Research article Special Issues

The existence and uniqueness of solution for linear system of mixed Volterra-Fredholm integral equations in Banach space

  • Received: 20 July 2019 Accepted: 15 October 2019 Published: 05 November 2019
  • MSC : 35A01, 32K05

  • In this paper, a linear system of mixed Volterra-Fredholm integral equations is considered. The problem of existence and uniqueness of its solution is investigated and proved in a complete metric space by using the Banach fixed-point theorem. Also, an iterative method of fixed point type is used to approximate the solution of the system. The algorithm is applied on several examples. To show the accuracy of the results and the efficiency of the method, the approximate solutions are compared with the exact solutions.

    Citation: Pakhshan M. Hasan, Nejmaddin A. Sulaiman, Fazlollah Soleymani, Ali Akgül. The existence and uniqueness of solution for linear system of mixed Volterra-Fredholm integral equations in Banach space[J]. AIMS Mathematics, 2020, 5(1): 226-235. doi: 10.3934/math.2020014

    Related Papers:

  • In this paper, a linear system of mixed Volterra-Fredholm integral equations is considered. The problem of existence and uniqueness of its solution is investigated and proved in a complete metric space by using the Banach fixed-point theorem. Also, an iterative method of fixed point type is used to approximate the solution of the system. The algorithm is applied on several examples. To show the accuracy of the results and the efficiency of the method, the approximate solutions are compared with the exact solutions.


    加载中


    [1] A. M. Wazwaz, A reliable treatment for mix Volterra-Fredholm integral equations, Appl. Math. Comput., 127 (2002), 405-414.
    [2] F. Mirzaee, S. F. Hoseini, Application of Fibonacci collocation method for solving Volterra-Fredholm integral equations, Appl. Math. Comput., 273 (2016), 637-644.
    [3] F. Mirzaee, E. Hadadiyan, Numerical solution of Volterra-Fredholm integral equations via modification of hat functions, Appl. Math. Comput., 280 (2016), 110-123.
    [4] P. M. A. Hasan, N. A. Sulaiman, Existence and Uniqueness of Solution for Linear Mixed Volterra-Fredholm Integral Equations in Banach Space, Am. J. Comput. Appl. Math., 9 (2019), 1-5.
    [5] L. Mei, Y. Lin, Simplified reproducing kernel method and convergence order for linear Volterra integral equations with variable coefficients, J. Comput. Appl. Math., 346 (2019), 390-398. doi: 10.1016/j.cam.2018.07.027
    [6] S. Micula, On some iterative numerical methods for mixed Volterra-Fredholm integral equations, Symmetry, 11 (2019), 1200.
    [7] S. Deniz S, N. Bildik, Optimal perturbation iteration method for Bratu-type problems, Journal of King Saud University - Science, 30 (2018), 91-99. doi: 10.1016/j.jksus.2016.09.001
    [8] K. Berrah, A. Aliouche, T. Oussaeif, Applications and theorem on common fixed point in complex valued b-metric space, AIMS Mathematics, 4 (2019), 1019-1033. doi: 10.3934/math.2019.3.1019
    [9] N. Bildik, S. Deniz, Solving the burgers' and regularized long wave equations using the new perturbation iteration technique, Numer. Meth. Part. D. E., 34 (2018), 1489-1501. doi: 10.1002/num.22214
    [10] J. Chen, M. He, Y. Huang, A fast multiscale Galerkin method for solving second order linear Fredholm integro-differential equation with Dirichlet boundary conditions, J. Comput. Appl. Math., 364 (2020), 112352.
    [11] R. Rabbani, R. Jamali, Solving nonlinear system of mixed Volterra- Fredholm integral equations by using variational iteration method, J. Math. Comput. Sci., 5 (2012), 280-287. doi: 10.22436/jmcs.05.04.05
    [12] M. Ghasemi, M. Fardi, R. K. Ghaziani, Solution of system of the mixed Volterra - Fredholm integral equations by an analytical method, Math. Comput. Model., 58 (2013), 1522-1530. doi: 10.1016/j.mcm.2013.06.006
    [13] A. Wazwaz, A First course in Integral Equations. Second Edition, Saint Xavier University, USA: World Scientific Publishing, 2015.
    [14] T. Abdeljawad, R. P. Agarwal, E. Karapınar, et al. Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), 686.
    [15] E. Hesameddini and M. Shahbazi, Solving system of Volterra-Fredholm integral equations with Bernstein polynomials and hybrid Bernstain Block pulse functions, J. Comput. Appl. Math., 315 (2017), 182-194. doi: 10.1016/j.cam.2016.11.004
    [16] A. Borhanifar, K. Sadri, Shifted Jacobi collocation method based on operational matrix for solving the systems of Fredholm and Volterra integral equations, Math. Comput. Appl., 20 (2015), 76-93.
    [17] R. V. Kakde, S. S. Biradar, S. S. Hiremath, Solution of Differential and Integral Equations Using Fixed Point Theory, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 3 (2014), 1656-1659.
    [18] K. Maleknejad, P. Torabi, R. Mollapourasl, Fixed point method for solving nonlinear quadratic Volterra integral equations, Comput. Math. Appl., 62 (2011), 2555-2566. doi: 10.1016/j.camwa.2011.07.055
    [19] K. Maleknejad, P. Torabi, Application of fixed point method for solving nonlinear Volterra-Hammerstein integral, U. P. B. Sci. Bull., Series A: App. Math. Phy., 74 (2012), 45-56.
    [20] A. J. Jerri, Introduction to Integral Equation with Application. Marcel Dekker, New York and Basel, 1985.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5026) PDF downloads(1024) Cited by(3)

Article outline

Figures and Tables

Figures(2)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog