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1. Introduction

The present article aims to study the integrable and approximate solutions of the following
Hadamard-type fractional Gripenberg equations:

x(θ) = g3(θ) + f3(θ, x(θ)) +

(
g1(θ) +

1
Γ(α1)

∫ θ

1

(
log

θ

s

)α1−1 f1(s, x(s))
s

ds
)
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×

(
g2(θ) +

1
Γ(α2)

∫ θ

1

(
log

θ

s

)α2−1 f2(s, x(s))
s

ds
)
, θ ∈ [1, e], 0 < α1, α2 < 1, (1.1)

in Lebesgue spaces L1[1, e], where e � 2.718.
Many real concrete phenomena are often modeled and described with the aid of integral equations,

particularly in physics, economics, engineering, and biology [1–3]. In particular, quadratic integral
equations characterize numerous real and concrete issues such as neutron transport, the kinetic theory
of gases, radiative transfer theory, and astrophysics (cf. [4,5]). Furthermore, some problems in biology
and the queuing theory have led to a quadratic integral equation of the fractional type [1, 6]

x(θ) = λ

(
h1(θ) +

∫ θ

0
b1(θ − s)x(s)ds

) (
h2(θ) +

∫ θ

0
b2(θ − s)x(s)ds

)
, θ ∈ R+,

and this equation has various applications in biology and numerous epidemic models, such as the model
of the spread of diseases that do not induce permanent immunity [7].

Moreover, various concrete phenomena contain discontinuous data functions. In this paper, we
focus on the integrable solutions of the studied problem (cf. [8, 9]).

In 1892, the author presented Hadamard fractional operators [10], where the integral kernel contains
a logarithmic function of arbitrary order that is not of the convolution type. It is important to study these
kinds of operators separately from the well-known Riemann-Liouville and Caputo fractional operators.

Fractional integral equations of the Hadamard type have been analyzed in a variety of function
spaces by several researchers (see, e.g., [11–15]).

In [16], the authors examined the quadratic Hadamard fractional equation

x(θ) =

(
h1(θ) +

g1(θ, x(ζ(θ)))
Γ(q)

∫ θ

1

u(θ, x(s))
s

(
log

θ

s
)q−1ds

)(
h2(θ) + g2(θ, x(η(θ)))

∫ a

0
v(θ, s, x(s))ds

)
in the Banach algebra of continuous functions C[0, a].

In [17], the author discussed the Riemann-Liouville fractional Gripenberg equation

x(θ) = h(θ, x(ϕ3(θ))) +

(
g1(θ) + g3(θ) · (Gx)(ϕ1(θ))

)(
g2(θ) +

1
Γ(α)

∫ θ

0

u(s, x(ϕ2(s)))
(θ − s)1−α ds

)
, θ ∈ R+

in the weighted Lebesgue spaces LN
1 (R+), see also [18].

One of our goals is to discuss the monotonicity property of the solution of Eq (1.1), which has
been widely studied and is of vital importance in various applications. In [19–21], the authors have
studied the monotonicity property of some distinct types of integral equations and have not examined
the numerical solutions. As a result, we can numerically and graphically verify that our solutions are
nondecreasing.

In general, we cannot find the exact solution of Eq (1.1), so we employ numerical techniques to
estimate an approximate solution for that equation. We use the iterative method [22,23] to estimate the
solution of (1.1), which shows acceptable accuracy.

The advantages of using the iterative method are as follows:

(1) This method is very effective and has a simple structure for application.
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(2) Since most of the numerical methods for solving integral equations, such as interpolation
polynomials, quadrature rules, Galerkin methods, finite and divided differences methods,
applying Haar wavelets and block pulse functions, and some hybrid methods lead to linear
systems, and the singularity of these systems having problems, then using the iterative method
based on successive approximations can be very useful to skip these problems [24–26].

For the numerical results of the integral equations, the Nystrom type methods and the iterative
methods have been applied in [27,28], and projection methods which contain the well-known Galerkin
method and collocation method have been employed in [29].

Many different methods have also been proposed to compute approximate solutions for these
equations such as Bernstein’s polynomials [30], radial basis functions (RBFs) [31], block-pulse
functions [32], degenerate kernel method [33], wavelet method [34], triangular functions method [35],
hybrid function method [36], and exponential spline method [37]. In addition, the integral equations
have been solved using various analytical-numeric methods, such as the Adomian decomposition
approach, the regularization-homotopy method, and the homotopy perturbation method [38, 39].

Here, we inspect the presence of monotonic solutions for the Hadamard-type fractional
Gripenberg’s equations (1.1), as well as the uniqueness of the solution in L1[1, e], which is not
Banach algebra. We utilize the fixed point theorem (FPT) approach concerning proper measure of
noncompactness (MNC) and fractional calculus to obtain our results. We also apply an iterative method
to estimate a numerical solution for Eq (1.1) and present an error analysis for that method, which
demonstrates that the approximate solution converges to the exact solution. To validate the obtained
results, we provide several numerical examples.

2. Notation and auxiliary facts

Let R = (−∞,∞), J = [1, e] ⊂ R, and MNC refer to the measure of noncompactness. Denoted by
Lp = Lp(J), 1 ≤ p < ∞ is the Banach space of the measurable functions x under the norm

‖x‖Lp = ‖x‖Lp(J) =

( ∫ e

1
|x(θ)|p dθ

) 1
p

< ∞.

Let S = S (J) allude to the set of all Lebesgue measurable functions on J. The set S concerning the
metric

d(x, z) = inf
ρ>0

[
ρ + meas ({s : |x(θ) − z(θ)| ≥ ρ})

]
becomes a complete metric space, where “meas” alludes to the Lebesgue measure on J. Additionally,
according to Proposition 2.14 in [3], the convergence in measure on J is similar to the convergence w.r.
to the metric d, and we will call the compactness in this space “compactness in measure”.

Theorem 2.1. Suppose that W ⊂ L1 is a bounded set and (Ωρ)1≤ρ≤e−1 ⊂ J is a family of measurable
sets s.t. meas(Ωρ) = ρ for every ρ ∈ J. Let w ∈ W. We have

w(θ1) ≥ w(θ2); θ1 ∈ Ωρ, θ2 < Ωρ,

then W forms a compact in measure set in L1.
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Definition 2.2. [40] Let ∅ , W ⊂ L1 be a bounded set. The Hausdorff MNC, χ(W) is defined as

χ(W) = inf{ρ > 0 : there exists a finite subset Z of L1 s.t. W ⊂ Z + Bc},

where Bc is the closed ball Bc = {z ∈ L1 : ‖z‖L1 ≤ c}, c > 0.

Next, let ∅ , W ⊂ L1 be a bounded set and ε > 0. The measure of equi-integrability c of the set
W [41, p. 39] is given by

c(W) = lim
ε→0

{
sup
w∈W

{
sup

[∫
D
|w(θ)| dθ : D ⊂ J, meas(D) ≤ ε

]}}
= lim

ε→0
sup
D⊂J,

meas(D)≤ε

sup
w∈W
‖w‖L1(D). (2.1)

If the set W is compact in measure, then c(W) is a regular MNC (cf. [41]).

Definition 2.3. [41] The (Nemytskii) superposition operator is denoted by F f (x)(θ) = f (θ, x), where
f : J × R→ R verifies the Carathéodory hypotheses, i.e.,

(1) It is continuous in x for almost all θ ∈ J.
(2) It is measurable in θ for any x ∈ R.

Theorem 2.4. [41] Assume that f verifies the Carathéodory hypotheses.The operator F f continuously
transforms Lp → Lq, p, q ≥ 1 if, and only if,

| f (θ, x)| ≤ a(θ) + b|x|
p
q , (2.2)

for all x ∈ R and θ ∈ J, where b ≥ 0 and a ∈ Lq.

Theorem 2.5. [40] Let ∅ , U ⊂ L1 be a convex, closed, and bounded set. Let P : U → U be a
continuous mapping and a contraction w.r. to MNC µ, i.e.,

µ(P(W)) ≤ kµ(W), k ∈ [0, 1)

for any ∅ , W ⊂ U. Thus, P has a fixed point in U.

Definition 2.6. [2, 15] The Hadamard-type fractional integral of a function x ∈ Lp, 1 ≤ p < ∞ with
left hand point 1 takes the structure

Iαx(θ) =
1

Γ(α)

∫ θ

1

(
log

θ

s

)α−1 x(s)
s

ds, θ > 1, α > 0,

where Γ(α) =
∫ ∞

0
e−ννα−1 dν.

Proposition 2.7. For α > 0, we have

(a) Iα transforms a.e. nondecreasing and nonnegative functions to functions that have similar
properties (cf. [11]).

(b) The operator Iα : Lp → Lp is continuous (cf. [2, Lemma 2.32]) with

‖Iαx‖Lp ≤

(
M =

1
Γ(α)

∫ 1

0
tα−1e

t
p dt

)
‖x‖Lp .
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3. Existence of integrable solutions for Eq (1.1)

Let us set (1.1) in operator form as:

x = (Hx) = g3 + F f3(x) + (A1x) · (A2x), (Aix) = gi + Iαi F fi(x), i = 1, 2,

where F fi is as in Definition 2.3 and Iαi , i = 1, 2 is as in Definition 2.6.

Let 1
p1

+ 1
p2

= 1, and set the hypotheses:

(i) gi : J → [0,∞), i = 1, 2, 3, are a.e. nondecreasing functions, where g1 ∈ Lp1 , g2 ∈ Lp2 , and
g3 ∈ L1.

(ii) For i = 1, 2, 3, the functions fi : J × R → R verify Carathéodory hypotheses, and (θ, x) →
fi(θ, x) ≥ 0 are nondecreasing w.r. to θ and x, separately for (θ, x) ∈ J × R.

(iii) ∃ bi ≥ 0, i = 1, 2, 3 and positive functions a1 ∈ Lp1 , a2 ∈ Lp2 , a3 ∈ L1 s.t.

| f3(θ, x)| ≤ a3(θ) + b3|x| and | f j(θ, x)| ≤ a j(θ) + b j|x|
1
p j , j = 1, 2,

for all θ ∈ [1, e] and x ∈ R.
(iv) Assume that ∃ r > 0 verifies

‖g3‖L1 + ‖a3‖L1 +
(
‖g1‖Lp1

+ M1‖a1‖Lp1

)(
‖g2‖Lp2

+ M2‖a2‖Lp2

)
+b2M2

(
‖g1‖Lp1

+ M1‖a1‖Lp1

)
r

1
p2 + b1M1

(
‖g2‖Lp2

+ M2‖a2‖Lp2

)
r

1
p1

+(b3 + M1M2b1b2)r ≤ r,

where
(
b3 + b1b2M1M2

)
< 1 and Mi = 1

Γ(αi)

∫ 1

0
tαi−1e

t
pi dt, i = 1, 2.

Theorem 3.1. Let (i)–(iv) be fulfilled, then (1.1) has at least one a.e. nondecreasing-integrable solution
x ∈ L1 on J.

Proof. Step 1. Let i = 1, 2. By hypotheses (ii) and (iii) and Theorem 2.4, we indicate that F fi :
L1 → Lpi is continuous and F f3 : L1 → L1 is continuous. Since the operators Iαi : Lpi → Lpi are
continuous, hypothesis (i) states that Ai : L1 → Lpi are continuous. Using the Hölder inequality, we
have (A1 · A2) : L1 → L1 and H : L1 → L1, and they are continuous.

Step 2. Recalling our hypotheses and Proposition 2.7(b), we have

‖Hx‖L1 = ‖g3 + F f3(x) + (A1x) · (A2x)‖L1

≤ ‖g3‖L1 + ‖F f3(x)‖L1 + ‖(A1x) · (A2x)‖L1

≤ ‖g3‖L1 + ‖F f3(x)‖L1 + ‖(A1x)‖Lp1
· ‖(A2x)‖Lp2

≤ ‖g3‖L1 + ‖a3 + b3|x|‖L1 + ‖g1 + Iα1 F f1(x)‖Lp1
· ‖g2 + Iα2 F f2(x)‖Lp2

≤ ‖g3‖L1 + ‖a3‖L1 + b3‖x‖L1

+

(
‖g1‖Lp1

+ ‖Iα1 F f1(x)‖Lp1

)
·

(
‖g2‖Lp2

+ ‖Iα2 F f2(x)‖Lp2

)
≤ ‖g3‖L1 + ‖a3‖L1 + b3‖x‖L1
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+

(
‖g1‖Lp1

+ M1‖F f1(x)‖Lp1

)
·

(
‖g2‖Lp2

+ M2‖F f2(x)‖Lp2

)
≤ ‖g3‖L1 + ‖a3‖L1 + b3‖x‖L1

+

(
‖g1‖Lp1

+ M1

∥∥∥∥a1 + b1|x|
1

p1

∥∥∥∥
Lp1

)
·

(
‖g2‖Lp2

+ M2

∥∥∥∥a2 + b2|x|
1

p2

∥∥∥∥
Lp2

)
≤ ‖g3‖L1 + ‖a3‖L1 + b3‖x‖L1

+

(
‖g1‖Lp1

+ M1

(
‖a1‖Lp1

+ b1

∥∥∥x
1

p1

∥∥∥
Lp1

))(
‖g2‖Lp2

+ M2

(
‖a2‖Lp2

+ b2

∥∥∥x
1

p2

∥∥∥
Lp2

))
≤ ‖g3‖L1 + ‖a3‖L1 + b3‖x‖L1

+

(
‖g1‖Lp1

+ M1
(
‖a1‖Lp1

+ b1‖x‖
1

p1
L1

))(
‖g2‖Lp2

+ M2
(
‖a2‖Lp2

+ b2‖x‖
1

p2
L1

))
,

where
∥∥∥x

1
pi

∥∥∥
Lpi

= ‖x‖
1
pi
L1
, then H : L1 → L1. For x ∈ Br = {z ∈ L1 : ‖z‖L1 ≤ r}, where r is as in

assumption (iv),

‖Hx‖L1 ≤ ‖g3‖L1 + ‖a3‖L1 +
(
‖g1‖Lp1

+ M1‖a1‖Lp1

)(
‖g2‖Lp2

+ M2‖a2‖Lp2

)
+b2M2

(
‖g1‖Lp1

+ M1‖a1‖Lp1

)
r

1
p2 + b1M1

(
‖g2‖Lp2

+ M2‖a2‖Lp2

)
r

1
p1

+
(
b3 + M1M2b1b2

)
· r ≤ r.

Therefore, for x ∈ Br, the operator H continuously maps the ball Br into itself.
Step 3. Suppose that Qr ⊂ Br has the functions a.e. nondecreasing on J. The set ∅ , Qr is closed,

convex, bounded in L1 (cf. [8]), and compact in measure with the aid of Theorem 2.1.
Step 4. Select x ∈ Qr, then x(t) and, consequently, fi, i = 1, 2, 3 are a.e. nondecreasing on J

(see (ii)). Furthermore, the operators Iαi , i = 1, 2, are a.e. nondecreasing on J (see Proposition 2.7(a)).
Moreover, each (Aix), i = 1, 2, is also of the same type. These properties, along with hypothesis (i),
indicate that H : Qr → Qr, and it is continuous.

Step 5. Next, let ∅ , X ⊂ Br and arbitrary ε > 0. For x ∈ X and any D ⊂ [1, e] with meas(D) ≤ ε,
we derive ∫

D
|(Hx)(θ)|dθ ≤ ‖(Hx)‖L1(D)

≤ ‖g3‖L1(D) + ‖F f3(x)‖L1(D) + ‖(A1x)‖Lp1 (D) · ‖(A2x)‖Lp2 (D)

≤ ‖g3‖L1(D) + ‖a3‖L1(D) + b3‖x‖L1(D) +

[
‖g1‖Lp1 (D) + M1

(
‖a1‖Lp1 (D)

+b1‖x
1

p1 ‖Lp1 (D)

)][
‖g2‖Lp2 (D) + M2

(
‖a2‖Lp2 (D) + b2‖x

1
p2 ‖Lp2 (D)

)]
≤ ‖g3‖L1(D) + ‖a3‖L1(D) + b3

∫
D
|x(t)|dt +

[
‖g1‖Lp1 (D) + M1‖a1‖Lp1 (D)

+M1b1

( ∫
D
|x(t)|dt

) 1
p1
][
‖g2‖Lp2 (D) + M2‖a2‖Lp2 (D) + b2M2

( ∫
D
|x(t)|dt

) 1
p2
]
.

Since gi, ai ∈ Lpi , i = 1, 2, we have

lim
ε→0

{
sup
x∈X

{
sup

[
‖gi‖Lpi (D) + Mi‖ai‖Lpi (D) : D ⊂ [1, e], meas(D) ≤ ε

]}}
= 0,
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and since g3, a3 ∈ L1,

lim
ε→0

{
sup
x∈X

{
sup

[
‖g3‖L1(D) + ‖a3‖L1(D) : D ⊂ [1, e], meas(D) ≤ ε

]}}
= 0.

From Eq (2.1), we obtain

c(H(X)) ≤
(
b3 + b1b2M1M2

)
c(X).

Since
(
b3 +b1b2M1M2

)
< 1, together with the above estimations, we can utilize Theorem 2.5, which

completes the proof. �

3.1. Uniqueness of the solution

Presently, we will address and prove the uniqueness of the solutions.

Theorem 3.2. Suppose that hypotheses of Theorem 3.1 hold, but change hypothesis (iii) with:

(v) The functions a1 ∈ Lp1 , a2 ∈ Lp2 , a3 ∈ L1, and bi ≥ 0 s.t.

| fi(θ, 0)| ≤ ai(θ), i = 1, 2, 3,

| f3(θ, x) − f3(θ, y)| ≤ b3|x − y|, and | f j(θ, x) − f j(θ, y)| ≤ b j|x − y|
1
p j , j = 1, 2, x, y ∈ Qr,

where Qr is as in Theorem 3.1.
(vi) Assume that

C = b3 +

(
‖g1‖Lp1

+ M1
(
‖a1‖Lp1

+ b1 · r
1

p1
))

M2b2(2r)
1

p2

+M1b1(2r)
1

p1

(
‖g2‖Lp2

+ M2
(
‖a2‖Lp2

+ b2 · r
1

p2
))
< 1,

where M1,M2, and r are characterized in hypothesis (iv), then (1.1) has a unique solution x ∈ L1

in Qr.

Proof. Using hypothesis (v), we obtain∣∣∣∣∣| fi(θ, x)| − | fi(θ, 0)|
∣∣∣∣∣ ≤ | fi(θ, x) − fi(θ, 0)| ≤ bi|x|

1
pi

⇒ | fi(θ, x)| ≤ | fi(θ, 0)| + bi|x|
1
pi ≤ ai(θ) + bi|x|

1
pi , i = 1, 2.

Similarly, | f3(θ, x)| ≤ a3(θ) + b3|x|. Thus, Theorem 3.1 indicates that (1.1) has at least one solution
x ∈ L1 in Qr.

Next, let x, y ∈ Qr be two various solutions of Eq (1.1). We have

‖x − y‖L1 ≤
∥∥∥F f3(x) − F f3(y)

∥∥∥
L1

+
∥∥∥(A1x) · (A2x) − (A1x) · (A2y)

∥∥∥
L1

+
∥∥∥(A1x) · (A2y) − (A1y) · (A2y)

∥∥∥
L1

≤ b3‖x − y‖L1 +

∥∥∥∥∥(A1x)
∥∥∥∥∥

Lp1

∥∥∥∥∥(A2x) − (A2y)
∥∥∥∥∥

Lp2

+

∥∥∥∥∥(A1x) − (A1y)
∥∥∥∥∥

Lp1

∥∥∥∥∥(A2y)
∥∥∥∥∥

Lp2
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≤ b3‖x − y‖L1 +

∥∥∥∥∥g1 + Iα1 F f1(x)
∥∥∥∥∥

Lp1

∥∥∥∥∥Iα2 |F f2(x) − F f2(y)|
∥∥∥∥∥

Lp2

+

∥∥∥∥∥Iα1 |F f1(x) − F f1(y)|
∥∥∥∥∥

Lp1

∥∥∥∥∥g2 + Iα2 F f2(y)
∥∥∥∥∥

Lp2

≤ b3‖x − y‖L1 +

(
‖g1‖Lp1

+ M1
(
‖a1‖Lp1

+ b1‖x‖
1

p1
L1

))
M2

∥∥∥∥∥b2|x − y|
1

p2

∥∥∥∥∥
Lp2

+M1

∥∥∥∥∥b1|x − y|
1

p1

∥∥∥∥∥
Lp1

(
‖g2‖Lp2

+ M2
(
‖a2‖Lp2

+ b2‖y‖
1

p2
L1

))
≤ b3‖x − y‖L1 +

(
‖g1‖Lp1

+ M1
(
‖a1‖Lp1

+ b1 · r
1

p1
))

M2b2‖x − y‖
1

p2
L1

+M1b1

(
‖g2‖Lp2

+ M2
(
‖a2‖Lp2

+ b2 · r
1

p2
))
‖x − y‖

1
p1
L1

≤

(
b3 +

(
‖g1‖Lp1

+ M1
(
‖a1‖Lp1

+ b1 · r
1

p1
))

M2b2(2r)
1

p2

+M1b1(2r)
1

p1

(
‖g2‖Lp2

+ M2
(
‖a2‖Lp2

+ b2 · r
1

p2
)))
‖x − y‖L1 ,

where ‖x − y‖
1
pi
L1

= ‖x − y‖
1
pi
−1

L1
‖x − y‖L1 ≤ (2r)

1
pi ‖x − y‖L1 , i = 1, 2. The previous estimation with the

hypothesis (vi) wraps up the proof. �

Next, we introduce a concrete example that illustrates and fulfills the outcomes presented in
Theorems 3.1 and 3.2.

Example 3.3. Take into consideration the next equation,

x(θ) =
ln9 θ

θ
+

(
ln9 θ

θ
+

1
50
|x(θ)|

)
+

( ln5 θ
√
θ

+
1

Γ(1
2 )
·

∫ θ

1

ln5 s
√

s + 1
50 |x(s)|

1
2√(

log θ
s

) ds
s

)( ln5 θ
√
θ

+
1

Γ( 1
2 )
·

∫ θ

1

√
ln

(
1 + |x|

36

)
√(

log θ
s

) ds
s

)
, θ ∈ [1, e]. (3.1)

Let p1 = p2 = 2. We have that:

(1) g1(θ) = g2(θ) = ln5 θ
√
θ
∈ L2 and g3(θ) = ln9 θ

θ
∈ L1 with ‖g1‖L2 = ‖g2‖L2 = 1

√
11

and ‖g3‖L1 = 1
10 .

(2) | f1(θ, x)| ≤ ln5 θ
√
θ

+ 1
50 |x|

1
2 , then a1 = ln5 θ

√
θ
, b1 = 1

50 with ‖a1‖L2 = 1
√

11
.

(3) f2(θ, x) =

√
ln

(
1 + |x|

36

)
and | f2(θ, x)| ≤ |x|

1
2

6 , then a2(θ) = 0, b2 = 1
6 .

(4) | f3(θ, x)| ≤ ln9 θ
θ

+ 1
50 |x|, then a3 = ln9 θ

θ
, b3 = 1

50 with ‖a3‖L1 = 1
10 .

(5) (b3 + b1b2M1M2) ≤ 1
50 + 4

(50)(6) < 1, where M1 = M2 = 1.3483 < 2.
(6) Let ‖x‖L1 = r, r = 0.7720, where

‖g3‖L1 + ‖a3‖L1 +
(
‖g1‖L2 + M1‖a1‖L2

)(
‖g2‖L2 + M2‖a2‖L2

)
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+b2M2
(
‖g1‖L2 + M1‖a1‖L2

)√
r + b1M1

(
‖g2‖L2 + M2‖a2‖L2

)√
r

+(b3 + M1M2b1b2)r ≤ 0.471818 + 0.094224
√

11
√

r + 0.033201 r ≤ r,

then hypothesis (iv) holds for r = 0.7720.

Therefore, by utilizing Theorem 3.1, Eq (3.1) has at least one solution x ∈ L1 a.e. nondecreasing in
[1, e]. Moreover, we have

(1) | f1(θ, 0)| = ln5 θ
√
θ

and | f1(θ, x) − f1(θ, y)| ≤ 1
50 |x − y|

1
2 .

(2) | f2(θ, 0)| = 0 and | f2(θ, x) − f2(θ, y)| ≤ 1
6 |x − y|

1
2 .

(3) | f3(θ, 0)| = ln9 θ
θ

and | f3(θ, x) − f3(θ, y)| ≤ 1
50 |x − y|.

(4) Hypothesis (vi) is fulfilled for r = 0.7720, where

C = b3 +
(
‖g1‖L2 + M1

(
‖a1‖L2 + b1 ·

√
r
))

M2b2

√
(2r)

+
(
‖g2‖L2 + M2

(
‖a2‖L2 + b2 ·

√
r
))

M1b1

√
(2r) ≤ 0.4180 < 1.

Hence, by utilizing Theorem 3.2, Eq (3.1) has a unique solution x ∈ L1.

4. Numerical successive approximations method

In this section, we apply a numerical method to solve Eq (1.1), which is based on the successive
approximations method [22, 23]. This is a well known and applicable classical method for solving
initial value problems and various types of integral equations.

The successive approximations method (Picard sequence) for Eq (1.1) is defined by

xn(θ) = g3(θ) + f3(θ, xn−1(θ)) +

(
g1(θ) +

1
Γ(α1)

∫ θ

1

(
log

θ

s

)α1−1 f1(s, xn−1(s))
s

ds
)

×

(
g2(θ) +

1
Γ(α2)

∫ θ

1

(
log

θ

s

)α2−1 f2(s, xn−1(s))
s

ds
)
, n ≥ 1, (4.1)

where the zeroth approximation x0(θ) is an arbitrary real function. For the zeroth approximation, we
select x0(θ) = g3(θ). By using (4.1), the solution of Eq (1.1) can be computed as:

x(θ) = lim
n→∞

xn(θ).

Theorem 4.1. Under the hypotheses of Theorem 3.2, Eq (1.1) has a unique solution x∗ ∈ L1[1, e].
Moreover, for any x0 ∈ L1[1, e], the Picard sequence is defined as

xn := (Hxn−1) = g3 + F f3(xn−1) + (A1xn−1) · (A2xn−1), (4.2)

where
(Aixn−1) = gi + Iαi F fi(xn−1), i = 1, 2,

with the initial value x0 := g3 converging to x∗ with respect to the norm ‖ · ‖L1 .
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4.1. Error estimation

Here, we derive and estimate the error between the approximate solution (xn)n∈N and the exact
solution x∗ of (1.1), regarding the sequence of the successive approximations method.

Theorem 4.2. Let the hypotheses of Theorem 3.2 hold, then the error estimation between the
approximate solutions (xn)n∈N and the exact x∗ of (1.1) is given by

‖x∗ − xn‖L1 ≤
Cn

1 −C

(∥∥∥a3

∥∥∥
L1

+ M
)
, (4.3)

where C is defined in hypothesis (vi) and

M = b3r +

(
‖g1‖Lp1

+ M1
(
‖a1‖Lp1

+ b1 · r
1

p1
))(
‖g2‖Lp2

+ M2
(
‖a2‖Lp2

+ b2 · r
1

p2
))
.

Proof. We have

‖x∗ − xn‖L1 ≤
∥∥∥F f3(x∗) − F f3(xn−1)

∥∥∥
L1

+
∥∥∥(A1x∗) · (A2x∗)(t) − (A1x∗) · (A2xn−1)

∥∥∥
L1

+
∥∥∥(A1x∗) · (A2xn−1) − (A1xn−1) · (A2xn−1)

∥∥∥
L1

≤ b3‖x∗ − xn−1‖L1 +
∥∥∥(A1x∗)

∥∥∥
Lp1

∥∥∥(A2x∗) − (A2xn−1)
∥∥∥

Lp2

+
∥∥∥(A1x∗) − (A1xn−1)

∥∥∥
Lp1

∥∥∥(A2xn−1)
∥∥∥

Lp2

≤

(
b3 +

(
‖g1‖Lp1

+ M1
(
‖a1‖Lp1

+ b1 · r
1

p1
))

M2b2(2r)
1

p2

+M1b1(2r)
1

p1

(
‖g2‖Lp2

+ M2
(
‖a2‖Lp2

+ b2 · r
1

p2
)))
‖x∗ − xn−1‖L1

= C‖x∗ − xn−1‖L1 . (4.4)

Also, we have

‖x∗ − xn−1‖L1 ≤ ‖x∗ − xn‖L1 + ‖xn − xn−1‖L1 . (4.5)

Combining (4.4) and (4.5), we have

‖x∗ − xn‖L1 ≤
C

1 −C
‖xn − xn−1‖L1 . (4.6)

Moreover,

‖xn − xn−1‖L1 ≤
∥∥∥F f3(xn−1) − F f3(xn−2)

∥∥∥
L1

+
∥∥∥(A1xn−1) · (A2xn−1) − (A1xn−1) · (A2xn−2)

∥∥∥
L1

+
∥∥∥(A1xn−1) · (A2xn−2) − (A1xn−2) · (A2xn−2)

∥∥∥
L1

≤

(
b3 +

(
‖g1‖Lp1

+ M1
(
‖a1‖Lp1

+ b1 · r
1

p1
))

M2b2(2r)
1

p2

+M1b1(2r)
1

p1

(
‖g2‖Lp2

+ M2
(
‖a2‖Lp2

+ b2 · r
1

p2
)))
‖xn−1 − xn−2‖L1
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= C‖xn−1 − xn−2‖L1 .

By induction, we get

‖xn − xn−1‖L1 ≤ C‖xn−1 − xn−2‖L1 ≤ ... ≤ Cn−1‖x1 − x0‖L1 . (4.7)

By repeating the above procedure for x1 and x0, we have

‖x1 − x0‖L1 ≤
∥∥∥g3 + F f3(x0) + (A1x0) · (A2x0) − g3

∥∥∥
L1

≤
∥∥∥F f3(x0)

∥∥∥
L1

+
∥∥∥(A1x0) · (A2x0)

∥∥∥
L1

≤
∥∥∥F f3(x0)

∥∥∥
L1

+
∥∥∥(A1x0)

∥∥∥
Lp1
·
∥∥∥(A2x0)

∥∥∥
Lp2

≤
∥∥∥a3

∥∥∥
L1

+ b3

∥∥∥x0

∥∥∥
L1

+
∥∥∥g1 + Iα1 F f1(x0)

∥∥∥
Lp1
·
∥∥∥g2 + Iα2 F f2(x0)

∥∥∥
Lp2

≤
∥∥∥a3

∥∥∥
L1

+ b3r

+

(
‖g1‖Lp1

+ M1
(
‖a1‖Lp1

+ b1 · r
1

p1
))(
‖g2‖Lp2

+ M2
(
‖a2‖Lp2

+ b2 · r
1

p2
))

=
∥∥∥a3

∥∥∥
L1

+ M. (4.8)

From (4.6), (4.7), and (4.8), we have

‖x∗ − xn‖L1 ≤
Cn

1 −C

(∥∥∥a3

∥∥∥
L1

+ M
)
. (4.9)

�

4.2. Numerical experiments

Next, we apply our method to a numerical example that demonstrates the accuracy and efficiency
of the applied method in solving Eq (1.1).

The absolute errors in the solutions are given by

en = |x∗(θ) − xn(θ)|, θ ∈ [1, e], (4.10)

where x∗(θ) is the exact solution and xn(θ) is the approximate solution of (1.1), which is obtained from
Picard sequence (4.1). All numerical results are computed using Maple 17.

Example 4.3. Consider the following equation

x(θ) = g3(θ) +
1

10
x(θ) +

( √
θ

10
+

1
Γ(1

2 )

∫ θ

1

√
16−ln2(s)

4 + x(s)√
log θ

s

ds
10s

)

×

(
1 −

1
12

√
(ln θ)3

π
+

1
Γ( 1

2 )

∫ θ

1

1
4

√
|x(s)|√
log θ

s

ds
2s

)
, θ ∈ [1, e], (4.11)

where g3(θ) =
9(ln θ)2

40 −
√
θ

10 −
2
5

√
ln θ
π
.

Equation (4.11) has the exact solution x(θ) =
(ln θ)2

4 .

Let p1 = p2 = 2. We have that
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(1) g1(θ) =
√
θ

10 ∈ L2, g2(θ) = 1 − 1
12

√
(ln θ)3

π
∈ L2 and g3(θ) =

9(ln θ)2

40 −
√
θ

10 −
2
5

√
ln θ
π
∈ L1 with

‖g1‖L2 = 1
20

√
2(e2 − 1), ‖g2‖L2 = 1.28103, and ‖g3‖L1 = 0.35385.

(2) | f1(θ, x)| ≤ 1
10

√
4 − ln2(θ)

4 + 1
10

√
x, then a1(θ) = 1

10

√
4 − ln2(θ)

4 , b1 = 1
10 with ‖a1‖L2 = 1

20

√
15e − 14.

(3) f2(θ, x) ≤ 1
8

√
|x| , then b2 = 1

8 with ‖a2‖L2 = 0.
(4) | f3(θ, x)| = 1

10 |x|, then a3 = 0, b3 = 1
10 with ‖a3‖L1 = 0.

(5) (b3 + b1b2M1M2) ≤ 1
10 + 4

(10)(8) ≤ 1, where M1 = M2 = 1.3483 ≤ 2.
(6) Let ‖x‖L1 ≤ r, r = 1.56189, where

‖g3‖L1 + ‖a3‖L1 +
(
‖g1‖L2 + M1‖a1‖L2

)(
‖g2‖L2 + M2‖a2‖L2

)
+b2M2

(
‖g1‖L2 + M1‖a1‖L2

)√
r + b1M1

(
‖g2‖L2 + M2‖a2‖L2

)√
r

+(b3 + M1M2b1b2)r ≤ 1.041124130 + .2632505402
√

r + .1227812500r ≤ r.

Thus, (iv) holds for r = 1.56189.

Therefore, by utilizing Theorem 3.1, Eq (4.11) has at least one solution x∗ ∈ L1 a.e. nondecreasing in
[1, e].

Moreover, we have

(1) | f1(θ, 0)| = 1
10

√
4 − ln2(θ)

4 and | f1(θ, x) − f1(θ, y)| ≤ 1
10 |x − y|

1
2 .

(2) | f2(θ, 0)| = 0 and | f2(θ, x) − f2(θ, y)| ≤ 1
8 |x − y|

1
2 .

(3) | f3(θ, 0)| = 0 and | f3(θ, x) − f3(θ, y)| ≤ 1
10 |x − y|.

(4) Hypothesis (vi) is fulfilled with r = 1.56189, where

C = b3 +
(
‖g1‖L2 + M1

(
‖a1‖L2 + b1 ·

√
r
))
· M2b2

√
2r + M1b1

√
2r

(
‖g2‖L2 + M2

(
‖a2‖L2

+b2 ·
√

r
))
≤

1
10

+
( 1
20

√
2(e2 − 1) + 2

( 1
20

√
15e − 14 +

1
10
√

r
))(2

8

)√
2r

+
( 2
10

)√
2r

(
1.281026 + 2

(
0 +

1
8
√

r
))

= 0.89871 < 1.

Hence, by utilizing Theorem 3.2, Eq (4.11) has a unique solution x∗ ∈ L1.

We choose x0(θ) =
9(ln θ)2

40 −
√
θ

10 −
2
5

√
ln θ
π

. The solution is approximated by Picard sequence (4.1)
given in Section 4. After 5 and 12 iterations, the absolute errors are obtained in some arbitrary points
θ j = a +

2 j−1
10 , for j = 1, 2, ..., 10 and a = 1. To compare the exact solution x∗ of Eq (4.11) and the

iterative solutions xn, for n = 5, 12 iterations, see Table 1.

In Figure 1, the curves of the exact solution and the approximate solutions with n = 5 and n = 12
for the proposed methods are plotted. It can be seen that the approximate solution (circle symbol) for
n = 12 is closer to the exact solution. Also, decreasing of the absolute errors by increasing the number
of iteration n is shown in Figure 2.
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Table 1. Compare the accuracy of the exact solution and iterative method.

θ j x∗(θ j) x5(tθ) x12(θ j) en, n = 5 en, n = 12
1.1 0.0022710075 0.0022710075 0.0023967892 4.7832602 ×10−4 1.2578166 ×10−4

1.3 0.0172087518 0.0172087518 0.0175469736 1.3199705 ×10−3 3.3822184 ×10−4

1.5 0.0411004884 0.0411004884 0.0416155839 2.0430314 ×10−3 5.1509544 ×10−4

1.7 0.0703915852 0.0703915852 0.0710583528 2.6767101 ×10−3 6.6676760 ×10−4

1.9 0.1029941028 0.1029941028 0.1037935905 3.2406831 ×10−3 7.9948771 ×10−4

2.1 0.1376177559 0.1376177559 0.1385351622 3.7487879 ×10−3 9.1740630 ×10−4

2.3 0.1734344018 0.1734344018 0.1744578406 4.2111160 ×10−3 1.0234388 ×10−3

2.5 0.2098971764 0.2098971764 0.2110168927 4.6352514 ×10−3 1.1197163 ×10−3

2.7 0.2466372712 0.2466372712 0.2478451158 5.0270369 ×10−3 1.2078446 ×10−3

2.9 0.2834022382 0.2834022382 0.2846913036 5.3910690 ×10−3 1.2890654 ×10−3

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.05

0.1

0.15

0.2

0.25

0.3

Exact solution x(τ)=0.25(lnτ)
2

Numerical solutions with n=5 iterations

Numerical solutions with n=12 iterations

Figure 1. Exact and approximate solutions of Eq (4.11) ( n = 5 and n = 12).

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

1

2

3

4

5

6

×
 1

0
-3

Absolute errors with n=5 iterations

Absolute errors with n=12 iterations

Figure 2. Absolute errors of Eq (4.11) (with n = 5 and n = 12).
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Remark 4.4. The obtained results from Table 1 and Figure 1 demonstrate the acceptable accuracy of
the proposed method. The numerical results show that the accuracy improves with increasing the n.

Remark 4.5. According to Figure 1, we can see that the solution of Eq (4.11) is monotonic
“nondecreasing,” which verifies our assumptions.

5. Conclusions and perspective

This manuscript addresses the analytical and numerical solutions of the Hadamard-type fractional
Gripenberg’s equations (1.1) in Lebesgue space L1[1, e]. With the assistance of appropriate MNC
and FPT hypotheses, we demonstrated our obtained results of the studied problem in spaces that are
not Banach algebras. Two outcomes, namely, Theorems 3.1 and 3.2, are established s.t. the studied
problem has at least one monotonic solution and a unique monotonic solution in the mentioned space,
respectively. Also, we introduced the numerical iterative method to give approximate solutions of the
studied equation with high accuracy. Finally, we estimated the error between the exact solution and the
approximate solution of the studied problem via the proposed iterative method. It is worth mentioning
that the proposed methods used in this paper are effective and powerful and will be used in future work
for other integral equations arising in nonlinear science (see e.g., [42]).
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