In the article, we considered the fixed point problem for contractive mappings of integral type in the setting of $ b $-metric spaces for the first time. First, we introduced the concepts of $ \theta $-weak contraction and $ \theta $-$ \psi $-weak contraction. Second, the existence and uniqueness of fixed points of contractive mappings of integral type in $ b $-metric spaces were studied. Meanwhile, two examples were given to prove the feasibility of our results. As an application, we proved the solvability of a functional equation arising in dynamic programming.
Citation: Hongyan Guan, Jinze Gou, Yan Hao. On some weak contractive mappings of integral type and fixed point results in $ b $-metric spaces[J]. AIMS Mathematics, 2024, 9(2): 4729-4748. doi: 10.3934/math.2024228
In the article, we considered the fixed point problem for contractive mappings of integral type in the setting of $ b $-metric spaces for the first time. First, we introduced the concepts of $ \theta $-weak contraction and $ \theta $-$ \psi $-weak contraction. Second, the existence and uniqueness of fixed points of contractive mappings of integral type in $ b $-metric spaces were studied. Meanwhile, two examples were given to prove the feasibility of our results. As an application, we proved the solvability of a functional equation arising in dynamic programming.
[1] | S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3 (1922), 51–57. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[2] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta. Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[3] | S. Hussain, M. Sarwar, Y. Li, $n$-tupled fixed point results with rational type contraction in $b$-metric spaces, Eur. J. Pure Appl. Math., 11 (2018), 331–351. https://doi.org/10.29020/nybg.ejpam.v11i2.3136 doi: 10.29020/nybg.ejpam.v11i2.3136 |
[4] | W. Shatanawi, A. Pitea, R. Lazovic, Contraction conditions using comparison functions on $b$-metric spaces, Fixed Point Theory A., 2014 (2014). https://doi.org/10.1186/1687-1812-2014-135 doi: 10.1186/1687-1812-2014-135 |
[5] | M. Abbas, J. R. Roshan, S. Sedghi, Common fixed point of four maps in $b$-metric spaces, Hacet. J. Math. Stat., 43 (2014), 613–624. |
[6] | M. Iqbal, A. Batool, O. Ege, M. Sen, Fixed point of almost contraction in $b$-metric spaces, J. Math., 2020 (2020). https://doi.org/10.1186/s13660-020-02520-8 doi: 10.1186/s13660-020-02520-8 |
[7] | D. W. Boyd, J. S. W. Wong, On nonlinear contractions, P. Am. Math. Soc., 20 (1969), 458–464. https://doi.org/10.1090/S0002-9939-1969-0239559-9 doi: 10.1090/S0002-9939-1969-0239559-9 |
[8] | Y. I. Alber, S. G. Delabriere, Principle of weakly contractive maps in Hilbert spaces, In: I. Gohberg, Y. Lyubich, Eds., New Results in Operator Theory and Its Applications, Basel: Birkhiiuser Verlag, 98 (1997), 7–22. https://doi.org/10.1007/978-3-0348-8910-0-2 |
[9] | B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683–2693. https://doi.org/10.1016/S0362-546X(01)00388-1 doi: 10.1016/S0362-546X(01)00388-1 |
[10] | I. Altun, D. Turkoglu, B. E. Rhoades, Fixed points of weakly compatible maps satisfying a general contractive condition of integral type, Fixed Point Theory A., 2007 (2007), 1–9. https://doi.org/10.1155/2007/17301 doi: 10.1155/2007/17301 |
[11] | I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topol. Appl., 159 (2012), 2642–2648. https://doi.org/10.1016/j.topol.2012.04.004 doi: 10.1016/j.topol.2012.04.004 |
[12] | A. H. Ansari, S. Chandok, C. Ionescu, Fixed point theorems on b-metric spaces for weak contractions with auxiliary functions, J. Inequal. Appl., 2014 (2014), 429. https://doi.org/10.1186/1029-242X-2014-429 doi: 10.1186/1029-242X-2014-429 |
[13] | C. Mongkolkeha, P. Kumam, Fixed point and common fixed point theorems for generalized weak contraction mappings of integral type in modular spaces, Int. J. Math. Math. Sci., 2011 (2011), 705943. https://doi.org/10.1186/1687-1812-2011-93 doi: 10.1186/1687-1812-2011-93 |
[14] | V. Gupta, N. Mani, A. K. Tripathi, A fixed point theorem satisfying a generalized weak contractive condition of integral type, Int. J. Math. Anal., 6 (2012), 1883–1889. |
[15] | A. Perveen, W. M. Alfaqih, S. Sessa, $\theta^*$-Weak contractions and discontinuity at the fixed point with applications to matrix and integral equations, Global J. Pure Appl. Math., 10 (2021), 209. https://doi.org/10.3390/axioms10030209 doi: 10.3390/axioms10030209 |
[16] | M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Modern Math., 4 (2009), 285–301. |
[17] | A. Aghaiani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered $b$-metric spaces, Math. Slovaca., 2014 (2014), 941–960. https://doi.org/10.2478/s12175-014-0250-6 doi: 10.2478/s12175-014-0250-6 |
[18] | J. R. Roshan, N. Shobkolaei, S. Sedghi, M. Abbas, Common fixed point of four maps in $b$-metric spaces, Hacet. J. Math. Stat., 43 (2014), 613–624. |
[19] | Z. Liu, X. Li, S. M. Kang, S. Y. Cho, Fixed point theorems for mappings satisfying contractive conditions of integral type and applications, Fixed Point Theory A., 2011 (2011), 5573983. https://doi.org/10.1186/1687-1812-2011-64 doi: 10.1186/1687-1812-2011-64 |
[20] | R. Bellman, Dynamic programming, Princeton: Princeton University Press, 1957. |
[21] | R. Bellman, E. S. Lee, Functional equations arising in dynamic programming, Aequationes Math., 17 (1978), 1–18. https://doi.org/10.1007/BF01818535 doi: 10.1007/BF01818535 |
[22] | P. C. Bhakta, S. Mitra, Some existence theorems for functional equations arising in dynamic programming, J. Math. Anal. Appl., 98 (1984), 348–362. https://doi.org/10.1016/0022-247X(84)90254-3 doi: 10.1016/0022-247X(84)90254-3 |
[23] | Z. Liu, R. P. Agarwal, S. M. Kang, On solvability of functional equations and system of functional equations arising in dynamic programming, J. Math. Anal. Appl., 297 (2004), 111–130. https://doi.org/10.1016/j.jmaa.2004.04.049 doi: 10.1016/j.jmaa.2004.04.049 |
[24] | Z. Liu, Y. Xu, J. S. Ume, S. M. Kang, Solutions to two functional equations arising in dynamic programming, J. Comput. Appl. Math., 192 (2006), 251–269. https://doi.org/10.1016/j.cam.2005.04.033 doi: 10.1016/j.cam.2005.04.033 |
[25] | S. B. Kaliaj, A functional equation arising in dynamic programming, Aequationes Math., 91 (2017), 635–645. https://doi.org/10.1007/s00010-017-0495-6 doi: 10.1007/s00010-017-0495-6 |