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1. Introduction and preliminaries

The Banach contraction principle [1], proposed by Banach in 1922, was a fundamental consequence
of fixed-point theory. It states that any self-mapping S on a complete metric space (H, d) satisfying

d(S o, S z) ≤ αd(o, z), 0 ≤ α < 1

for all o, z ∈ H, then S has a unique fixed point in H. After that, many authors have generalized,
improved, and extended this celebrated result by changing either the conditions of the mappings or the
construction of the space; see [2–6].

The well-known Nemytzki-Edelstein’s results for contractive mappings on compact metric spaces
are as follows:

Theorem 1. [7] Let the self-mapping S on a compact metric space (H, d) satisfy

d(S o, S z) < d(o, z)

for any o, z ∈ H with o , z. Then S has a unique fixed point in H.
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Suzuki [8] established the following version of Edelstein’s fixed-point theorem:

Theorem 2. [8] Let the self-mapping S on a compact metric space (H, d) satisfy

1
2

d(o, S o) < d(o, z) implies d(S o, S z) < d(o, z)

for all o, z ∈ H with o , z. Then S has a unique fixed point in H.

Especially Kannan [9, 10] established the following results, which differ from the Banach
contraction principle:

Theorem 3. [9, 10] Let the self-mapping S on a complete metric space (H, d) satisfying

d(S o, S z) ≤ α [d(o, S o) + d(z, S z)]

for all o, z ∈ H and α ∈ [0, 1
2 ). Then S has a unique fixed point in H.

It is not difficult to see that contractions are always continuous, while Kannan maps are not
necessarily continuous. Another beauty of Kannan mappings is that Kannan’s theorem characterizes
metric completeness. In 1975, Subrahmanyam [11] presented the following result:

Theorem 4. [11] A metric space is complete if and only if every Kannan mapping S has a fixed point.

In addition, Fisher [12] proved the following variant of Theorem 3 for a compact metric space:

Theorem 5. [12] Let the continuous self-mapping S on a compact metric space (H, d) satisfy

d(S o, S z) <
1
2

[d(o, S o) + d(z, S z)]

for all o, z ∈ H with o , z. Then S has a unique fixed point in H.

Rencently, Berinde, and Păcurar [13] introduced the notion of enriched Kannan mapping, which
is a generalization of that Kannan mapping. A mapping S : H → H is called an enriched Kannan
mapping or a (a, k)-enriched Kannan mapping if there exist k ∈ [0, 1

2 ) and a ∈ [0,+∞) such that

‖a(o − z) + S o − S z‖ ≤ k (‖o − S o‖ + ‖z − S z‖) . (1.1)

We will denote the set of all fixed points of S by F(S ) . They proved the following:

Theorem 6. [13] Let (H, ‖ · ‖) be a Banach space and S : H → H be a (a, k)−enriched Kannan
mapping. Then the following holds:

(i) F(S ) = {o} ;
(ii) There exists λ ∈ [0, 1), the sequence {on}

+∞
n=0 defined by

on+1 = λon + (1 − λ)S on

converges to o in H;
(iii) set µ = k

1−k , for any n ∈ N, then

‖on+i−1 − p‖ ≤
µi

1 − µ
‖on − on−1‖ .
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And then, a question was raised following the above theorem in [13].

Question 1. Does the enriched Kannan mapping fixed point theorem still characterize the metric
completeness?

On the other hand, Takahashi [14] introduces the notion of the convex structure in metric space as
follows:

Definition 1. [14] Let (H, d) be a metric space. Define a function W : H × H × [0, 1] → H is said to
be a convex structure in H if

d(v,W(o, z; λ)) ≤ λd(v, o) + (1 − λ)d(v, z)

holds for each z, o, z ∈ H and λ ∈ [0, 1]. (H, d,W) is called convex metric space.

Remark 1. It is worth mentioning that a linear normed space embedded with the natural convex
structure

W(o, z; λ) = λo + (1 − λ)z

is a convex metric space, but it is not valid for some metric spaces, see [15, 16].

Lemma 1. [14–16] Let (H, d,W) be a convex metric space, and λ, λ1, λ2 ∈ [0, 1]. For any o, z ∈ H,
the following holds:

(i) W(o, o; λ) = o; W(o, z; 0) = z and W(o, z; 1) = o;
(ii) d(o, z) = d(o,W(o, z; λ)) + d(z,W(o, z; λ));

(iii) d(o,W(o, z; λ)) = (1 − λ)d(o, z) and d(z,W(o, z; λ)) = λd(o, z);
(iv) |λ1 − λ2| d(o, z) ≤ d(W(o, z; λ1),W(o, z; λ2)).

Lemma 2. [17] Let the self-mapping S on a convex metric space (H, d,W) and S λ : H → H defined
by

S λo = W(o, S o; λ), o ∈ H.

Then, we have F(S ) = F(S λ) for any λ ∈ [0, 1).

Berinde and Păcurar [17] gave the concept of enriched Kannan mapping on a convex metric space
as below:

Definition 2. [17] A self-mapping S on a convex metric space (H, d,W) is said to be an enriched
Kannan mapping if there exist k ∈ [0, 1

2 ) and λ ∈ [0, 1) satisfying

d(W(o, S o; λ),W(z, S z; λ)) ≤ k [d(o,W(o, S o; λ)) + d(z,W(z, S z; λ))] , o, z ∈ H. (1.2)

Notice that the continuous Kannan contractive mapping S : H → H is such that

d(S o, S z) <
1
2

[d(o, S o) + d(z, S z)]

for all o, z ∈ H with o , z, in a complete but nocompact metric space may be fixed-point free ( [18–20]).
Hence, a question about enriched Kannan contractive mapping may arise:
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Question 2. Does there exists a complete but noncompact convex metric space (H, d) and continuous
enriched Kannan contractive mapping S : H → H satisfying

d(W(o, S o; λ),W(z, S z; λ)) <
1
2

[d(o,W(o, S o; λ)) + d(z,W(z, S z; λ))]

and S is fixed-point-free?

In this work, we first give an affirmative answer to Question 1 by proving that every enriched Kannan
contractive mapping has a fixed point and characterizes the completeness of the underlying normed
space. Furthermore, we provide an example answer to Question 2. Moreover, we present some new
fixed point results for Suzuki-enriched Kannan-type mappings in the setting of convex metric spaces.
Finally, we apply the fixed point result to approximating the solution of nonlinear Volterra integral
equations.

2. Main results

In what follows, the symbol F represents the set of all functions f : [0,+∞)→ [0, 1
2 ) such that

f (on)→
1
2

implies on → 0 as n→ +∞;

the symbol Ψ represents the set of all strictly monotonic, increasing, and continuous functions ψ :
[0,+∞)→ [0,+∞) such that

ψ(o) = 0 i f and only i f o = 0.

We start with the following theorem, which is an affirmative answer to Question 1.

Theorem 7. Let (H, ‖ · ‖) be a normed space and S : H → H be a mapping satisfying

‖a(o − z) + S o − S z‖ <
1
2

[‖o − S o‖ + ‖z − S z‖] (2.1)

for any o, z ∈ H with o , z. If S has a fixed point, then (H, ‖ · ‖) is a Banach space.

Proof. If a = 0, the result follows from Theorem 4. Suppose that a > 0, we observe that (2.1) can be
rewritten as follows:∥∥∥∥∥ a

a + 1
(o − z) +

1
a + 1

(S o − S z)
∥∥∥∥∥ < 1

2(a + 1)
[‖o − S o‖ + ‖z − S z‖] .

Let λ = a
a+1 , clearly a = λ

1−λ , then (2.1) becomes

‖λ(o − z) + (1 − λ)(S o − S z)‖ <
1 − λ

2
[‖o − S o‖ + ‖z − S z‖] .

Set S λo = λo + (1 − λ)S o, we deduce that

‖S λo − S λz‖ <
1
2

[‖o − S λo‖ + ‖z − S λz‖] . (2.2)
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For the purpose of contradiction, suppose that {on} ∈ H is a Cauchy sequence but does not converge.
Set D(o,M) = inf {‖o − z‖ : z ∈ M} and M = {on : n ∈ N} be a set of divergent sequences of distinct
elements in H. Let o ∈ H, and we have the subsequent cases:
Case 1. If o < H, as {on} is a Cauchy sequence, there exists an integer N0(o) such that

‖om − on‖ <
1
2

D(o,H) ≤
1
2
‖o − ol‖ ,m, n ≥ N0(o),

for any l ∈ N. In particular ∥∥∥om − oN0(o)

∥∥∥ < 1
2
‖o − ol‖ ,

for any l ∈ N, m ≥ N0(o).
Case 2. If o ∈ H, then o = on(o) for some n(o) ∈ N, and there exists an integer n0(o) ∈ N such that∥∥∥om − on0(o)

∥∥∥ < 1
2

∥∥∥on0(o) − on(o)

∥∥∥ ,
for any m ≥ n0(o) > n(o). Define S : H → H by

S o =

 oN0(o)−λo
1−λ , if o < H,

on0(o)−λo
1−λ , if o = on(o) ∈ H.

Let o, z ∈ H, and we will show that S is an enriched Kannan contractive mapping. Indeed, we need to
consider the following four cases:
Case 1. If o, z < M, then S o =

oN0(o)−λo
1−λ and S z =

oN0(z)−λz
1−λ , which imply that S λo = oN0(o) and S λz = oN0(z).

We can suppose that oN0(z) > oN0(o). It follows that∥∥∥oN0(o) − oN0(z)

∥∥∥ < 1
2

∥∥∥o − oN0(o)

∥∥∥ =
1
2
‖o − S λo‖ ,

which shows that ‖S λo − S λz‖ < 1
2 [‖o − S λo‖ + ‖z − S λz‖].

Case 2. If o, z ∈ M, there exist n(o), n(z) ∈ N such that o = on(o), z = on(z). Then S o =
on0(o)−λo

1−λ and
S z =

on0(z)−λz
1−λ , which implies that S λo = on0(o) and S λz = on0(z). Suppose that n0(z) > n0(o). We obtain∥∥∥on0(z) − on0(o)

∥∥∥ < 1
2

∥∥∥on0(o) − on(o)

∥∥∥ =
1
2
‖S λo − o‖ ,

which shows that ‖S λo − S λz‖ < 1
2 [‖o − S λo‖ + ‖z − S λz‖].

Case 3. If o ∈ M, z < M, there exists n(o) ∈ N satisfying o = on(o), then S o =
on0(o)−λo

1−λ and S z =
oN0(z)−λz

1−λ
which imply that S λo = on0(o) and S λz = oN0(z).
Subcase 1. If n0(o) ≥ N0(z), we obtain∥∥∥on0(o) − oN0(z)

∥∥∥ < 1
2

∥∥∥z − oN0(z)

∥∥∥ =
1
2
‖z − S λz‖ ,

which shows that ‖S λo − S λz‖ < 1
2 [‖o − S λo‖ + ‖z − S λz‖].

Subcase 2. If n0(o) < N0(z), we obtain∥∥∥oN0(z) − on0(o)

∥∥∥ < 1
2

∥∥∥on0(o) − o
∥∥∥ =

1
2
‖S λo − o‖ ,
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which shows that ‖S λo − S λz‖ < 1
2 [‖o − S λo‖ + ‖z − S λz‖].

Case 4. If o < M and z ∈ M, in this case, S λo = oN0(o) and S λz = on0(z), similarly to Case 3, we can also
get that ‖S λo − S λz‖ < 1

2 [‖o − S λo‖ + ‖z − S λz‖].
Therefore, by summarizing all cases, for any o, z ∈ H with o , z, we have

‖S λo − S λz‖ <
1
2
‖o − S λo‖ + ‖z − S λz‖ ,

which shows that S is an enriched Kannan contractive mapping. Notice that S is fixed point-free,
which is a contradiction. Therefore, (H, ‖ · ‖) is a Banach space. �

Now, we give the following example to answer Question 2.

Example 1. Let H = N and W(o, z; λ) = λo + (1 − λ)z, λ ∈ [0, 1). We define the metric d : H × H →
[0,+∞) by

d(o, z) =

{
1 +

∣∣∣1
o −

1
z

∣∣∣ , o , z,
0, o = z.

Then (H, d,W) is a complete convex metric space, but H is not compact since the sequence (n) has no
convergent subsequence in H. A mapping S : H → H is defined by S o = 7o for any o ∈ H. Clearly, S
is continuous. Moreover, for λ = 1

2 , we have W(o, z; 1
2 ) = 4o. For all o, z ∈ H with o < z, we conclude

that

d
(
W(o, S o;

1
2

),W(z, S z;
1
2

)
)

= 1 +

∣∣∣∣∣ 1
4o
−

1
4z

∣∣∣∣∣ < 1 +
1

4o
.

Notice that

1
2

[
d
(
o,W(o, S o;

1
2

)
)

+ d
(
z,W(z, S z;

1
2

)
)]

=
1
2

[
1 +

∣∣∣∣∣1o − 1
4o

∣∣∣∣∣ + 1 +

∣∣∣∣∣1z − 1
4z

∣∣∣∣∣]
= 1 +

3
8o

+
3
8z

> 1 +
3

8o
.

Thus

d
(
W(o, S o;

1
2

),W(z, S z;
1
2

)
)
<

1
2

[
d
(
o,W(o, S o;

1
2

)
)

+ d
(
z,W(z, S z;

1
2

)
)]
,

for all o, z ∈ H with o < z. Similarly, one can prove it for the case o, z ∈ H with o > z. Therefore, S is
an enriched Kannan contractive mapping, but S has no fixed point.

Suzuki enriched the Kannan-type mapping fixed point theorem as follows:

Theorem 8. Let (H, d,W) be a complete convex metric space and S : H → H be a mapping. If there
exists λ ∈ [0, 1) such that for any o, z ∈ H,

1 − λ
2

d(o, S o) < d(o, z)

implies

ψ (d(W(o, S o; λ),W(z, S z; λ))) ≤ f (d(o, z))[ψ (d(o,W(o, S o; λ))) + ψ (d(z,W(z, S z; λ)))],

where f ∈ F, ψ ∈ Ψ. Then, S has a unique fixed point o∗ ∈ H, and the sequence on+1 = W(on, S on; λ)
converges to o∗.
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Proof. For any o ∈ H, set S λo = W(o, S o; λ). In this case, the given assumption becomes

1
2

d(o, S λo) < d(o, z) implies ψ (d(S λo, S λz)) ≤ f (d(o, z))[ψ (d(o, S λo)) + ψ (d(z, S λz))]. (2.3)

Choose o1 ∈ H and construct the Picard iteration associated with S λ, this is on+1 = S λon. Without loss
of generality, suppose that on , on+1 for all n ∈ N. Indeed, if on = on+1 for some n ∈ N, we have

d(on, S on) = d(on+1, S on) = d(on,W(on, S on; λ)) ≤ (1 − λ)d(on, S on),

which means that d(on, S on) = 0. Thus, on is a fixed point of S . Since

1
2

d(on, S λon) < d(on, S λon) = d(on, on+1),

by applying the condition (2.3), we have

ψ (d(S λon, S λon+1)) ≤ f (d(on, on+1))
[
ψ (d(on, S λon)) + ψ (d(on+1, S λon+1))

]
. (2.4)

Then we see that

ψ (d(on+1, on+2)) ≤ f (d(on, on+1))
[
ψ (d(on, on+1)) + ψ (d(on+1, on+2))

]
<

1
2

[
ψ (d(on, on+1)) + ψ (d(on+1, on+2))

]
.

Hence ψ (d(on+1, on+2)) < ψ (d(on, on+1)). Since ψ is increasing, we have d(on+1, on+2) < d(on, on+1).
Thus, {d(on, on+1)} is a decreasing sequence of nonnegative real numbers, and hence it is convergent.
Assume that lim

n→+∞
d(on, on+1) = r ≥ 0. If r > 0 . From (2.4), we obtain that

ψ (d(on+1, on+2))
ψ (d(on, on+1)) + ψ (d(on+1, on+2))

≤ f (d(on, on+1))

letting n → +∞, we get 1
2 ≤ lim

n→+∞
f (d(on, on+1)), a contradiction , thus r = 0. Now, we show that {on}

is a Cauchy sequence. If not, then there exist ε > 0 and two sequences {qk} , {pk} of positive integers
such that

pk > qk > k, d(oqk , opk) ≥ ε and d(oqk , opk−1) < ε.

We obtain
ε ≤ d(oqk , opk) ≤ d(oqk , opk−1) + d(opk−1, opk) ≤ ε + d(opk−1, opk).

Let k → +∞, we deduce that lim
k→+∞

d(oqk , opk) = ε. Further, from

d(oqk , opk) ≤ d(oqk , oqk+1) + d(oqk+1, opk+1) + d(opk+1, opk)

and
d(oqk+1, opk+1) ≤ d(oqk+1, oqk) + d(oqk , opk) + d(opk , opk+1),
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we obtain lim
k→+∞

d(oqk+1, opk+1) = ε. Note that lim
n→+∞

d(on, on+1) = 0, there exists N0 ∈ N such that

d(on, on+1) < ε and
1
2

d(oqk , S λoqk) =
1
2

d(oqk , oqk+1) < ε ≤ d(opk , oqk),

for any n > N0. By applying the condition (2.3) again, we find

ψ
(
d(S λopk , S λoqk)

)
≤ f (d(opk , oqk

))
[
ψ

(
d(opk , S λopk)

)
+ ψ

(
d(oqk , S λoqk)

)]
,

for all n > N0. Thus

ψ
(
d(opk+1, oqk+1)

)
<

1
2

[
ψ

(
d(opk , opk+1)

)
+ ψ

(
d(oqk , oqk+1)

)]
.

Letting k → +∞, we obtain that

ψ(ε) = lim
k→+∞

ψ
(
d(S λopk , S λoqk)

)
≤

1
2

[
ψ (0) + ψ (0)

]
= 0,

which implies ε = 0 and leads to a contradiction. Therefore, {on} is a Cauchy sequence and on → o∗ ∈
H as n→ +∞. We assume that there exists n ∈ N such that

1
2

d(on, on+1) ≥ d(on, o∗) and
1
2

d(on+1, on+2) ≥ d(on+1, o∗).

Then we obtain

d(on, on+1) ≤ d(on, o∗) + d(o∗, on+1) ≤
1
2

[d(on, on+1) + d(on+1, on+2)] ,

which implies
d(on, on+1) ≤ d(on+1, on+2)

a contradiction. Therefore, one of the following conditions holds:

(a) 1
2d(on, on+1) < d(on, o∗) for any n in some infinite subset E of N;

(b) 1
2d(on+1, on+2) < d(on+1, o∗) for any n in some infinite subset U of N.

If (a) holds, then we have

ψ(d(on+1, S λo∗)) = ψ(d(S λon, S λo∗)) ≤ f (d(on, o∗))
[
ψ(d(on, S λon)) + ψ(d(o∗, S λo∗))

]
<

1
2

[
ψ(d(on, on+1)) + ψ(d(o∗, on+1) + d(on+1, S λo∗))

]
.

Hence, lim
n∈E,n→+∞

ψ(d(on+1, S λo∗)) = 0 and lim
n→+∞

on+1 = S λo∗, that is, {on} has a subsequence converging

to S λo∗. Similarly, if (b) holds, we also obtain that {on} has a subsequence converging to S λo∗. Since
{on} is converging to o∗, o∗ = S λo∗. If z∗ is another fixed point of S λ, that is, o∗ = S λo∗ , S λz∗ = z∗.
Since 1

2d(o∗, S λo∗) = 0 < d(o∗, z∗), then, we have

ψ (d(o∗, z∗)) = ψ (d(S λo∗, S λz∗)) ≤ f (d(o∗, z∗))
[
ψ (d(o∗, S λo∗)) + ψ (d(z∗, S λz∗))

]
= 0,

thus d(o∗, z∗) = 0, which is a contradiction. Combining this with Lemma 2, we have that S has a unique
fixed point in H. �
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Example 2. Let H = [0, 2] and d be a Euclidean metric on H. Set W(o, z; λ) = λo + (1 − λ)z for any
λ ∈ [0, 1). Then (H, d,W) is a complete convex metric space. Let us define S : H → H by

S o =

{ 8−o
7 , o ∈ [0, 2),

2
7 , o = 2.

We choose λ = 1
8 , we have

S 1
8

= W(o, S o;
1
8

) =

{
1, o ∈ [0, 2),
1
2 , o = 2.

Clearly, S satisfies the contractive (2.3) ( ψ(z) = t and f (z) = − z
12 + 1

2 for all z ≥ 0). All conditions of
Theorem 8, hold and therefore S has a unique fixed point 1 in H.

Next, we give a generalization of Theorem 8 in the setting of compact convex spaces.

Theorem 9. Let (H, d,W) be a compact convex metric space with continuous convex structure and
S : H → H be a continuous mapping. If there exists λ ∈ [0, 1) such that for any o, z ∈ H,

1 − λ
2

d(o, S o) < d(o, z)

implies

ψ (d(W(o, S o; λ),W(z, S z; λ))) <
1
2

[ψ (d(o,W(o, S o; λ))) + ψ (d(z,W(z, S z; λ)))],

where ψ ∈ Ψ. Then, S has a unique fixed point o∗ ∈ H, and the sequence on+1 = W(on, S on; λ)
converges to o∗.

Proof. For any o ∈ H, we set S λo = W(o, S o; λ). It is clear that S λ is continuous. In this case, the
given assumption becomes

1
2

d(o, S λo) < d(o, z) implies ψ (d(S λo, S λz)) <
1
2

[ψ (d(o, S λo)) + ψ (d(z, S λz))], (2.5)

for any o, z ∈ H and λ ∈ [0, 1). Let g(o) = d(o, S λo). It is clear that g(o) is continuous. By the fact that
H is compact, there exists a point o∗ ∈ H such that g(o∗) = inf {g(o) : o ∈ H}, then g(o∗) ≤ g(o) for any
o ∈ H. Suppose that o∗ , S λo∗, thus

1
2

d(o∗, S λo∗) < d(o∗, S λo∗) ≤ d(S λo∗, S 2
λo
∗),

then we obtain
ψ

(
d(S λo∗, S 2

λo
∗)
)
<

1
2

[
ψ (d(o∗, S λo∗)) + ψ

(
d(S λo∗, S 2

λo
∗)
)]
.

This implies that ψ
(
d(S λo∗, S 2

λo
∗)
)
< ψ (d(o∗, S λo∗)), contradicting d(o∗, S λo∗) ≤ d(S λo∗, S 2

λo
∗). Hence

o∗ = S λo∗. Assume that z∗ is another fixed point, that is, o∗ = S λo∗ , S λz∗ = z∗. Since 1
2d(o∗, S λo∗)

=0 < d(o∗, z∗), we have

ψ (d(o∗, z∗)) = ψ (d(S λo∗, S λz∗)) <
1
2

[
ψ (d(o∗, S λo∗)) + ψ (d(z∗, S λz∗))

]
= 0.
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Thus, d(o∗, z∗) = 0, i.e. o∗ = z∗, combining this with Lemma 2, we have that S has a unique fixed point
o∗ in H. Choose o1 ∈ H and the iterative process {on}

+∞
n=0 defined by

on+1 = S λon = W(on, S on; λ).

Suppose that on , S λon for all n ∈ N. Since 1
2d(on, S λon) < d(on, S λon) = d(on, on+1), we have

ψ (d(S λon, S λon+1)) <
1
2

[
ψ (d(on, S λon)) + ψ (d(on+1, S λon+1))

]
,

then ψ (d(on+1, on+2)) < ψ (d(on, on+1)). Assume that lim
o→+∞

ψ (d(on, on+1)) = r ≥ 0. Suppose that r > 0.
Since H is compact, there exists a convergent subsequence {onk} of {on} such that onk → o, as k → +∞.
Thus,

0 < r = lim
k→+∞

ψ
(
d(onk , S λonk)

)
= d(o, S λo).

Since 1
2d(o, S λo) < d(o, S λo), we have

0 < r = lim
k→+∞

ψ
(
d(S onk , S λonk+1)

)
= ψ

(
d(S o, S 2

λo)
)
<

1
2

[
ψ (d(o, S λo)) + ψ

(
d(S o, S 2

λo)
)]
,

it follows that
0 < r = ψ

(
d(S o, S 2

λo)
)
< ψ (d(o, S λo)) = r,

which is a contradiction, so r = 0, which implies o = o∗. Since 0 = 1
2d(o∗, S λo∗) < d(on, o∗), then we

have

ψ (d(on+1, o∗)) = ψ (d(S λon, S λo∗)) <
1
2

[
ψ (d(on, S λon)) + ψ (d(o∗, S λo∗))

]
,

thus lim
n→+∞

ψ(d(on+1, o∗)) = 0, which implies d(on+1, o∗) → 0 as n → +∞. Therefore, on+1 =

W(on, S on; λ) converges to o∗. �

Remark 2. Let H, d,W and the map S : H → H be defined as in Example 2. Then (H, d,W) is a
compact convex metric space, and S satisfies the contractive (2.5) for any ψ(t) = t for all t ≥ 0, S has
a unique fixed point 1 in H. However, it is to be noted that S is not continuous, so Theorem 9 is not
applicable.

Question 3. Does the conclusion of Theorem 9 still hold true if we remove the condition “S is
continuous”?

The following theorem is an answer to the above question:

Theorem 10. Let (H, d,W) be a compact convex metric space and S : H → H be a mapping. If there
exists λ ∈ [0, 1) such that for any o, z ∈ H,

1 − λ
2

d(o, S o) < d(o, z)

implies

ψ (d(W(o, S o; λ),W(z, S z; λ))) <
1
2

[ψ (d(o,W(o, S o; λ))) + ψ (d(z,W(z, S z; λ)))],

where ψ ∈ Ψ. Then, S has a unique fixed point o∗ ∈ H, and the sequence on+1 = W(on, S on; λ)
converges to o∗.
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Proof. For any o ∈ H, we set S λo = W(o, S o; λ), and the given assumption becomes

1
2

d(o, S λo) < d(o, z) implies ψ (d(S λo, S λz)) <
1
2

[ψ (d(o, S λo)) + ψ (d(z, S λz))], (2.6)

for all o, z ∈ H and λ ∈ [0, 1). We set L = inf {d(o, S λo) : o ∈ H}. Then we can find e sequence
{on} ∈ H such that

lim
n→+∞

d(on, S λon) = L.

By the compactness property of H, we put lim
n→+∞

on = e and lim
n→+∞

S λon = c for some e, c ∈ H. Then we
deduce

L = lim
n→+∞

d(on, S λon) = lim
n→+∞

d(on, c) = lim
n→+∞

d(e, S λon) = d(e, c).

Now we check that L = 0. Assume the contrary, i.e., L > 0, there exists N0 ∈ N such that

d(on, c) >
2
3

L, d(on, S λon) <
4
3

L,

for all n ≥ N0. Thus
1
2

d(on, S λon) < d(on, c),

which implies

ψ (d(S λon, S λc)) <
1
2

[
ψ (d(on, S λon)) + ψ (d(c, S λc))

]
.

Let n→ +∞, and we obtain

ψ (d(c, S λc)) ≤
1
2

[
ψ (d(e, c)) + ψ (d(c, S λc))

]
,

which implies ψ (d(c, S λc)) ≤ ψ (d(e, c)) . Thus, we obtain ψ (d(c, S λc)) ≤ ψ (L). Moreover,
since 1

2d(c, S λc) < d(c, S λc) then, we have

ψ
(
d(S λc, S 2

λc)
)
<

1
2

[
ψ (d(c, S λc)) + ψ

(
d(S λc, S 2

λc)
)]
,

it follows that ψ
(
d(S λc, S 2

λc)
)
< ψ (d(c, S λc)) ≤ ψ (L). Hence d(S λc, S 2

λc) < L, a contradiction.
Therefore, L = 0 and lim

n→+∞
on = lim

n→+∞
S on = e. We shall show that S λ has a fixed point in H. Assume

on the contrary S λ does not have a fixed point. Since 1
2d(on, S λon) < d(on, S λon), then we have

ψ
(
d(S λon, S 2

λon)
)
<

1
2

[
ψ (d(on, S λon)) + ψ

(
d(S λon, S 2

λon)
)]
,

which implies that
ψ

(
d(S λon, S 2

λon)
)
< ψ (d(on, S λon)) .

Due to ψ is increasing, thus d(S λon, S 2
λon) < d(on, S λon). By using triangular inequality, we obtain

d(e, S 2
λon) ≤ d(e, S λon) + d(S on, S 2

λon) < d(e, S λon) + d(on, S λon).
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Hence lim
n→+∞

d(e, S 2
λon) = 0. Assume that there exists N ∈ N such that

1
2

d(oN , S λoN) ≥ d(oN , e) and
1
2

d(S λoN , S
2

λoN) ≥ d(S λoN , e),

we deduce that

d(oN , S λoN) ≤ d(oN , e) + d(e, S λoN)

≤
1
2

d(oN , S λoN) +
1
2

d(S λoN , S 2
λoN)

<
1
2

d(oN , S λoN) +
1
2

d(oN , S λoN)

= d(oN , S λoN)

a contradiction. Thus, either

1
2

d(on, S λon) < d(on, e) or
1
2

d(S λon, S
2

λon) < d(S λon, e)

holds for any n ∈ N. This yields one of the following conditions:
(1) There exists an infinite subset I of N such that

ψ (d(S λon, S λe)) <
1
2

[
ψ (d(on, S λon)) + ψ (d(e, S λe))

]
, f or any n ∈ I;

(2) There exists an infinite subset J of N such that

ψ
(
d(S 2

λon,Te)
)
<

1
2

[
ψ

(
d(S on, S 2

λon)
)

+ ψ (d(e,Te))
]
, f or any n ∈ J.

For the first case, let n→ +∞, we obtain

ψ (d(e, S λe)) ≤
1
2

[
ψ (d(e, e)) + ψ (d(e, S λe))

]
,

and consequently, ψ (d(e, S λe)) = 0. This yields d(e, S λe) = 0. Thus, e = S λe. Also in the second case,
let n→ +∞, we obtain that

ψ (d(e, S λe)) ≤
1
2

[
ψ (d(e, e)) + ψ (d(e, S λe))

]
.

Similarly, we can conclude that e = S λe. Hence, e is a fixed point of S λ in both cases, a contradiction.
If we assume that z∗ is another fixed point of S λ, that is, o∗ = S λo∗ , S λz∗ = z∗. Since 1

2d(o∗, S λo∗) =0<
d(o∗, z∗), we have

ψ (d(o∗, z∗)) = ψ (d(S λo∗, S λz∗)) <
1
2

[
ψ (d(o∗, S λo∗)) + ψ (d(z∗, S λz∗))

]
= 0.

Thus d(o∗, z∗) = 0, i.e., o∗ is the unique fixed point of S λ. Combining with Lemma 2, we have that S
has a unique fixed point in H. �
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3. Application

In this part, we establish the existences to solution of nonlinear Volterra integral equations

o(x) = g(x) +

∫ x

0
G(x, r, o(r))dr, x ∈ [0, l], (3.1)

where l > 0, G : [0, l] × [0, l] × R→ R, and g : [0, l]→ R.

Theorem 11. Assume that

(1) The function G is continuous;
(2) For any λ ∈ [0, 1), there exists f ∈ F such that∣∣∣∣∣λ(o(x) − z(x)) + (1 − λ)

∫ x

0
G(x, r, o(r)) −G(x, r, z(r))dr

∣∣∣∣∣
≤ f (|o(x) − z(x)|)(1 − λ)

[∣∣∣∣∣o(x) − g(x) −
∫ x

0
G(x, r, o(r))dr

∣∣∣∣∣ +

∣∣∣∣∣z(x) − g(x) −
∫ x

0
G(x, r, z(r))dr

∣∣∣∣∣] .
Then (3.1) has a unique solution. Moreover, the solution is exhibited as follows:

z(x) = g(x) +

∫ x

0
G(x, r, z(r))dr,

where z(x) = lim
n→+∞

on(x), o0(x) = o0 ∈ H, and

on+1(x) = λon(x) + (1 − λ)
[
g(x) +

∫ x

0
G(x, r, on(r))dr

]
, λ ∈ [0, 1), n ∈ N.

Proof. Let H = C ([0, l],R) be the set of all continuous functions on the interval [0, l]. Define the
metric d : H × H → R+ by

d(o, z) = sup
x∈[0,l]

|o(x) − z(x)| ,

and the mapping W : H × H × [0, 1)→ H by the formula

W(o, z; λ) = λo + (1 − λ)z.

Clearly, (H, d,W) is a complete convex metric space. Consider the mapping

(S o)(x) = g(x) +

∫ x

0
G(x, r, o(r))dr, o ∈ H, x ∈ [0, l].

It is clear that o(x) is a solution of Eq (3.1) if and only if o(x) is a fixed point of S , that is, S o = o.
Obviously, S is well defined. Define S λo by

(S λo)(x) = λo(x) + (1 − λ)(S o)(x),

and set on+1(x) = (S λon)(x) = λon(x) + (1 − λ)(S on)(x), n ∈ N. Let o, z ∈ H, we have

|(S λo)(x) − (S λz)(x)| = |λo(x) + (1 − λ)(S o)(x) − λz(x) + (1 − λ)(S z)(x)|
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= |λ(o(x) − z(x)) + (1 − λ)((S o)(x) − (S z)(x))|

≤ f (|o(x) − z(x)|)
[∣∣∣∣∣o − g(x) −

∫ x

0
G(x, r, o(r))dr

∣∣∣∣∣ +

∣∣∣∣∣z − g(x) −
∫ x

0
G(x, r, z(r))dr

∣∣∣∣∣]
= f (|o(x) − z(x)|) [|o − (S λo)(x)| + |z − (S λz)(x)|] .

This implies that

d(S λo, S λz) ≤ f (d(o, z)) [d(o, S λo) + d(z, S λz)] .

Hence, S is an enriched Kannan-type mapping. Meanwhile, by Theorem 8 (ψ(o) = o for all o > 0), S
has a unique fixed point z(x), satisfying z(x) = (S z)(x) = (S λz)(x), which means that z(x) is the solution
of (3.1). Now, we will show that z(x) = f (x) +

∫ x

0
G(x, r, z(r))dr. Note that

|z(x) − on+1(x)| = |(S λz)(x) − (S λon+1)(x)|

=

∣∣∣∣∣λ(z(x) − on(x)) + (1 − λ)
∫ x

0
[G(x, r, z(r)) −G(x, r, on(r))]dr

∣∣∣∣∣
≤ f (|z(x) − on(x)|)(1 − λ)

[∣∣∣∣∣z(x) − g(x) −
∫ x

0
G(x, r, z(r))dr

∣∣∣∣∣
+

∣∣∣∣∣on(x) − g(x) −
∫ x

0
G(x, r, on(r))dr

∣∣∣∣∣]
= f (|z(x) − on(x)|) [|z(x) − (S λz)(x)| + |on(x) − (S λon)(x)|] ,

which implies that lim sup
n→+∞

|z(x) − on+1(x)| = 0. Thus

z(x) = lim
n→+∞

on+1(x) = λ lim
n→+∞

on(x) + (1 − λ)
[
g(x) +

∫ x

0
G(x, r, lim

n→+∞
on(r))dr

]
= λz(x) + (1 − λ)

[
g(x) +

∫ x

0
G(x, r, z(r))dr

]
.

Hence, we have

z(x) = g(x) +

∫ x

0
G(x, r, z(r))dr.

�

4. Conclusions

In this paper, we prove three questions about enriched Kannan-type mapping, including the open
question raised by Berinde and Păcurar [13]. We defined and studied Suzuki-enriched Kannan-type
mappings in convex metric spaces. Several examples related to theorems are also provided to show the
validity of our main results. The solution of an integral equation is also investigated. Suzuki enriched
Kannan-type mappings are natural generalizations of enriched Kannan mappings. Our results extend
fundamental findings previously established in related research.
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13. V. Berinde, M. Păcurar, Kannan’s fixed point approximation for solving split feasibility
and variational inequality problems, J. Comput. Appl. Math., 386 (2021), 113217.
http://dx.doi.org/10.1016/j.cam.2020.113217

14. W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai Math. Sem. Rep.,
22 (1970), 142–149. http://dx.doi.org/10.2996/kmj/1138846111

15. M. Choban, About convex structures on metric spaces, Carpathian J. Math., 38 (2022), 391–404.
http://dx.doi.org/10.37193/CJM.2022.02.10

16. S. Khan, M. Abbas, Common fixed point results with applications in convex metric spaces, Journal
of Concrete and Applicable Mathematics, 10 (2012), 65–76.
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