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1. Introduction

The notion of capacity represents a very useful tool in the study of several problems in complex
analysis regarding its effectiveness in the proof of the continuity for the Monge-Ampère operator and
also in the resolution of the Dirichlet problem. In [1], Bedford and Taylor noticed that the weak
convergence of a uniformly bounded sequence of plurisubharmonic (psh) functions f j defined on a
domain Ω of Cn does not necessarily imply the convergence of the associated Monge-Ampère
measures (ddc f j)n. This is why different works gave sufficient conditions to establish a suitable
connection between the two notions of convergence. In [9], Xing proved that the convergence in
capacity Cn introduced by Bedford and Taylor gives the continuity of the Monge-Ampère operator.
This work was extended in [10] to the case of psh functions, that are only bounded near the boundary
of Ω. In [3], Blocki introduced a more general notion called the m−subharmonic function ( m−sh for
short) for 1 ≤ m ≤ n which coincides with the psh functions in the limit case m = n. This has given
rise to various works which aim to extend the results proved in the case of psh to the case of m−sh.
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Some of those problems are linked to the complex Hessian operator which itself generalizes the
famous Monge-Ampère operator. In this paper we deal with the problem of connection between the
convergence in capacity Capm and the continuity of the associated Hessian operator in the general
case of m−subharmonic functions that are bounded near ∂Ω. To establish such relation we will prove
firstly several results of convergence that represent itself a useful tool in the study of problems related
to the Hessian operator and also a generalization of Xing’s inequalities for the class of
m−subharmonic function that are bounded only near the boundary of Ω. Based on the established
inequalities and the works of Xing [10] and Lu [7] we will prove the following main result:

Theorem: Let E b Ω and g ∈ S Hm(Ω) a bounded function on Ω\E. Assume that there is fk ∈ S Hm(Ω)
satisfying:

(1) | fk| ≤ |g| in Ω for all k.
(2) There exists an m−subharmonic function f in Ω such that fk → f in Capm on each E b F,

then the sequence of measures (ddc fk)m ∧ γn−m converges weakly to (ddc f )m ∧ γn−m in Ω.
We prove also that every sequence of m−subharmonic functions, that converges weakly (with

respect to the Lebesgue measure dλ) converges with respect to any measure that has no mass on
m−polar sets.

In the last part of this paper, we discuss the converse sense of the above theorem and we prove, under
suitable conditions, that the weak convergence of the Hessian measures (ddc fk)m ∧ γn−m to (ddc f )m ∧

γn−m implies the convergence of ( f j) j to f with respect to the capacity Capm.

2. Preliminaries

In this paper we denote by Ω a bounded domain of Cn, d := ∂ + ∂, dc := i(∂ − ∂) and Λp(Ω) the set
of (p, p)−forms in Ω. The classic Kähler form γ defined on Cn will be denoted as γ := ddc|z|2.

Definition 1. [3] Let ζ ∈ Λ1(Ω) and m ∈ N ∩ [1, n]. The form ζ is called m−positive if it satisfies

ζ j ∧ γn− j ≥ 0, ∀ j = 1, · · · ,m

at every point of Ω.

Definition 2. [3] Let ζ ∈ Λp(Ω) and m ∈ N∩ [p, n]. We say that ζ is m−positive on Ω if the following
measure

ζ ∧ βm−n ∧ ψ1 ∧ · · · ∧ ψm−p

is positive at every point of Ω where ψ1, · · · , ψm−p ∈ Λ1(Ω).

We will denote by Λm
p (Ω) the set of all (p, p)−forms on Ω that are m−positive. In 2005, Blocki [3]

introduced the notion of m−subharmonic functions to generalize the plurisubharmonic functions and
he developed an analogous pluripotential theory. This notion is given as follows.

Definition 3. Let f : Ω → R ∪ {−∞}. The function f is called m−subharmonic if it satisfies the
following:

(1) The function f is subharmonic.
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(2) For all ζ1, · · · , ζm−1 ∈ Λm
1 (Ω) one has

ddc f ∧ γn−m ∧ ζ1 ∧ · · · ∧ ζm−1 ≥ 0.

We denote by S Hm(Ω) the cone of m−subharmonic functions defined on Ω and Bm(Ω) the set of
functions u ∈ S Hm(Ω) that are locally uniformly bounded.
Remark 1. In the case m = n we have the following:

(1) The definition of m−positivity coincides with the classic definition of positivity given by
Lelong [8] for forms.

(2) The set S Hn(Ω) coincides with the set of plurisubharmonic functions on Ω.

For more details about the properties of m−subharmonicity one can refer to [3, 5, 7].
Example 1. (1) If

ζ := i(4.dz1 ∧ dz1 + 4.dz2 ∧ dz2 − dz3 ∧ dz3)

then ζ ∈ Λ2
1(C3) \ Λ3

1(C3).
(2) If

f (z) := 2|z1|
2 + 2|z2|

2 − |z3|

then f ∈ S H2(C3) \ S H3(C3).
In the following we give the notion of s−capacity for every integer s. Such notion will be useful

throughout this paper and was defined on every subset E as follows:

Definition 4. [5] The s−capacity of a compact subset K in Ω denoted by Caps(K) is defined as

Caps(K,Ω) = Caps(K) := sup{
∫

K
(ddc f )s ∧ γn−s, f ∈ S Hm(Ω), 0 ≤ f ≤ 1},

for 1 ≤ s ≤ m. If E ⊂ Ω, then Caps(E,Ω) = sup{Caps(K),K compact o f E}.

One of the most known property for m−subharmonic functions is the continuity outside a subset of
small capacity. Such property is known as the quasicontinuity and will represent an essential tool in
the proof of several result in this paper.

Proposition 1. Every f ∈ S Hm(Ω) is Capm-quasicontinuous. That means for all ε > 0 there exists an
open subset Oε such that Capm(Oε) < ε and f is continuous on Ω \ Oε. As a consequence f can be
written as follows

f = f1 + f2

where f1 is continuous on Ω and f2 ≡ 0 on Ω \ Oε.

Definition 5. (1) A positive measure µ defined on Ω is said to be absolutely continuous with respect
to the capacity Capm ( µ << Capm for short) on a Borel subset E in Ω if

∀t > 0, ∃s > 0 such that f or any E1 ⊂ E; Capm(E1) < s⇒ µ(E1) < t.

(2) Let f j, f ∈ S Hm(Ω), we say that lim inf
z→∂Ω

( f j − f ) ≥ 0 if and only if

∀ε > 0,∃Ω1 b Ω, such that f j(z) − f (z) ≥ −ε

for every z ∈ Ω \Ω1 and j ∈ N.
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Definition 6. (1) The set Ω is said to be m−hyperconvex if it is open, bounded, connected and there
exists a negative m−subharmonic function g such that for all c < 0, one has {z ∈ Ω, g(z) < c} b Ω.

(2) A set M ⊂ Ω is called m−polar if there exist u ∈ S Hm(Ω) such that

M ⊂ {u = −∞}.

(3) A sequence of functions ( f j) j defined on Ω is said to be convergent with respect to Capm to f on
E if for all t > 0, one has

lim
j→+∞

Capm(E ∩
{
| f − f j| > t

}
) = 0.

3. Convergence in Capacity and Hessian measure

In this section we prove that the convergence in m−capacity of a sequence ( f j) j ⊂ S Hm(Ω) implies
the convergence of the associated Hessian measure Hm( f j) := (ddc f j)m ∧ γn−m for functions f j that are
only bounded near the boundary. We will start by establishing the following theorem.

Theorem 1. Let f ∈ S Hm(Ω) and assume that there is a sequence f j ∈ S Hm(Ω)∩L∞(Ω) satisfying the
following assumptions:

(1) For all j ∈ N, f j is uniformly bounded near ∂Ω.
(2) f j → f in Capm on each E b Ω.
(3) For every E b Ω, one has (ddc f j)m ∧ γn−m � Capm uniformly.

Then the sequence of measures (ddc f j)m∧γn−m converges weakly to (ddc f )m∧γn−m in Ω and (ddc f )m∧

γn−m � Capm on each E b Ω.

Proof. Using the assumption (1), we get that f is bounded near ∂Ω. So the Borel measure (ddc f )m ∧

γn−m is well defined, see [4]. To prove the convergence of (ddc f j)m ∧ γn−m toward (ddc f )m ∧ γn−m , we
take a smooth function ϕ with compact support in Ω. So we have for all constant r > 0∫

Ω

ϕ((ddc f j)m − (ddc f )m) ∧ γn−m =

∫
Ω

ϕ((ddc f j)m − (ddc max( f j,−r))m) ∧ γn−m

+

∫
Ω

ϕ((ddc max( f j,−r))m − (ddc max( f ,−r))m) ∧ γn−m

+

∫
Ω

ϕ((ddc max( f ,−r))m − (ddc f )m) ∧ γn−m

:= A + B + C.

Using Theorem 2.12 in [6], we obtain that for each r > 0 sufficiently large

| A | = |

∫
f j≤−r

ϕ((ddc f j)m − (ddc max( f j,−r))m) ∧ γn−m |

≤ max
Ω
|ϕ|

(∫
f j≤−r

(ddc f j)m ∧ γn−m +

∫
f j≤−r

(ddc max( f j,−r))m ∧ γn−m

)
.
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Now by Lemma 3 in [4] we get∫
f j≤−r

(ddc max( f j,−r))m ∧ γn−m ≤

∫
f j≤−r

(−1 −
2 f j

r
)m(ddc max( f j,−r))m ∧ γn−m

≤ 2m

∫
f j<

−r
2

(
−r
2
− f j)m(ddc max(

f j

r
,−1))m ∧ γn−m

≤ 2m(m!)2
∫

f j<
−r
2

(ddc f j)m ∧ γn−m.

It follows that for each r large enough and all j

| A |≤ (1 + 2m(m!)2) max
Ω
|ϕ|

∫
f j<

−r
2

(ddc f j)m ∧ γn−m.

As Capm{ f < −r
2 } → 0 as r → ∞ and f j → f in Capm, we obtain that Capm{ f j <

−r
2 } is uniformly

convergent to zero for all j when r → ∞. Using the assumption of the uniformly absolute continuity
of (ddc f j)m ∧ γn−m we get that the integral

∫
f j<

−r
2

(ddc f j)m ∧ γn−m tends uniformly to zero for all j when
r → ∞.

Hence, for every ε > 0 there exits a constant r ≥ 0 such that |A| ≤ ε for all j, and by Theorem 2
in [4] we can also require that |C| ≤ ε. However, for a such fixed constant r the assumption (2) implies
that functions max( f j,−r) converge to max( f ,−r) in Capm on each E b Ω as j → ∞ and hence we
conclude by Theorem 1.3.7 in [7] that B → 0 as j → ∞. Therefore, we obtain that (ddc f j)m ∧ γn−m

converges weakly to (ddc f )m ∧ γn−m.
To finish the proof it suffices to show that (ddc f )m ∧ γn−m � Capm on any open set E b Ω. Let

ε > 0 and take δ > 0 such that inequalities (ddc f j)m ∧ γn−m(F) ≤ ε hold for all j and all Borel sets
F ⊂ E with Capm(F) < δ. Let (χk)k be a sequence of non-negative smooth functions that increases to
the characteristic function of F in Ω.

Then ∫
F
(ddc f )m ∧ γn−m = lim

k→∞

∫
Ω

χk(ddc f )m ∧ γn−m

= lim
k→∞

lim
j→∞

∫
Ω

χk(ddc f j)m ∧ γn−m

≤ lim sup
j→∞

∫
F
(ddc f j)m ∧ γn−m ≤ ε.

Hence (ddc f )m ∧ γn−m � Capm on E and we have completed the proof of the Theorem. �

In the next lemmas we will be interested to prove some estimations known as Xing inequalities.
Some of those inequalities were proved by Bedford and Taylor in [1] for bounded psh function and
have several applications on the Dirichlet problem. In [9], Xing obtained a stronger version of those
inequalities. In the following we will generalize those results to the class of m−subharmonic functions
that are only bounded near the boundary.

Lemma 1. Let f j, f ∈ S Hm(Ω) such that (ddc f j)m ∧ γn−m → (ddc f )m ∧ γn−m on Ω. Then the following
assertions are equivalent

(1) (ddc f )m ∧ γn−m has zero mass on any m−polar set and h(ddc f j)m ∧ γn−m → h(ddc f )m ∧ γn−m for
every locally bounded m−sh function h on Ω.
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(2) The sequence (ddc f j)m ∧ γn−m puts uniformly small mass on sets of small m−capacity.

The proof of the above result will be omitted since it is inspired from to the proof Theorem 3.2
in [2] which was established in the case of plurisubharmonic functions.

Lemma 2. Let f j be a sequence of bounded m−sh functions in Ω that decreases to f ∈ S Hm(Ω).
Assume that

(1) The function f is bounded near ∂Ω.
(2) (ddc f )m ∧ γn−m � Capm on any relatively compact subset of Ω.

Then (ddc f j)m ∧ γn−m � Capm uniformly for all j on each E b Ω.

Proof. Using the proof of Theorem 2 in [4] we obtain that g(ddc f j)m ∧ γn−m → g(ddc f )m ∧ γn−m

weakly in Ω for any locally bounded m−sh function g on Ω. Thus, the Lemma follows directly from
Lemma 1. �

Remark 2. As a consequence of the previous lemma, we can deduce that “a function f is bounded near
∂Ω and have absolute continuous Hessian measure with respect to Capm if and only if f is the limit of
functions given in Theorem 1”. Indeed if we assume that f is bounded near ∂Ω and (ddc f ) ∧ γn−m �

Capm then the sequence f j := max( f ,− j) is bounded and decreases to f . Using the quasicontiuity
combined with the Dini’s theorem we deduce that f j converges to f with respect to Capm. Now the
lemma 2 implies that (ddc f j) ∧ γn−m � Capm. Hence the sequence f j satisfies Theorem 1.

Conversely it is easy to check that every limit of functions in Theorem 1 is bounded near the
boundary of Ω and with Hessian measure absolutely continuous with respect to Capm.

Lemma 3. Let f , g ∈ S Hm(Ω) such that

(1) lim inf
z→∂Ω

( f (z) − g(z)) ≥ 0.

(2) The functions f and g are bounded near ∂Ω and with Hessian measure absolutely continuous
with respect to Capm on each E b Ω.

Then for any constant c ≥ 1 and all h j ∈ S Hm(Ω) with 0 ≤ h j ≤ 1, j = 1, 2, ...,m, one has

1
m!2

∫
f<g

(g − f )mddch1 ∧ ... ∧ ddchm ∧ γ
n−m +

∫
f<g

(c − h1)(ddcg)m ∧ γn−m

≤

∫
f<g

(c − h1)(ddc f )m ∧ γn−m.

Moreover if we assume that
(ddc f )m ∧ γn−m ≥ (ddcg)m ∧ γn−m

in Ω, then { f < g} = ∅.

Proof. Replacing f by f + 2t and then taking t ↘ 0, we may assume that there exists a subset E b Ω

such that { f < g} ⊂ E. Take fk := max( f ,−k) and g j = max(g,− j). Then { fk < g j} ⊂ E for k and j
large enough. Using Lemma 3 in [4] we obtain that for any constant c ≥ 1 and all h j ∈ S Hm(Ω) such
that 0 ≤ h j ≤ 1, j = 1, 2, ...,m
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1
m!2

∫
fk<g j

(g j − fk)mddch1 ∧ ... ∧ ddchm ∧ γ
n−m +

∫
fk<g j

(c − h1)(ddcg j)m ∧ γn−m

≤

∫
fk<g j

(c − h1)(ddc fk)m ∧ γn−m

where k and j are large enough. Since fk ↘ f then (ddc fk)m ∧ γn−m tends weakly to (ddc f )m ∧ γn−m

then by Lemma 2 we get that (ddc fk)m ∧ γn−m � Capm uniformly for all k in the set E. Similarly,
(ddcg j)m ∧ γn−m � Capm uniformly for all j in E. Now take ε > 0, and let U be an open subset of Ω

with Capm(U) < ε such that f , g are continuous on F = Ω\U. Thus, we can write g = ϕ1 + ϕ2 where
ϕ1 is continuous on F and ϕ2 = 0 outside of U. Then

(c − h1)(ddcg j)m ∧ γn−m → (c − h1)(ddcg)m ∧ γn−m

weakly on Ω and we have∫
fk<ϕ1

(c − h1)(ddcg)m ∧ γn−m ≤ lim
j→∞

∫
fk<ϕ1

(c − h1)(ddcg j)m ∧ γn−m.

The last inequality implies that∫
fk<g

(c − h1)(ddcg)m ∧ γn−m ≤

∫
fk<ϕ1

(c − h1)(ddcg)m ∧ γn−m +

∫
U

(c − h1)(ddcg)m ∧ γn−m

≤ lim
j→∞

∫
fk<ϕ1

(c − h1)(ddcg j)m ∧ γn−m + Capm(U)

≤ lim
j→∞

∫
fk<g

(c − h1)(ddcg j)m ∧ γn−m + O(ε)

≤ lim
j→∞

∫
fk<g j

(c − h1)(ddcg j)m ∧ γn−m + O(ε).

Hence if we let j→ ∞, we get

1
m!2

∫
f<g

(g − f )mddch1 ∧ ... ∧ ddchm ∧ γ
n−m +

∫
fk<g

(c − h1)(ddcg)m ∧ γn−m

≤

∫
fk≤g

(c − h1)(ddc fk)m ∧ γn−m + O(ε).

Since the functions f , g are continuous on the set Ω and fk ↘ f , we get∫
f≤g

(c − h1)(ddc f )m ∧ γn−m ≥

∫
{ f≤g}∩F

(c − h1)(ddc f )m ∧ γn−m

≥ lim
k→∞

∫
{ f≤g}∩F

(c − h1)(ddc fk)m ∧ γn−m

≥ lim
k→∞

∫
{ fk≤g}∩F

(c − h1)(ddc fk)m ∧ γn−m

≥ lim
k→∞

∫
fk≤g

(c − h1)(ddc fk)m ∧ γn−m − O(ε).
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Now let k → ∞ and as ε > 0 is arbitrary, we obtain

1
m!2

∫
f<g

(g − f )mddch1 ∧ ... ∧ ddchm ∧ γ
n−m +

∫
f<g

(c − h1)(ddcg)m ∧ γn−m

≤

∫
f≤g

(c − h1)(ddc f )m ∧ γn−m.

If we apply the last inequality to f + t instead of f and then letting t ↘ 0, we obtain the desired
result. �

Our main result in this paper is the following theorem where we give sufficient conditions combined
with the convergence in capacity Capm for a sequence of m−subharmonic functions fk to guarantee the
weak convergence of the Hessian measures (ddc fk)m∧γn−m. Such result generalizes well known results
in [7, 10]. It suffices to take m = n in our result to recover it.

Theorem 2. Let g ∈ S Hm(Ω) a bounded function on Ω \ E for some E b Ω. Assume that there is
fk ∈ S Hm(Ω) satisfying

(1) | fk| ≤ |g| in Ω for all k.
(2) There exists an m−subharmonic function f in Ω such that fk → f in Capm on each E b Ω.

Then the sequence of measures (ddc fk)m ∧ γn−m converges weakly to (ddc f )m ∧ γn−m in Ω.

Before giving the proof of the Theorem, we need to establish some intermediate lemmas.

Lemma 4. Let f1, f2, ..., fm ∈ S Hm(Ω) such that f1 is bounded in Ω and the functions f2, ..., fm are
bounded near ∂Ω. For every E b Ω there exists CE > 0 such that for all Borel subset G in E the
following estimate holds∫

G
ddc f1 ∧ ddc f2 ∧ ... ∧ ddc fm ∧ γ

n−m ≤ CE(Capm(G))
1

2m .

Proof. Without loss of generality we can assume that for all i, the functions fi can be written, near ∂Ω,
as follows

fi = αϕ(z) + β

where α > 0, β > 0 and ϕ is a defining function of Ω. Let G ⊂ E be a Borel subset and

fG(z) = sup{u(z) : u ∈ S Hm(Ω), u ≤ −1 on G, u < 0 on Ω}

and f ∗G the associated upper semicontinuous regularization of G defined by

f ∗G(z) = lim sup
ζ→z

fG(ζ).
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We have Capm(G) =
∫

Ω
(ddc f ∗G)m ∧ γn−m, limz→∂Ω f ∗G(z) = 0 and f ∗G = −1 on G \ M for some m−polar

set M, (see [7]). By the Cauchy-Schwarz inequality we obtain∫
G

ddc f1 ∧ ddc f2 ∧ ... ∧ ddc fm ∧ γ
n−m ≤

∫
Ω

− f ∗Gddc f1 ∧ ddc f2 ∧ ... ∧ ddc fm ∧ γ
n−m

=

∫
Ω

d f ∗G ∧ dc f2 ∧ ddc f1 ∧ ddc f3 ∧ ... ∧ ddc fm ∧ γ
n−m

≤ A
(∫

Ω

d f ∗G ∧ dc f ∗G ∧ ddc f1 ∧ ddc f3 ∧ ... ∧ ddc fm ∧ γ
n−m

) 1
2

= A
(∫

Ω

− f ∗Gddc f ∗G ∧ ddc f1 ∧ ddc f3 ∧ ... ∧ ddc fm ∧ γ
n−m

) 1
2

where

A =

(∫
Ω

d f2 ∧ dc f2 ∧ ddc f1 ∧ ddc f3 ∧ ... ∧ ddc fm ∧ γ
n−m

) 1
2

is a finite constant because of the bounded assumption of the function f1. By repeating the same
argument m − 1 more times we get∫

G
ddc f1 ∧ ddc f2 ∧ ... ∧ ddc fm ∧ γ

n−m ≤ AE

(∫
Ω

− f ∗G(ddc f ∗G)m ∧ γn−m

) 1
2m

≤ CE

(∫
Ω

(ddc f ∗G)m ∧ γn−m

) 1
2m

= CE(Capm(G))
1

2m

for some constant CE > 0. This proves the lemma. �

Lemma 5. Let f , g, h1, ..., hm−1 ∈ S Hm(Ω) bounded functions near ∂Ω and hm ∈ S Hm(Ω) ∩ L∞(Ω). If
lim inf

z→∂Ω
( f (z) − g(z)) ≥ 0 and the set { f < g} is open, then for any r ≥ sup

Ω

h1 one has

∫
f<g

(g − f )ddch1 ∧ ddch2 ∧ ... ∧ ddchm ∧ γ
n−m +

∫
f<g

(r − h1)ddcg ∧ ddch2 ∧ ... ∧ ddchm ∧ γ
n−m

≤

∫
f<g

(r − h1)ddc f ∧ ddch2 ∧ ... ∧ ddchm ∧ γ
n−m.

Proof. Without loss of generality, one can suppose that Ω is a m−hyperconvex domain and that there
exists a function ϕ defined on Ω such that

f = g = h1 = ϕ near ∂Ω.

Let { fk}, {g j} and {hl
1} be a sequence of continuous m−sh functions such that fk = g j = hl

1 = ϕ near ∂Ω

and fk → f as k → ∞, g j → g as j→ ∞ and hl
1 → h1 as l→ ∞. By Lemma 3 in [4] we get∫

fk<g j

(g j − fk)ddchl
1 ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m +

∫
fk<g j

(r − hl
1)ddcg j ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m

≤

∫
fk<g j

(r − hl
1)ddc fk ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m.
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If we let k → ∞ then by Fatou’s lemma we obtain∫
f<g j

(g j − f )ddchl
1 ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m +

∫
f<g j

(r − hl
1)ddcg j ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m

≤ lim inf
k→∞

∫
f<g j

(r − hl
1)ddc fk ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m.

Since

lim
k→∞

(r − hl
1)ddc fk ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m = (r − hl
1)ddc f ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m

weakly in Ω we obtain using Lemma 4 that

(r − hl
1)ddc fk ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m << Capm

for all k on each E b Ω. Hence ∀ε > 0,∃k0 > 0 such that

lim inf
k→∞

∫
f<g j

(r − hl
1)ddc fk ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m

≤ lim inf
k→∞

∫
fk0≤g j+ε

(r − hl
1)ddc fk ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m + ε

≤

∫
fk0≤g j+ε

(r − hl
1)ddc f ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m + ε.

As f ≤ fk0 and g ≤ g j and ε is arbitrary chosen, we obtain∫
f<g j

(g j − f )ddchl
1 ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m +

∫
f<g

(r − hl
1)ddcg j ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m

≤

∫
f≤g j

(r − hl
1)ddc f ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m.

By letting l→ ∞ and using the fact that

(g j − f )ddchl
1 ∧ ddch2 ∧ ... ∧ ddchm ∧ γ

n−m → (g j − f )ddch1 ∧ ddch2 ∧ ... ∧ ddchm ∧ γ
n−m

weakly in Ω when l→ ∞ we get∫
f<g j

(g j − f )ddch1 ∧ ddch2 ∧ ... ∧ ddchm ∧ γ
n−m +

∫
f<g

(r − h1)ddcg j ∧ ddch2 ∧ ... ∧ ddchm ∧ γ
n−m

≤

∫
f≤g j

(r − h1)ddc f ∧ ddch2 ∧ ... ∧ ddchm ∧ γ
n−m.

Now if we let j → ∞ and using the weak convergence of (r − h1)ddcg j ∧ ddch2 ∧ ... ∧ ddchm ∧ γ
n−m

combined with the Fatou lemma and the fact that the set { f < g} is supposed open, we get∫
f<g

(g − f )ddch1 ∧ ddch2 ∧ ... ∧ ddchm ∧ γ
n−m +

∫
f<g

(r − h1)ddcg ∧ ddch2 ∧ ... ∧ ddchm ∧ γ
n−m

≤

∫
f≤g

(r − h1)ddc f ∧ ddch2 ∧ ... ∧ ddchm ∧ γ
n−m.

To complete the proof it suffices to apply the previous inequality to f + t instead of f and then we take
t ↘ 0. �

AIMS Mathematics Volume 7, Issue 5, 9023–9038.



9033

Now we give the proof of the Theorem 2.

Proof. By hypothesis (1), we may assume without loss of generality that there exists a compact subset
K in Ω such that fk = g in Ω \ K for all k and g = fk = 0 on ∂Ω. We will assume by induction that the
current (ddc fk)l ∧ γn−m converges weakly to (ddc f )l ∧ γn−m in Ω for 1 ≤ l ≤ m− 1. Using Lemma 5, we
obtain that for any r > 0 and all k ∫

fk<−r
(− fk)(ddc fk)m−p ∧ γn+p−m

≤

∫
g<−r

(−g)(ddc fk)m−p ∧ γn+p−m

≤ 2
∫
g< −r

2

(−g −
r
2

)(ddc fk)m−p ∧ γn+p−m

≤ 2
∫
g< −r

2

(− fk)ddc
g ∧ (ddc fk)m−p−1 ∧ γn+p−m

≤ 2
∫
g< −r

2

−gddc
g ∧ (ddc fk)m−p−1 ∧ γn+p−m

≤ 22
∫
g< −r

22

−g(ddc
g)2 ∧ (ddc fk)m−p−2 ∧ γn+p−m

≤ ... ≤ 2m−p

∫
g< −r

2m−p

−g(ddc
g)m−p ∧ γn+p−m.

Hence we get that (−g)(ddcg)m−p∧γn+p−m � (ddcg)m−p∧γn+p−m � Capm on each E b Ω. So we obtain
that

(− fk)(ddc fk)m−p ∧ γn+p−m � Capm (∗)

on each E b Ω uniformly for all k.
Replacing f and fk by max( f ,−c) and max( fk,−c) respectively for a fixed constant c if necessary,

we can assume that both f and fk are locally uniformly bounded. So by assumption (1) and proposition
1 we get that for any ε > 0 the following writing hold

fk = fk,1 + fk,2 and f = f1 + f2

where f1 is a continuous function in Ω and fk,2 = f2 = 0 on Ω \U for someU ⊂ Ω with Capr(U) < ε.
Furthermore, for each E b Ω \U, one has that | fk,1 − f1| < ε on E for large value of k and the functions
fk,1, fk,2, f1 and f2 are bounded uniformly by a constant which does not depend on ε. If we consider
the following decomposition

fk(ddc fk)m−p ∧ γn+p−m − f (ddc f )m−p ∧ γn+p−m = ( fk,1 − f1)(ddc fk)m−p ∧ γn+p−m

+ f1((ddc fk)m−p − (ddc f )m−p) ∧ γn+p−m

+ ( fk,2(ddc fk)m−p − f2(ddc f )m−p) ∧ γn+p−m.

So the proof will be completed if we show that all three terms of the right hand side in the last
equality tend weakly to 0. For the third term its suffices to use (∗) to get that it tends to zero weakly
and uniformly for all k when ε goes to 0. Since we have∫

E
| fk,1 − f1|(ddc fk)m−p ∧ γn+p−m ≤ ε

∫
E\U

(ddc fk)m−p ∧ γn+p−m + sup
k
| fk,1 − f1|

∫
U

(ddc fk)m−p ∧ γn+p−m,
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and (ddc fk)m−p ∧ γn+p−m converges weakly to (ddc f )m−p ∧ γn+p−m by induction’s assumption we deduce
that the first and the second term in the last equality also converges weakly to zero uniformly for all k
as ε→ 0. The result of the theorem follows. �

Remark 3. (1) Using the Theorem 2, we deduce that for all j

(r − h1)ddcg j ∧ ddch2 ∧ ... ∧ ddchm ∧ γ
n−m << Capm

on every subset E b Ω. Then we can deduce that the assumption “the set { f < g} is open” in
Lemma 5 is superfluous. This implies that the Lemma 5 is an improved version of Lemma 3.

(2) The assumptions in the Theorem 2 can be replaced by the monotically convergence of fk towards
f for f , fk ∈ S Hm(Ω) ∩ L∞(Ω \ E).

Theorem 3. Let f j ∈ Bm(Ω) and f ∈ S Hm(Ω) ∩ L∞loc(Ω). The following assertions hold

(1) If f j → f in Capm−1 in every E b Ω then for all h in Bm(Ω) one has that h(ddc f j)m ∧ γn−m

converges weakly to h(ddc f )m ∧ γn−m.
(2) If for every E b Ω one has f j → f in Capm then for every ξ ∈ C∞0 (Ω) we have that

∫
Ω
ξh(ddc f j)m∧

γn−m →
∫

Ω
ξh(ddc f )m ∧ γn−m uniformly for all h in Bm(Ω).

(3) If f j → f in Capm on each E b Ω and h j ∈ Bm(Ω) converges weakly to h ∈ Bm(Ω), then
h j(ddc f j)m ∧ γn−m converges weakly to h(ddc f )m ∧ γn−m in Ω.

Proof. To prove the assertion (1), it remains to show, by induction, that for each k 6 m, (ddc f j)k ∧ γn−m

tends weakly to (ddc f )k∧γn−m. The case for k = 1 is obvious since the convergence assumption implies
that f j → f in L1

loc(Ω). Hence, it follows that ddc f j ∧ γ
n−m converges weakly to ddc f ∧ γn−m. Assume,

by induction, that it is true for all k = q < m and we have to show that f j(ddc f j)q ∧ γn−m converges
weakly to f (ddc f )q ∧ γn−m and by taking the operator ddc we will obtain the required statement for
k = q + 1. Let ε > 0, the function f can be written as f = h1 + h2 on Ω, where h1 is continuous, h2 = 0
outside an open subset U ⊂ Ω with capm(U) < ε, and the supremum norm of h2 depends only on the
function h. We have

f j(ddc f j)q ∧ γn−m − f (ddc f )q ∧ γn−m = ( f j − f )(ddc f j)q ∧ γn−m

+ h2

[
(ddc f j)q ∧ γn−m − (ddc f )q ∧ γn−m

]
+ h1

[
(ddc f j)q ∧ γn−m − (ddc f )q ∧ γn−m

]
= A1 + A2 + A3.

The inductive assumption gives that A3 converges to 0 in the sense of currents. On the other hand, it is
easy to check that

(ddc f j)q ∧ γm−q−1 ∧ γn−m+1 6
(
ddc( f j + |z|2)

)m−1
∧ γn−m+1.

The last term is dominated by a constant, independent on j, multiplied by Capm. Hence using the
convergence assumption we obtain that A1 converges in the sense of currents to 0. Now since h2 = 0
outside U, then A2 makes arbitrarily small mass for all j by choosing ε small enough. Hence we have
obtained the weak convergence of f j(ddc f j)q ∧ γn−m to f (ddc f )q ∧ γn−m. To finish the proof of the
assertion (1) it suffices to use the quasicontinuity of the function h to get the desired result.
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To prove (2), thanks to the assertion (1) we have that (ddc f j)m ∧ γn−m → (ddc f )m ∧ γn−m weakly
in Ω and hence we may assume that Bm(Ω) = { f ∈ S Hm(Ω); 0 < f < 1}. Let ξ ∈ C∞0 (Ω) a test
function. Changing the values of f j and f near ∂Ω, we can suppose that there exists a subset E such
that supp ξ b E and f j = f in Ω \ E. It follows that for every ε > 0 and all h in Bm(Ω), an integration
by parts yields ∫

Ω

ξh((ddc f j)m − (ddc f )m) ∧ γn−m

=

∫
E∩{| f j− f |<ε}

( f j − f )ddc(ξh) ∧ (Σm−1
k=0 (ddc f j)k ∧ (ddc f )m−1−k) ∧ γn−m

+

∫
E∩{| f j− f |≥ε}

( f j − f )ddc(ξh) ∧ (Σm−1
k=0 (ddc f j)k ∧ (ddc f )m−1−k) ∧ γn−m

:= Aε, j + Bε, j .

Let ξ ∈ C∞0 (Ω) and C1 a constant sufficiently large satisfying ξ = (ξ + C1|z|2) − C1|z|2 := ξ1 − ξ2,
where 0 ≤ ξ1, ξ2 ∈ S Hm(Ω) ∩ L∞(Ω). For the cases k = 1 and k = 2 we get that 2ddc(ξkh) =

ddc((ξk + h)2) − ddc(h2) − ddc(ξ2
k ). It follows that there exists a constant C2 that does not depend on ε

and j ∈ N such that
| Aε, j(ξ) |≤| Aε, j(ξ1) | + | Aε, j(ξ2) |≤ C2Capm(E)ε

and
| Bε, j(ξ) |≤| Bε, j(ξ1) | + | Bε, j(ξ2) |≤ C2Capm(E ∩ {| f j − f | > ε})→ 0

as j→ ∞. This gives that ∫
Ω

ξh(ddc f j)m ∧ γn−m →

∫
Ω

ξh(ddc f )m ∧ γn−m

as j→ ∞ uniformly in Bm(Ω).
For the assertion (3) we have

h j(ddc f j)m ∧ γn−m − h(ddc f )m ∧ γn−m

= h j((ddc f j)m − (ddc f )m) ∧ γn−m + (h j − h)((ddc f )m

− (ddcus)m) ∧ γn−m + (h j − h)(ddcus)m ∧ γn−m =: A + B + C

where us are smooth m−sh functions decreasing to f . Using the assertion (2) the term B goes weakly
to zero as s → ∞ uniformly for all j. Hence if s is a constant sufficiently large we get that both A and
C converge weakly to zero as j→ ∞. So the assertion (3) follows. �

Using Theorem 3, one can get that the convergence with respect to the Lebegue measure of a
sequence of m−sh functions f j implies the weak convergence of f j with respect to any measure that
has nos mass on every m−polar sets.

Corollary 1. If ν is a locally finite measure, fk a sequence of m−sh functions in Ω and f0 ∈ S Hm(Ω) ∩
L1

loc(Ω, ν) satisfying the following assumptions.

i) For every m−polar set A ⊂ Ω one has ν(A) = 0.
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ii) For all k ∈ N, | fk| ≤ | f0|.

iii) For every E b Ω,
∫

E
| f j − f | dλ→ 0.

Then
∫

E
| fk − f | dν→ 0 as k → ∞ on any E b Ω.

Proof. Without loss of generality we may assume that for every z ∈ Ω; fk(z) < 0 and f (z) < 0. Using
hypothesis i) it suffices to show that

∀ζ ∈ C∞0 (Ω), lim
k→+∞

∫
Ω

ζ fkdν =

∫
Ω

ζ f dν.

For ζ ∈ C∞0 (Ω), one has the following the following writing∫
Ω

ζ fkdν −
∫

Ω

ζ f dν

=

∫
Ω

ζ( fk −max( fk,−s))dν +

∫
Ω

ζ(max( fk,−s) −max( f ,−s))dν +

∫
Ω

ζ(max( f ,−s) − f )dν

≤ 2.max | ζ |
∫

suppζ∩{ f0<−s}
− f0dν +

∫
Ω

ζ(max( fk,−s) −max( f ,−s))dν.

As lim
s→+∞

max | ζ |
∫

suppζ∩{ f0<−s}
− f0dν = 0 then∫

Ω

ζ fkdν −
∫

Ω

ζ f dν ≤
∫

Ω

ζ(max( fk,−s) −max( f ,−s))dν.

On the other hand, using Theorem 5.3 in [6] there exists α ∈ S Hm(Ω) ∩ L∞(Ω) and
h ∈ L1(Ω, (ddcα)m ∧ γn−m) such that h ≥ 0 and 1lsuppζdν = h(ddcα)m ∧ γn−m. So for every ε > 0 there
exists s, j > 0 such that

|

∫
Ω

ζ fkdν −
∫

Ω

ζ f dν|

≤ |

∫
Ω

ζ min(h, j)(max( fk,−s) −max( f ,−s))(ddcα)m ∧ γn−m| + ε.

So one can take g ∈ C(Ω) such that
∫

suppζ
|min(h, k) − g|(ddcα)m ∧ γn−m < ε

s . it follows that

|

∫
Ω

ζ fkdν −
∫

Ω

ζ f dν|

≤ |

∫
Ω

ζg(max( fk,−s) −max( f ,−s))(ddcα)m ∧ γn−m| + (2 max | ζ | +1)ε.

The last integral tends to 0 when k → ∞ by Theorem 3. Therefore the proof of the desired Theorem is
completed. �

In the following theorem we treat the converse sense. So we will prove that the convergence of
the hessian measure associated to a sequence of m−sh functions implies, under some conditions, the
convergence in capacity Capm for a such sequence.
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Theorem 4. Let ( f j) j ⊂ S Hm(Ω) ∩ L∞(Ω) be a sequence of locally uniformly bounded functions that
converges weakly to f ∈ S Hm(Ω). Assume that

(1) lim inf
z→∂Ω

( f j − f ) ≥ 0 uniformly for all j.

(2) There exists a positive measure dµ in Ω such that h(ddc f j)m ∧ γn−m converges weakly to hdµ in Ω

uniformly for all h ∈ S Hm(Ω) with 0 ≤ h ≤ 1.

Then (ddc f )m∧γn−m = dµ and f j → f in Capm on each E b Ω. Hence, if furthermore lim inf
z→∂Ω

( f− f j) ≥ 0

uniformly for all j then f j → f in Capm on Ω.

Proof. Let ϕ ∈ S Hm(Ω) such that 0 < ϕ < 1 and E b Ω. For every t > 0 one has∫
E∩{| f j− f |>t}

(ddcϕ)m ∧ γn−m ≤ Capm(E ∩ { f j > f + t}) +

∫
E∩{ f j< f−t}

(ddcϕ)m ∧ γn−m.

Using the quasicontinuity of m−sh functions and the Hartogs Lemma we get that Capm(E ∩ { f j >

f + t})→ 0 when j→ ∞. Hence, by the assumption (2) and Lemma 3 [4] we obtain∫
f j< f−t

(ddcϕ)m ∧ γn−m ≤
1
tm

∫
f j< f−t

( f − f j)m(ddcϕ)m ∧ γn−m

≤ m!2

tm

∫
f j< f−t

(ddc f j)m ∧ γn−m ≤
m!2

tm+1

∫
f j< f−t

(u − f j)(ddcϕ)m ∧ γn−m.

Take ε > 0, and F1 b F2 b Ω such that f j − f ≥ −ε in Ω \ F1 and { f j < f − t} b F1 for all j. Again
by the Hartogs Lemma and the quasicontinuity of m−sh functions we get that there exist j0 > 0 and
A ⊂ F2 with Capm(A) < ε such that ε + f (z) − f j(z) ≥ 0 in F2 \ A for all j ≥ j0. Let χ ∈ C∞0 (F2) such
that χ ≥ 0 and χ = 1 in F1. Since all the functions f j and f are uniformly bounded in F2, then for
j ≥ j0 ∫

f j< f−t
(ddc f j)m ∧ γn−m ≤

m!2

tm+1

∫
f j< f−t

( f − f j)(ddcϕ)m ∧ γn−m

≤

∫
F1\A

χ(ε + f − f j)(ddc f j)m ∧ γn−m + O(ε) ≤
∫

F2

χ( f − f j)(ddc f j)m ∧ γn−m + O(ε)

=

∫
F2

χ( f − f j)((ddc f j)m ∧ γn−m − dµ) +

∫
F2

χ( f − f j)dµ + O(ε).

Now using assumption (3) and Corollary 1, we obtain that the last two integrals go to zero when
j → ∞. Hence f j → f in Capm on each E b Ω. Then by [6], we get (ddc f )m ∧ γn−m = dµ and the
proof of the Theorem is complete. �

4. Conclusions

In this paper we have dealt with a problem related to the convergence of a sequence of complex
Hessian measures given by a sequence of m−subharmonic functions f j. By introducing some
conditions, we have shown that if f j converges in Capm then the associated sequence of measures
converges in the weak sense. In addition we have shown that the converse sense still true form some
particular classes of m−subharmonic functions. The established results in this paper may be useful
not only in the problem related to the convergence of the Hessian measure but also in the resolution of
the famous complex Hessian equations.
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