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1. Introduction  

The solution of the mixed Volterra-Fredholm integral equations has been a subject of 

considerable interest. Studies on population dynamics, parabolic boundary value problems, the 

mathematical modeling of the spatio-temporal development of an epidemic and various physical and 

biological models lead to the mixed Volterra-Fredholm integral equations. A discussion of the 

formulation of such models is given in [1]. 

The linear mixed Volterra-Fredholm integral equation is given by 



227 

AIMS Mathematics  Volume 5, Issue 1, 226–235. 

                          𝑢 𝑥 = 𝑓 𝑥 + 𝜆   𝑘 𝑟, 𝑡 𝑢 𝑡 𝑑𝑡𝑑𝑟,          𝑎 ≤ 𝑥 ≤ 𝑏,                                      (1)

𝑏

𝑎

𝑥

𝑎

 

where 𝑓(𝑥) is a known continuous function on the interval [𝑎, 𝑏], the kernel 𝑘 𝑟, 𝑡 , is known and 

continuous on the region 𝐷 = { 𝑟, 𝑡 : 𝑎 ≤ 𝑡 ≤ 𝑏 & 𝑎 ≤ 𝑟 ≤ 𝑥 ≤ 𝑏}, and 𝜆, ∈ ℛ\ 0 , while u(x) is 

the unknown continuous function in [𝑎, 𝑏] that must be determined. The solution of this type of 

equation using Fibonacci collocation method has been discussed by Mirzaee and Hoseini in [2], 

while the numerical solution via modification of the hat function was presented in [3]. The existence 

and uniqueness results of equation (1) can be found in [4]. The reproducing kernel method and a 

study over the role of iterative methods for solving linear and mixed integral equations with variable 

coefficients were recently investigated in [5–6]. Several other fixed point type and numerical 

methods were discussed in the literature, see for more [7–10] and the references therein.  

A linear system of second kind mixed Volterra-Fredholm integral equations (LSMVFIE2
nd

) can 

be written as: 

𝑈 𝑥 = 𝐹 𝑥 + λ   𝐾 𝑟, 𝑡 𝑈 𝑡 𝑑𝑡𝑑𝑟,            𝑎 ≤ 𝑥 ≤ 𝑏,

𝑏

𝑎

                               (2)

𝑥

𝑎

 

where  

 𝑈 𝑥 = [𝑢1 𝑥 , 𝑢2 𝑥 , … , 𝑢𝑛(𝑥)]𝑡 ,                                         

𝐹 𝑥 = [𝑓1 𝑥 , 𝑓2 𝑥 , … , 𝑓𝑛(𝑥)]𝑡 ,                                           

 𝜆𝐾 𝑟, 𝑡 =  𝜆𝑖𝑗 𝑘𝑖𝑗  𝑟, 𝑡  ,                     𝑖, 𝑗 = 1,2, … , 𝑛.            

The functions 𝑓𝑖 𝑥 , 𝑖 = 1,2, … , 𝑛 are continuous on the interval [𝑎, 𝑏] and all kernels 𝑘𝑖𝑗  𝑟, 𝑡 , for 

 𝑖, 𝑗 = 1,2, … , 𝑛  are continuous on  𝐷 = { 𝑟, 𝑡 : 𝑎 ≤ 𝑡 ≤ 𝑏 & 𝑎 ≤ 𝑟 ≤ 𝑥 ≤ 𝑏} , while 𝑢𝑖 𝑥 , 𝑖 =

1,2, … , 𝑛 are the unknown continuous functions to be determined. 

During the last 20 years, significant progress has been made in the numerical analysis for the 

linear and nonlinear versions of (2), since finding the exact solution in most cases is challenging or 

even not possible. To recall some of such works, Rabbani and Jamali used variational iterative 

method to find the solution of nonlinear system of Volterra-Fredholm [11], while Chasemi et al. 

presented an analytical method to solve this problem using the so called ℎ-curves [12], Wazwaz also 

approximated the exact solution by Adomian decomposition method and discussed the procedure in 

the book [13].  

Some other well known techniques including collocation methods which are based on the 

discretization of the spatial domain are discussed in [14–16]. Kakde et al. used fixed point (FP) 

approach to solve differential and integral equations in [17]. In addition, a fixed oint type scheme 

was used for solving non-linear quadratic Volterra integral equation in [18], while in [19], the 

appropriate condition and performance of fixed-point method for Volterra-Hammerstein equation are 

studied. Finally, in the book [20], Jerri used a fixed-point approach to solve linear Volterra integral 

equations.  

In this paper, we have made an attempt to propose a numerical scheme to approximate the 

solution of (2) based on the contractive mapping and a fixed-point method. We study the appropriate 

conditions and performance of this method for (1). This method has two advantages that encourage 

us to use it. Firstly, there is not any system of linear equations with its relevant difficulties. 

Furthermore, it is simple to be applied when programming. 
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The main goal of this work is in studying the existence and uniqueness of a continuous solution 

of the presented system in the Banach space based on the FP theory. In fact, the approximation of the 

solution is also discussed using an iterative method of fixed point. Finally several experiments are 

presented to show the efficiency and accuracy of the proposed methods. 

Before going to the next section, several definitions and theorems are reminded as follows 

[13,15]. 

Definition 1. For a metric space (𝑀, 𝑑), let 𝑀°⊆ 𝑀 with a map 𝑓: 𝑀°→ 𝑀, a point 𝑝 ∈ 𝑀° is said 

to be a fixed point of 𝑓 if 𝑓 𝑝 = 𝑝. 

Definition 2. Let (𝑀, 𝑑) be a complete metric space, a mapping 𝑓: 𝑀 → 𝑀 is said to be contraction 

if ∃𝛼 ∈ ℛ for  0 ≤ 𝛼 < 1 such that 

𝑑 𝑓 𝑢 , 𝑓 𝑣  ≤ 𝛼𝑑 𝑢, 𝑣 ,        ∀ 𝑢, 𝑣 ∈ 𝑀.  

Theorem 1.1. (Fixed-point Theorem; FPT) If the mapping 𝑓: 𝑀 → 𝑀 is contraction on a complete 

metric space (𝑀, 𝑑), then 𝑓 has a unique fixed point 𝑥 ∈ 𝑀. 

2. Contractive mapping for LSMVFIE2
nd

  

The FPM provides a scheme which is used to solve LSMVFIE2
nd

 by starting with an initial 

approximation that will be used in a recurrence relation to find the other approximate solutions. First, 

consider the system (2) and define the operator 𝑇 as follows: 

 𝑈 𝑥 = 𝑇 𝒖 = 𝐹 𝑥 + λ   𝐾 𝑟, 𝑡 𝑈 𝑡 𝑑𝑡𝑑𝑟, where 𝒖 = 𝑢1 , 𝑢2, … , 𝑢𝑛 ,                  (3)

𝑏

𝑎

𝑥

𝑎

 

where 𝐹, 𝑈 and 𝐾 are defined in Section 1, while 𝑇 = [𝑇1 , 𝑇2, … , 𝑇𝑛 ]𝑡 . The solution of the system 

(2) is fixed-point of 𝑇. Choose 𝑢𝑖
0 𝑥 ∈ 𝐶[𝑎, 𝑏] as an initial function and the following fixed-point 

iteration will be introduced [4]: 

𝑢𝑖
𝑟 𝑥 = 𝑇𝑖 𝒖

𝑟−1 = 𝑓𝑖 𝑥 +  𝜆𝑖𝑗   𝑘𝑖𝑗  𝑟, 𝑡 𝑢𝑗
𝑟−1 𝑡 𝑑𝑡𝑑𝑟

𝑏

𝑎

.                                        

𝑥

𝑎

𝑛

𝑗 =1

(4) 

Applying (4) will determine multiple approximations  𝑢𝑖
𝑟 𝑥 ,  for 𝑖 = 1,2, … , 𝑛, 𝑟 ≥ 1  and the 

sequence  𝑢𝑖
𝑛  converges to U(x) as 𝑛 → ∞. It is just the contractive property which is responsible 

for clustering the sequence  𝑢𝑖
𝑛  towards a limit point. Then the major concepts that required to the 

FPT are contraction mapping and a complete metric space. 

The theorem below shows that 𝑇 becomes a contractive mapping under some assumptions. 

Theorem 2.1. For a complete metric space (𝐶 𝑎, 𝑏 ,  ∙ ∞), and the continuous functions 𝐹 ∈ 𝐶[𝑎, 𝑏] 

and 𝐾 ∈ 𝐶([𝑎, 𝑏] × [𝑎, 𝑏]), if the following conditions satisfied  

𝜆𝑖 <
1

𝑛 𝑏 − 𝑎 2𝑀𝑖
  ,   ∀𝑖 = 1,2, … , 𝑛.                                                                          

Then, the mapping T that defined in (3) becomes a contractive mapping. 

Proof: Since the kernels are continuous on abounded region, then  𝐾𝑖𝑗  𝑟, 𝑡  ≤ 𝑀𝑖𝑗 , ∀𝑖, 𝑗 = 1,2, … , 𝑛 

for some positive real numbers  𝑀𝑖𝑗 . For such functions we work with the complete metric 

space (𝐶 𝑎, 𝑏 ,  .  ∞). 

Now, to find a sufficient condition for the mapping T U  in (3) to be a contractive mapping, 
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consider the 𝑖th equation of the equation system (2) as follows: 

   𝑢𝑖 𝑥 = 𝑇𝑖 𝒖 = 𝑓𝑖 𝑥 +  𝜆𝑖𝑗   𝑘𝑖𝑗  𝑟, 𝑡 𝑢𝑗  𝑡 𝑑𝑡𝑑𝑟,   where 𝒖 = 𝑢1, 𝑢2, … , 𝑢𝑛

𝑏

𝑎

 

𝑥

𝑎

𝑛

𝑗 =1

.    (5) 

Now for some 𝒗 = {𝑣1 , 𝑣2, … , 𝑣𝑛} and for each 𝑖 = 1,2, … , 𝑛; we have 

 𝑇𝑖 𝒖(𝑥) − 𝑇𝑖 𝒗(𝑥)  =  𝑓𝑖 𝑥 +  𝜆𝑖𝑗   𝑘𝑖𝑗  𝑟, 𝑡 𝑢𝑗  𝑡 𝑑𝑡𝑑𝑟
𝑏

𝑎

𝑥

𝑎

𝑛

𝑗 =1

       

                                    −[𝑓𝑖 𝑥 +  𝜆𝑖𝑗   𝑘𝑖𝑗  𝑟, 𝑡 𝑣𝑗 (𝑡)𝑑𝑡𝑑𝑟
𝑏

𝑎

𝑥

𝑎

𝑛

𝑗 =1

]  

                                    =   𝜆𝑖𝑗   𝑘𝑖𝑗  𝑟, 𝑡 (𝑢𝑗  𝑡 − 𝑣𝑗 (𝑡))𝑑𝑡𝑑𝑟
𝑏

𝑎

𝑥

𝑎

𝑛

𝑗 =1

        

                                    ≤   𝜆𝑖𝑗  

𝑛

𝑗 =1

   𝑘𝑖𝑗  𝑟, 𝑡   (𝑢𝑗  𝑡 − 𝑣𝑗 (𝑡)) 𝑑𝑡𝑑𝑟
𝑏

𝑎

𝑥

𝑎

. 

Thus, it is possible to find that 

                   𝑇𝑖 𝒖(𝑥) − 𝑇𝑖 𝒗(𝑥)  ≤   𝜆𝑖𝑗  

𝑛

𝑗 =1

𝑀𝑖𝑗    (𝑢𝑗 − 𝑣𝑗 ) 
∞

𝑑𝑡𝑑𝑟
𝑏

𝑎

𝑥

𝑎

.                              (6) 

Now, we have 

                𝑚𝑎𝑥
𝑥∈[𝑎 ,𝑏]

 𝑇𝑖 𝒖(𝑥) − 𝑇𝑖 𝒗(𝑥)  ≤ 𝑚𝑎𝑥
𝑥∈ 𝑎 ,𝑏 

  𝜆𝑖𝑗  

𝑛

𝑗 =1

𝑀𝑖𝑗    (𝑢𝑗 − 𝑣𝑗 ) 
∞

𝑑𝑡𝑑𝑟
𝑏

𝑎

𝑥

𝑎

,         (7) 

and  

                   𝑇𝑖 𝒖 − 𝑇𝑖 𝒗   
∞

≤  𝑏 − 𝑎 2   𝜆𝑖𝑗  

𝑛

𝑗 =1

𝑀𝑖𝑗  (𝑢𝑗 − 𝑣𝑗 ) 
∞

.                                        (8) 

Let 

                  𝜆𝑖 = 𝑚𝑎𝑥
𝑗 =1,2,…,𝑛

 𝜆𝑖𝑗  , and 𝑀𝑖 = 𝑚𝑎𝑥
𝑗 =1,2,…,𝑛

𝑀𝑖𝑗                                                                  (9) 

                   𝑇𝑖 𝒖 − 𝑇𝑖 𝒗   
∞

≤  𝑏 − 𝑎 2𝜆𝑖𝑀𝑖   (𝑢𝑗 − 𝑣𝑗 ) 
∞

                                            (10)

𝑛

𝑗 =1

 

                                    ≤ 𝑛  𝑏 − 𝑎 2𝜆𝑖𝑀𝑖 𝑚𝑎𝑥
𝑗 =1,2,…,𝑛

 (𝑢𝑗 − 𝑣𝑗 ) 
∞

 .         

Hence, if 

      0 ≤ 𝛼𝑖 = 𝑛 𝑏 − 𝑎 2𝜆𝑖𝑀𝑖 < 1,        

or similarly as long as we have 

                 𝜆𝑖 <
1

𝑛 𝑏 − 𝑎 2𝑀𝑖
, ∀𝑖 = 1,2, … , 𝑛,                                                        (11) 

Then, the mapping T of the LSMVFIE is a contractive mapping. The proof is complete now .  ∎ 

3. Existence of a unique solution for LSMVFIE2
nd

 

To show that there exists only one solution for LSMVFIE2
nd

, we have to prove that T has a 
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unique FP and the generated sequence  𝑢𝑖
𝑛 𝑛=0

∞  in (4) converges to this FP. The following theorem 

justifies the convergence of 𝑢𝑖
𝑟(𝑥). 

Theorem 3.1. Let (𝐶 𝑎, 𝑏 ,  ∙ ∞) be a complete metric space and  𝑇𝑖  be n contraction mapping on the 

LSMVFIE2
nd

 as defined in equation (3) then for each 𝑖 = 1,2, … , 𝑛, we obtain: 

i. 𝑇𝑖  has a unique fixed-point 𝑢𝑖
∗ ∈ 𝐶 𝑎, 𝑏  such that 𝑢𝑖

∗ = 𝑇𝑖(𝒖
∗) 

ii. For any  𝑢𝑖
0 ∈ 𝐶 𝑎, 𝑏 , the sequence  𝑢𝑖

𝑟 𝑥  ⊂ 𝐶 𝑎, 𝑏  defined by 𝑢𝑖
𝑟 𝑥 = 𝑇𝑖 𝒖

𝑟−1  , 

for 𝑟 = 0,1, … , converges to 𝑢𝑖
∗. 

Proof: i. Taking limits of both sides of  𝑢𝑖
𝑟 𝑥 = 𝑇𝑖 𝒖

𝑟−1 , we have: 

lim
𝑛→∞

 𝑢𝑖
𝑟 = lim

𝑛→∞
𝑇𝑖 𝒖

𝑟−1 , 

where 𝑇𝑖  is the contraction mapping for each 𝑖, and 𝑇𝑖  is continuous. So, we obtain: 

lim
𝑛→∞

 𝑢𝑖
𝑟 = 𝑇𝑖  lim

𝑛→∞
 𝒖𝑟−1 . 

Thus, 𝑢𝑖
∗ = 𝑇𝑖 𝒖

∗ , for 𝒖∗ = 𝑢1
∗ , 𝑢2

∗, … , 𝑢𝑛
∗. Hence 𝑇𝑖  has a fixed-point 𝑖 = 1,2, … , 𝑛. Now by 

reductio ad absurdum, suppose that (if possible) 𝑣𝑖
∗  is also a fixed-point of   𝑇𝑖 , this means 

that 𝑣𝑖
∗ = 𝑇𝑖 𝒗

∗   for 𝒗∗ = 𝑣1
∗, 𝑣2

∗, … , 𝑣𝑛
∗ , then  

 𝑢𝑖
∗ − 𝑣𝑖

∗ ∞ ≤ 𝛼𝑖  𝑚𝑎𝑥
𝑗 =1,2,…,𝑛

 𝑢𝑗
∗ − 𝑣𝑗

∗ 
∞  

. 

This means 𝛼𝑖 ≤ 1, this is a contradiction. Thus  𝑢𝑖
∗ = 𝑣𝑖

∗.        

 ii. From part (i), we have: 

          𝑢𝑖
𝑟 𝑥 − 𝑢𝑖

∗(𝑥) ∞ =  𝑇𝑖 𝒖
𝑟−1 − 𝑇𝑖(𝒖

∗) ∞ ≤ 𝛼𝑖 𝑚𝑎𝑥
𝑗 =1,2,…,𝑛

 𝑢𝑗
𝑟−1 − 𝑢𝑗

∗  ∞ . 

Let 𝑚𝑎𝑥
𝑗 =1,2,…,𝑛

 𝑢𝑗
𝑟−1 − 𝑢𝑗

∗ 
∞

=  𝑢𝑙1
𝑟−1 − 𝑢𝑙1

∗ ∞  and then we have 

   𝑢𝑙1
𝑟−1 − 𝑢𝑙1

∗ ∞  =  𝑇𝑙1(𝒖𝑟−2) − 𝑇𝑙1(𝒖∗) ∞  ≤ 𝛼𝑙1 𝑚𝑎𝑥
𝑙2=1,2,…,𝑛

 𝑢𝑙2
𝑟−2 − 𝑢𝑙2

∗ ∞ . 

Thus, we get the following inequality to complete this part: 

     𝑢𝑖
𝑟 𝑥 − 𝑢𝑖

∗(𝑥) ∞ ≤ 𝛼𝑖 𝑚𝑎𝑥
𝑗 =1,2,…,𝑛

 𝑢𝑗
𝑟−1 − 𝑢𝑗

∗ 
∞

= 𝛼𝑖 𝑢𝑙1
𝑟−1 − 𝑢𝑙1

∗ ∞  

          ≤ 𝛼𝑖𝛼𝑙1 𝑚𝑎𝑥
𝑙2=1,2,…,𝑛

 𝑢𝑙2
𝑟−2 − 𝑢𝑙2

∗ ∞  

                                   ≤ ⋯ ≤ (𝛼𝑖𝛼𝑙1𝛼𝑙2 …𝛼𝑙 𝑟−1 ) 𝑚𝑎𝑥
𝑙𝑟=1,2,…,𝑛

 𝑢𝑙𝑟
0 − 𝑢𝑙𝑟

∗ ∞  

≤ 𝛼𝑟 𝑚𝑎𝑥
𝑙𝑟=1,2,…,𝑛

 𝑢𝑙𝑟
0 − 𝑢𝑙𝑟

∗ ∞ , 

where  𝛼𝑟 = 𝑚𝑎𝑥{𝛼𝑖 , 𝛼𝑙1, 𝛼𝑙2 , … , 𝛼𝑙(𝑟−1)} . Thus  lim𝑟→∞ 𝑢𝑖
𝑟 𝑥 − 𝑢𝑖

∗(𝑥) ∞ ≤ lim𝑟→∞ 𝛼𝑟 𝑢𝑙𝑟
0 −

𝑢𝑙𝑟
∗ ∞ . Since  0 ≤ 𝛼 < 1 ,  𝛼𝑟 → 0  as  𝑟 → ∞ . This means that  𝑢𝑖

𝑟 → 𝑢𝑖
∗, for  𝑖 = 1,2, … , 𝑛.  The 

proof is ended now.                  ∎ 

4. An algorithm based on the FPM 

As discussed in section 1 and since the exact solution of the LSMVFIE2
nd

 could be found in all 
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cases, here an approximate-analytic solution is presented to find the solution specially for cases at 

which there is no special peak or oscillation in the solution of the problem. 

Perform the steps below to get the approximation for LSMVFIE2
nd

 by using FPM: 

Step 1: Choose a, b as the integration bound, n as the number of unknown functions, and m as the 

number of points in the interval [a, b]. 

Step 2: Let 𝑢𝑖
0(𝑥) = 𝑓𝑖 𝑥  be an initial solution. 

Step 3: Calculate 𝑢𝑖
𝑟 𝑥  in (3) for all 𝑖 = 1, 2, … , 𝑛. 

Step 4: Repeat Step 3 until desired level of accuracy is reached. 

Step 5: Find 𝑢𝑖
𝑟 𝑥𝑗  ,  𝑥𝑗 ∈  𝑎, 𝑏 , where  𝑥𝑗 =  𝑥0 + 𝑗ℎ, for 𝑗 = 1,2, … , 𝑚 where ℎ = 𝑏−𝑎

𝑚
. 

Step 6: Compute  𝑢𝑖(𝑥𝑗 ) −  𝑢𝑖
𝑟 𝑥𝑗   , for any 𝑖 and 𝑗. 

5. Computational experiments 

To show the implementation of the method and the accuracy of the approach two tests will be 

solved in this section.  

Example 1. Consider the following LSMVFIE2
nd

 

𝑢1 𝑥 = 𝑓1 +
1

2
  𝑘11𝑢1 𝑡 𝑑𝑡𝑑𝑟 +

1

4
  𝑘12𝑢2 𝑡 𝑑𝑡𝑑𝑟,

1

0

𝑥

0

      
1

0

𝑥

0

0 ≤ 𝑥 ≤ 1, 

𝑢2 𝑥 = 𝑓2 +
1

3
  𝑘21𝑢1 𝑡 𝑑𝑡𝑑𝑟 +

1

4
  𝑘22𝑢2 𝑡 𝑑𝑡𝑑𝑟,

1

0

𝑥

0

      
1

0

𝑥

0

0 ≤ 𝑥 ≤ 1, 

where 

 𝑘11 𝑟, 𝑡 =  𝑟 − 𝑡 , 𝑘12 𝑟, 𝑡 = 𝑟𝑡,   

 𝑘21 𝑟, 𝑡 =  𝑟𝑠 + 1, 𝑘22 𝑟, 𝑡 = 𝑟,  

    𝑓1 𝑥 =
𝑥

2
+ 𝑒𝑥 −

 𝑥2 𝑒
2
−1

2
  

2
−

𝑥2

32
,  

𝑓2 𝑥 =
19𝑥2

24
−

 𝑥 𝑒−1  

3
, 

and the exact solution is given by 𝑢1 𝑥 = 𝑒𝑥 , and 𝑢2 𝑥 = 𝑥2. Recalling that the solution does not 

have sharp behaviors including oscillations or peaks and thus the system is a good candidate for 

taking into account the approximate-analytic methods, such as the one discussed in section 4. 

First, we let 

 𝑢1
0 𝑥 =

𝑥

2
+ 𝑒𝑥 −

 𝑥2 𝑒
2
−1

2
  

2
−

𝑥2

32
,    and      𝑢2

0 𝑥 =
19𝑥2

24
−

 𝑥 𝑒−1  

3
 . 

Now by using (4) the values of  𝑢1
𝑖 𝑥  and 𝑢2

𝑖 𝑥  will be determined for all 𝑖 = 1, … ,10. The 

absolute errors for the approximate solutions 𝑢1
10 𝑥  and 𝑢2

10 𝑥  are listed in Tables 1 and 2 

respectively. 

Comparison between the exact and approximate solutions have been made and illustrated 

depending on least square error (L.S.E.) and the time required for running the program (R.T.) 

together in Table 3. While, Figure 1 shows the convergence of the method for 𝑢1
𝑖 𝑥  and 𝑢2

𝑖 𝑥  

with 𝑖 = 1,2,3. 
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a. Graph of  𝑢1 𝑥 = 𝑒𝑥                   b. Graph of  𝑢2 𝑥 = 𝑥2 

Figure 1. The exact and numerical solution with 𝑛 = 1,2,3 for Example 1. 

 

Table 1. The results for 𝑢1
10 𝑥  and the absolute errors of Example 1. 

𝑥𝑗       Exact solution      Approximate Values         Absolute error 

          𝑢1(𝑥𝑗 )            of  𝑢1
10 𝑥𝑗               𝑢1(𝑥𝑗 ) −  𝑢1

10 𝑥𝑗    

0.1     1.10517091807        1.10517091808           9.034   e − 12 

0.2     1.22140275816        1.22140275817           1.7206 e − 11 

0.3     1.34985880757        1.34985880760           2.4518 e − 11 

0.4     1.49182469764        1.49182469767           3.0969 e − 11 

0.5     1.64872127070        1.64872127073           3.6558 e − 11 

0.6     1.82211880039        1.82211880043           4.1287 e − 11 

0.7     2.01375270747        2.01375270751           4.5155 e − 11 

0.8     2.22554092849        2.22554092854           4.8161 e − 11 

0.9     2.45960311115        2.45960311120           5.0306 e − 11 

1.0     2.71828182845        2.71828182851           5.1592 e − 11 

 

Table 2. The results 𝑢2
10 𝑥  and the absolute errors of Example 1. 

   𝑥𝑗       Exact solution       Approximate values        Absolute error 

             𝑢2(𝑥j)              of  𝑢2
10 𝑥𝑗             𝑢2(𝑥j) −  𝑢2

10 𝑥j   

0           0               0                        0 

0.1         0.01             0.00999999999            9.808 e − 12 

0.2         0.04             0.03999999998            1.927 e − 11 

0.3         0.09             0.08999999997            2.840 e − 11 

0.4         0.16             0.15999999996            3.718 e − 11 

0.5         0.25             0.24999999995            4.563 e − 11 

0.6         0.36             0.35999999995            5.373 e − 11 

0.7         0.49             0.48999999994            6.149 e − 11 

0.8         0.64             0.63999999993            6.891 e − 11 

0.9         0.81             0.80999999992            7.599 e − 11 

1           1               0.99999999992             8.273 e − 11 
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Table 3. The exact solution is compared with the numerical method for different iterates. 

n 3-iterations 6-iterations 9-iterations 12-terations 

 L.S.E u1 1.17e-03 8.35 e-11 3.73 e-17 5.45 e-24 

L.S.E u2 2.73 e-04 5.07 e-10 7.43 e-18 1.18 e-23 

R.T.    2.4s 5.6s 9.1s 14.5s 

 

Example 2. Consider the following system of integral equations: 

𝑢1 𝑥 = 𝑐𝑜𝑠 𝑥 +
𝜋

16
𝑥 − (

𝜋2+4

128
)𝑥2 +

1

4
   𝑟𝑡 − 1 𝑢2 𝑡 𝑑𝑡𝑑𝑟

𝜋
2

0

𝑥

0

,            0 ≤ 𝑥 ≤
𝜋

2
, 

𝑢2 𝑥 = 𝑠𝑖𝑛2 𝑥 +  
𝜋−2

8
 𝑥 −

𝑥2

8
+

1

4
   𝑟 − 𝑡 𝑢2 𝑡 𝑑𝑡𝑑𝑟

𝜋
2

0

𝑥

0

,                0 ≤ 𝑥 ≤
𝜋

2
, 

where the exact solution is given by 𝑢1 𝑥 = cos 𝑥 , and 𝑢2 𝑥 = sin2 𝑥 . 

Applying the algorithm of FPM with n = 10, gives the results in Tables 4 and 5. While, Figure 2 

shows the convergence of the method for 𝑢1
𝑖  𝑥  and 𝑢2

𝑖  𝑥  for 𝑖 = 1,2,3. 

Table 4. The results 𝑢1
10 𝑥  of Example 2, compared with exact solution 𝑢1 𝑥 . 

𝑥𝑗           Exact solution       Approximate Values        Absolute error 

           𝑢1(𝑥𝑗 )              of  𝑢1
10 𝑥𝑗                 𝑢1(𝑥𝑗 ) −  𝑢1

10 𝑥𝑗    

0.1(π)       0.95105651630      0.95105651644            1.52318 e − 10 

0.2(π)       0.80901699437      0.80901699463            2.55728 e − 10 

0.3(π)       0.58778525229      0.58778525260            3.10231 e − 10 

0.4(π)       0.30901699437      0.30901699469            3.15826 e − 10 

0.5(π)        0                 2.72513 e − 10            2.72513 e − 10     

Table 5. The results 𝑢2
10 𝑥  of Example 2, compared with exact solution 𝑢2 𝑥 . 

𝑥𝑗              Exact solution        Approximate Values       Absolute error 

               𝑢2(𝑥𝑗 )               of  𝑢2
10 𝑥𝑗               𝑢2(𝑥𝑗 ) −  𝑢2

10 𝑥𝑗    

0.1(π)          0.09549150281        0.09549150289           8.2427 e − 11 

0.2(π)          0.34549150281        0.34549150294           1.3157 e − 10 

0.3(π)          0.65450849719        0.65450849734           1.4742 e − 10 

0.4(π)          0.90450849719        0.90450849732           1.3003 e − 10 

0.5(π)          1                    1.00000000008           7.9341 e − 11 
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a. Graph of  𝑢1 𝑥 = cos(𝑥)            b.   Graph of  𝑢2 𝑥 = 𝑠𝑖𝑛2 𝑥  

Figure 2. The exact solution and the numerical solution with 𝑛 = 1,2,3,4 for Example 2. 

6. Conclusion 

In summary, the existence of a unique solution was verified and proved for linear system of 

mixed Volterra-Fredholm integral equations of the second kind and the result was obtained by using 

some principles of Banach's contraction in complete metric space. Also, an iterative technique based 

on fixed point method was discussed for solving the system, and an algorithm is constructed. Here 

our programs are written by Matlab software 2015Ra, and two experiments were presented for 

illustration. Good approximations were obtained, while better results have been found by increasing 

the number of iterations (n). Moreover, comparison between the exact and approximate solutions 

was made to demonstrate the application method. It is worth mentioning that the technique can be 

used as a very accurate algorithm for solving linear system of mixed Volterra-Fredholm integral 

equations of the second kind. These claims are supported by the results of the given numerical 

examples in Tables 1–5 and Figures 1–2. 
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