This article addressed the integrable and approximate solutions of Hadamard-type fractional Gripenberg's equation in Lebesgue spaces $ L_1[1, e] $. It is well known that the Gripenberg's equation has significant applications in mathematical biology. By utilizing the fixed point (FPT) approach and the measure of noncompactness (MNC), we demonstrated the presence of monotonic integrable solutions as well as the uniqueness of the solution for the studied equation in spaces that are not Banach algebras. Moreover, the method of successive approximations was successfully applied and, as a result, we obtained the approximate solutions for these integral equations. To validate the obtained results, we provided several numerical examples.
Citation: Saud Fahad Aldosary, Mohamed M. A. Metwali, Manochehr Kazemi, Ateq Alsaadi. On integrable and approximate solutions for Hadamard fractional quadratic integral equations[J]. AIMS Mathematics, 2024, 9(3): 5746-5762. doi: 10.3934/math.2024279
This article addressed the integrable and approximate solutions of Hadamard-type fractional Gripenberg's equation in Lebesgue spaces $ L_1[1, e] $. It is well known that the Gripenberg's equation has significant applications in mathematical biology. By utilizing the fixed point (FPT) approach and the measure of noncompactness (MNC), we demonstrated the presence of monotonic integrable solutions as well as the uniqueness of the solution for the studied equation in spaces that are not Banach algebras. Moreover, the method of successive approximations was successfully applied and, as a result, we obtained the approximate solutions for these integral equations. To validate the obtained results, we provided several numerical examples.
[1] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. https://doi.org/10.1142/3779 |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006), 1–523. |
[3] | M. Väth, Volterra and integral equations of vector functions, 1 Eds., CRC Press, 2000. |
[4] | J. Caballero, A. B. Mingarelli, K. Sadarangani, Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer, Electron. J. Differ. Equ., 2006 (2006), 1–11. |
[5] | S. Chandrasekhar, Radiative transfer, Dover Publications, 1960. |
[6] | K. Deimling, Nonlinear functional analysis, Heidelberg: Springer Berlin, 1985. https://doi.org/10.1007/978-3-662-00547-7 |
[7] | G. Gripenberg, Periodic solutions of an epidemic model, J. Math. Biol., 10 (1980), 271–280. https://doi.org/10.1007/BF00276986 doi: 10.1007/BF00276986 |
[8] | M. M. A. Metwali, On a class of quadratic Urysohn-Hammerstein integral equations of mixed type and initial value problem of fractional order, Mediterr. J. Math., 13 (2016), 2691–2707. https://doi.org/10.1007/s00009-015-0647-7 |
[9] | M. M. A. Metwali, Solvability in weighted $L_1$-spaces for the m-product of integral equations and model of the dynamics of the capillary rise, J. Math. Anal. Appl., 515 (2022), 126461. https://doi.org/10.1016/j.jmaa.2022.126461 |
[10] | J. Hadamard, Essai sur l' étude des fonctions donnés par leur développment de Taylor, J. Math. Pures Appl., 8 (1892), 101–186. |
[11] | A. M. Abdalla, H. A. H. Salem, K. Cichoń, On positive solutions of a system of equations generated by Hadamard fractional operators, Adv. Difference Equ., 2020 (2020), 267. https://doi.org/10.1186/s13662-020-02702-0 |
[12] | D. Baleanu, B. Shiri, Generalized fractional differential equations for past dynamic, AIMS Mathematics, 7 (2022), 14394–14418. https://doi.org/10.3934/math.2022793 |
[13] | A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Mathematics, 5 (2020), 259–272. https://doi.org/10.3934/math.2020017 doi: 10.3934/math.2020017 |
[14] | M. M. A. Metwali, Solvability of quadratic Hadamard-type fractional integral equations in Orlicz spaces, Rocky Mountain J. Math., 53 (2023), 531–540. https://doi.org/10.1216/rmj.2023.53.531 |
[15] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivative: Theory and applications, Gordon and Breach Science Publishers, 1993. |
[16] | M. Sen, D. Saha, R. P. Agarwal, A Darbo fixed point theory approach towards the existence of a functional integral equation in a Banach algebra, Appl. Math. Comput., 358 (2019), 111–118. https://doi.org/10.1016/j.amc.2019.04.021 |
[17] | M. M. A. Metwali, Solvability of Gripenberg's equations of fractional order with perturbation term in weighted $L_p$-spaces on ${\mathbb{R}}^+$, Turkish J. Math., 46 (2022), 481–498. https://doi.org/10.3906/mat-2106-84 doi: 10.3906/mat-2106-84 |
[18] | A. Alsaadi, M. Cichoń, M. Metwali, Integrable solutions for Gripenberg-type equations with m-product of fractional operators and applications to initial value problems, Mathematics, 10 (2022), 1172. https://doi.org/10.3390/math10071172 |
[19] | M. Cichoń, M. M. A. Metwali, On monotonic integrable solutions for quadratic functional integral equations, Mediterr. J. Math., 10 (2013), 909–926. https://doi.org/10.1007/s00009-012-0218-0 doi: 10.1007/s00009-012-0218-0 |
[20] | M. M. A. Metwali, On perturbed quadratic integral equations and initial value problem with nonlocal conditions in Orlicz spaces, Demonstratio Math., 53 (2020), 86–94. https://doi.org/10.1515/dema-2020-0052 doi: 10.1515/dema-2020-0052 |
[21] | J. Banaś, A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl., 47 (2004), 271–279. https://doi.org/10.1016/S0898-1221(04)90024-7 doi: 10.1016/S0898-1221(04)90024-7 |
[22] | M. Kazemi, Sinc approximation for numerical solutions of two-dimensional nonlinear Fredholm integral equations, Math. Commun., 29 (2024), 83–103. |
[23] | Z. Satmari, A. M. Bica, Bernstein polynomials based iterative method for solving fractional integral equations, Math. Slovaca, 72 (2022), 1623–1640. https://doi.org/10.1515/ms-2022-0112 doi: 10.1515/ms-2022-0112 |
[24] | M. Kazemi, Approximating the solution of three-dimensional nonlinear Fredholm integral equations, J. Comput. Appl. Math., 395 (2021), 113590. https://doi.org/10.1016/j.cam.2021.113590 doi: 10.1016/j.cam.2021.113590 |
[25] | S. Singh, V. K. Patel, V. K. Singh, E. Tohidi, Numerical solution of nonlinear weakly singular partial integro-differential equation via operational matrices, Appl. Math. Comput., 298 (2017), 310–321. https://doi.org/10.1016/j.amc.2016.11.012 doi: 10.1016/j.amc.2016.11.012 |
[26] | K. Maleknejad, J. Rashidinia, T. Eftekhari, Existence, uniqueness, and numerical solutions for two-dimensional nonlinear fractional Volterra and Fredholm integral equations in a Banach space, Comp. Appl. Math., 39 (2020), 271. https://doi.org/10.1007/s40314-020-01322-4 |
[27] | W. Han, K. E. Atkinson, Theoretical numerical analysis, New York: Springer, 2007. https://doi.org/10.1007/978-1-4419-0458-4 |
[28] | M. Kazemi, Triangular functions for numerical solution of the nonlinear Volterra integral equations, J. Appl. Math. Comput., 68 (2022), 1979–2002. https://doi.org/10.1007/s12190-021-01603-z doi: 10.1007/s12190-021-01603-z |
[29] | K. Maleknejad, K. Nedaiasl, Application of sinc-collocation method for solving a class of nonlinear Fredholm integral equations, Comput. Math. Appl., 62 (2011), 3292–3303. https://doi.org/10.1016/j.camwa.2011.08.045 doi: 10.1016/j.camwa.2011.08.045 |
[30] | S. Yuzbasi, A collocation method based on Bernstein polynomials to solve nonlinear Fredholm-Volterra integro-differential equations, Appl. Math. Comput., 273 (2016), 142–154. https://doi.org/10.1016/j.amc.2015.09.091 doi: 10.1016/j.amc.2015.09.091 |
[31] | F. Mirzaee, N. Samadyar, Using radial basis functions to solve two dimensional linear stochastic integral equations on non-rectangular domains, Eng. Anal. Bound. Elem., 92 (2018), 180–195. https://doi.org/10.1016/j.enganabound.2017.12.017 doi: 10.1016/j.enganabound.2017.12.017 |
[32] | S. Akhavan, A. Roohollahi, Using 2D and 1D block-pulse functions simultaneously for solving the Barbashin integro-differential equations, Int. J. Comput. Math., 100 (2023), 1957–1970. https://doi.org/10.1080/00207160.2023.2192304 doi: 10.1080/00207160.2023.2192304 |
[33] | A. Molabahrami, A modified degenerate kernel method for the system of Fredholm integral equations of the second kind, Iran. J. Math. Sci. Inform., 14 (2019), 43–53. https://doi.org/10.7508/ijmsi.2019.01.005 doi: 10.7508/ijmsi.2019.01.005 |
[34] | S. Yasmeen, Siraj-ul-Islam, R. Amin, Higher order Haar wavelet method for numerical solution of integral equations, Comput. Appl. Math., 42 (2023), 147. https://doi.org/10.1007/s40314-023-02283-0 doi: 10.1007/s40314-023-02283-0 |
[35] | K. Maleknejad, Z. JafariBehbahani, Application of two-dimensional triangular functions for solving nonlinear class of mixed Volterra-Fredholm integral equations, Math. Comput. Modelling, 55 (2012), 1833–1844. https://doi.org/10.1016/j.mcm.2011.11.041 doi: 10.1016/j.mcm.2011.11.041 |
[36] | K. Maleknejad, E. Saeedipoor, Convergence analysis of hybrid functions method for two dimensional nonlinear volterra-fredholm integral equations, J. Comput. Appl. Math., 368 (2020), 112533. https://doi.org/10.1016/j.cam.2019.112533 doi: 10.1016/j.cam.2019.112533 |
[37] | R. Jalilian, T. Tahernezhad, Exponential spline method for approximation solution of Fredholm integro-differential equation, Int. J. Comput. Math., 97 (2020), 791–801. https://doi.org/10.1080/00207160.2019.1586891 doi: 10.1080/00207160.2019.1586891 |
[38] | A. Altürk, The regularization-homotopy method for the two-dimensional Fredholm integral equations of the first kind, Math. Comput. Appl., 21 (2016), 9. https://doi.org/10.3390/mca21020009 doi: 10.3390/mca21020009 |
[39] | J. Biazar, Solution of the epidemic model by Adomian decomposition method, Appl. Math. Comput., 173 (2006), 1101–1106. https://doi.org/10.1016/j.amc.2005.04.036 doi: 10.1016/j.amc.2005.04.036 |
[40] | J. Banaś, K. Goebel, Measures of noncompactness in Banach spaces, Lect. Notes in Math., 1980. |
[41] | J. Appell, P. P. Zabrejko, Nonlinear superposition operators, Cambridge: Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511897450 |
[42] | B. Shiri, D. Baleanu, All linear fractional derivatives with power functions' convolution kernel and interpolation properties, Chaos Solitons Fractals, 170 (2023), 113399. https://doi.org/10.1016/j.chaos.2023.113399 |