (2023), 136602. https://doi.org/10.1016/j.jclepro.2023.136602 doi: 10.1016/j.jclepro.2023.136602 |
[59] | S. Liu, F. Zhang, Y. Ji, X. Ma, Y. Liu, S. Li, et al., Exploring the usage efficiency of electric bike-sharing from a spatial-temporal perspective, Transp. Res. Part D Transp. Environ., 129 (2024), 104139. https://doi.org/10.1016/j.trd.2024.104139 doi: 10.1016/j.trd.2024.104139 |
[60] | C. Ding, T. Liu, X. Cao, L. Tian, Illustrating nonlinear effects of built environment attributes on housing renters' transit commuting, Transp. Res. Part D Transp. Environ., 112 (2022), 103503. https://doi.org/10.1016/j.trd.2022.103503 doi: 10.1016/j.trd.2022.103503 |
[61] | X. Ma, S. Zhang, M. Zhu, T. Wu, M. He, H. Cui, Non-commuting intentions during COVID-19 in Nanjing, China: A hybrid latent class modeling approach, Cities, 137 (2023), 104341. https://doi.org/10.1016/j.cities.2023.104341 doi: 10.1016/j.cities.2023.104341 |
[62] | X. Ma, Y. Ji, Y. Yuan, N. Van Oort, Y. Jin, S. Hoogendoor, A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data, Transp. Res. Part A Policy Pract., 139 (2020), 148–173. https://doi.org/10.1016/j.tra.2020.06.022 doi: 10.1016/j.tra.2020.06.022 |
[63] | Q. Zhang, Y. Shi, R. Yin, H. Tao, Z. Xu, Z. Wang, et al., An integrated framework for real-time intelligent traffic management of smart highways, J. Transp. Eng. Part A. Syst., 149 (2023), 04023055. https://doi.org/10.1061/JTEPBS.TEENG-7729 doi: 10.1061/JTEPBS.TEENG-7729 |
[64] | X. Yang, Y. Shi, J. Xing, Z. Liu, Autonomous driving under V2X environment: state-of-the-art survey and challenges, Intell. Transp. Infrastruct., 1 (2022), 12–23. https://doi.org/10.1093/iti/liac020 doi: 10.1093/iti/liac020 |
[65] | Q. Cheng, Z. Liu, J. Lu, G. List, P. Liu, X. S. Zhou, Using frequency domain analysis to elucidate travel time reliability along congested freeway corridors, Transp. Res. Part B Methodol., 184 (2024), 102961. https://doi.org/https://doi.org/10.1016/j.trb.2024.102961 doi: 10.1016/j.trb.2024.102961 |