Research article Special Issues

Dispersive optical soliton solutions with the concatenation model incorporating quintic order dispersion using three distinct schemes

  • Received: 24 November 2023 Revised: 24 January 2024 Accepted: 01 February 2024 Published: 04 March 2024
  • MSC : 35C08, 35M86, 60H30

  • This paper addresses the new concatenation model incorporating quintic-order dispersion, incorporating four well-known nonlinear models. The concatenated models are the nonlinear Schrödinger equation, the Hirota equation, the Lakshmanan-Porsezian-Daniel equation, and the nonlinear Schrödinger equation with quintic-order dispersion. The model itself is innovative and serves as an encouragement for investigating and analyzing the extracted optical solitons. These models play a crucial role in nonlinear optics, especially in studying optical fibers. Three integration algorithms are implemented to investigate the optical solitons with the governing model. These techniques are the Weierstrass-type projective Riccati equation expansion method, the addendum to Kudryashov's method, and the new mapping method. The solutions obtained include various solitons, such as bright, dark, and straddled solitons. Additionally, the paper reports hyperbolic solutions and Weierstrass-type doubly periodic solutions. These solutions are novel and have never been reported before. Visual depictions of some selected solitons illustrate these solutions' dynamic behavior and wave structure.

    Citation: Elsayed M. E. Zayed, Mona El-Shater, Khaled A. E. Alurrfi, Ahmed H. Arnous, Nehad Ali Shah, Jae Dong Chung. Dispersive optical soliton solutions with the concatenation model incorporating quintic order dispersion using three distinct schemes[J]. AIMS Mathematics, 2024, 9(4): 8961-8980. doi: 10.3934/math.2024437

    Related Papers:

  • This paper addresses the new concatenation model incorporating quintic-order dispersion, incorporating four well-known nonlinear models. The concatenated models are the nonlinear Schrödinger equation, the Hirota equation, the Lakshmanan-Porsezian-Daniel equation, and the nonlinear Schrödinger equation with quintic-order dispersion. The model itself is innovative and serves as an encouragement for investigating and analyzing the extracted optical solitons. These models play a crucial role in nonlinear optics, especially in studying optical fibers. Three integration algorithms are implemented to investigate the optical solitons with the governing model. These techniques are the Weierstrass-type projective Riccati equation expansion method, the addendum to Kudryashov's method, and the new mapping method. The solutions obtained include various solitons, such as bright, dark, and straddled solitons. Additionally, the paper reports hyperbolic solutions and Weierstrass-type doubly periodic solutions. These solutions are novel and have never been reported before. Visual depictions of some selected solitons illustrate these solutions' dynamic behavior and wave structure.



    加载中


    [1] S. Backus, C. Durfee, G. Mourou, H. C. Kapteyn, M. M. Murnane, 0.2-TW laser system at 41 kHz, Opt. lett., 22 (1997), 1256–1258. http://doi.org/10.1364/OL.22.001256 doi: 10.1364/OL.22.001256
    [2] Y.-L. Ma, Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers, Nonlinear Dyn., 97 (2019), 95–105. http://doi.org/10.1007/s11071-019-04956-0 doi: 10.1007/s11071-019-04956-0
    [3] J. Vega-Guzman, M. F. Mahmood, Q. Zhou, H. Triki, A. H. Arnous, A. Biswas, et al., Solitons in nonlinear directional couplers with optical metamaterials, Nonlinear Dyn., 87 (2016), 427–458. http://doi.org/10.1007/s11071-016-3052-2 doi: 10.1007/s11071-016-3052-2
    [4] A. H. Arnous, Optical solitons to the cubic quartic Bragg gratings with anti-cubic nonlinearity using new approach, Optik, 251 (2022), 168356. http://doi.org/10.1016/j.ijleo.2021.168356 doi: 10.1016/j.ijleo.2021.168356
    [5] A. H. Arnous, A. Biswas, Y. Yildirim, L. Moraru, M. Aphane, S. Moshokoa, et al., Quiescent optical solitons with Kudryashov's generalized quintuple-power and nonlocal nonlinearity having nonlinear chromatic dispersion, Universe, 8 (2022), 501. http://doi.org/10.3390/universe8100501 doi: 10.3390/universe8100501
    [6] B.-Q. Li, Y.-L. Ma, Optical soliton resonances and soliton molecules for the Lakshmanan-Porsezian-Daniel system in nonlinear optics, Nonlinear Dyn., 111 (2022), 6689–6699. http://doi.org/10.1007/s11071-022-08195-8 doi: 10.1007/s11071-022-08195-8
    [7] Y.-L. Ma, B.-Q. Li, Novel optical soliton structures for a defocusing Lakshmanan-Porsezian-Daniel optical system, Optik, 284 (2023), 170931. http://doi.org/10.1016/j.ijleo.2023.170931 doi: 10.1016/j.ijleo.2023.170931
    [8] Y.-L. Ma, B.-Q. Li, Optical soliton resonances, soliton molecules to breathers for a defocusing Lakshmanan-Porsezian- Daniel system, Opt. Quant. Electron., 56 (2023), 151. http://doi.org/10.1007/s11082-023-05687-8 doi: 10.1007/s11082-023-05687-8
    [9] Y.-L. Ma, A.-M. Wazwaz, B.-Q. Li, Soliton resonances, soliton molecules, soliton oscillations and heterotypic solitons for the nonlinear Maccari system, Nonlinear Dyn., 111 (2023), 113327–113341. http://doi.org/10.1007/s11071-023-08529-0 doi: 10.1007/s11071-023-08529-0
    [10] Y.-L. Ma, B.-Q. Li, Soliton resonances for a transient stimulated Raman scattering system, Nonlinear Dyn., 111 (2022), 2631–2640. http://doi.org/10.1007/s11071-022-07945-y doi: 10.1007/s11071-022-07945-y
    [11] B.-Q. Li, Y.-L. Ma, A firewall effect during the rogue wave and breather interactions to the Manakov system, Nonlinear Dyn., 111 (2023), 1565–1575. http://doi.org/10.1007/s11071-022-07878-6 doi: 10.1007/s11071-022-07878-6
    [12] B.-Q. Li, Y.-L. Ma, Soliton resonances and soliton molecules of pump wave and Stokes wave for a transient stimulated Raman scattering system in optics, Eur. Phys. J. Plus, 137 (2022), 1227. http://doi.org/10.1140/epjp/s13360-022-03455-3 doi: 10.1140/epjp/s13360-022-03455-3
    [13] B.-Q. Li, Y.-L. Ma, Interaction properties between rogue wave and breathers to the manakov system arising from stationary self-focusing electromagnetic systems, Chaos, Soliton. Fract., 156 (2022), 111832. http://doi.org/10.1016/j.chaos.2022.111832 doi: 10.1016/j.chaos.2022.111832
    [14] B.-Q. Li, Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics, Appl. Math. Lett., 112 (2021), 106822. http://doi.org/10.1016/j.aml.2020.106822 doi: 10.1016/j.aml.2020.106822
    [15] A. R. Seadawy, A. H. Arnous, A. Biswas, M. Belic, Optical solitons with sasa-satsuma equation by F-expansion scheme, Optoelectron. Adv. Mater., Rapid Commun., 13 (2019), 31–36.
    [16] A. H. Arnous, M. S. Hashemi, K. S. Nisar, M. Shakeel, J. Ahmad, I. Ahmad, et al., Investigating solitary wave solutions with enhanced algebraic method for new extended Sakovich equations in fluid dynamics, Results Phys., 57 (2024), 107369. http://doi.org/10.1016/j.rinp.2024.107369 doi: 10.1016/j.rinp.2024.107369
    [17] Z. Li, L.Li, H. Tian, G. Zhou, New types of solitary wave solutions for the higher order nonlinear Schrödinger equation, Phys. Rev. Lett., 84 (2000), 4096. http://doi.org/10.1103/PhysRevLett.84.4096 doi: 10.1103/PhysRevLett.84.4096
    [18] H. Triki, F.Azzouzi, P. Grelu, Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms, Opt. Commun., 309 (2013), 71–79. http://doi.org/10.1016/j.optcom.2013.06.039 doi: 10.1016/j.optcom.2013.06.039
    [19] F. Azzouzi, H. Triki, K. Mezghiche, A. El Akrmi, Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrödinger equation, Chaos Soliton. Fract., 39 (2009), 1304–1307. http://doi.org/10.1016/j.chaos.2007.06.024 doi: 10.1016/j.chaos.2007.06.024
    [20] W. P. Hong, Optical solitary wave solutions for the higher order nonlinear Schrödinger equation with cubic-quintic non- Kerr terms, Optics Commun., 194 (2001), 217–223. http://doi.org/10.1016/j.geomphys.2022.104616 doi: 10.1016/j.geomphys.2022.104616
    [21] G. Xu, Extended auxiliary equation method and its applications to three generalized NLS equations, Abstr. Appl. Anal., 7 (2014), 541370. http://doi.org/10.1155/2014/541370 doi: 10.1155/2014/541370
    [22] E. M. E. Zayed, K. A. E. Alurrfi, Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations, Appl. Math. Comput., 289 (2016), 111–131. http://doi.org/10.1016/j.amc.2016.04.014 doi: 10.1016/j.amc.2016.04.014
    [23] E. M. E. Zayed, M. E. M. El-Ngar, A. G. Al-Nowehy, On solving the nonlinear Schrödinger equation with an anti-cubic nonlinearity in presence of Hamiltonian perturbation terms, Optik, 178 (2019), 488–508. http://doi.org/10.1016/j.ijleo.2018.09.064 doi: 10.1016/j.ijleo.2018.09.064
    [24] E. M. E. Zayed, K. A. E. Alurrfi, Solitons and other solutions for two nonlinear Schrödinger equations using the new mapping method, Optik, 144 (2017), 132–148, http://doi.org/10.1016/j.ijleo.2017.06.101 doi: 10.1016/j.ijleo.2017.06.101
    [25] E. M. E. Zayed, A. G. Al-Nowehy, Many new exact solutions to the higher-order nonlinear Schrödinger equation with derivative non Kerr nonlinear terms using three different techniques, Optik, 143 (2017), 84–103. http://doi.org/10.1016/j.ijleo.2017.06.025 doi: 10.1016/j.ijleo.2017.06.025
    [26] X. Zeng, X. Yong, A new mapping method and its applications to nonlinear partial differential equations, Phys. Lett. A, 372 (2008), 6602–6607. http://doi.org/10.1016/j.physleta.2008.09.025 doi: 10.1016/j.physleta.2008.09.025
    [27] E. M. E. Zayed, M. E. M. Alngar, A. Biswas, Y. Yildirim, M. Ekici, H. M. Alshehri, et al., Cubic–quartic solitons in couplers with optical metamaterials having parabolic law nonlinearity, Optik, 247 (2021), 167960. http://doi.org/10.1016/j.ijleo.2021.167960 doi: 10.1016/j.ijleo.2021.167960
    [28] K. A. Gepreel, E. M. E. Zayed, M. E. M. Alngar, New optical solitons perturbation in the birefringent fibers for the CGL equation with Kerr law nonlinearity using two integral schemes methods, Optik, 227 (2021), 166099. http://doi.org/10.1016/j.ijleo.2020.166099 doi: 10.1016/j.ijleo.2020.166099
    [29] T. A. Nofal, E. M. E. Zayed, M. E. M. Alngar, R. M. A. Shohib, M. Ekici, Highly dispersive optical solitons perturbation having Kudryashov's arbitrary form with sextic-power law refractive index and generalized non-local laws, Optik, 228 (2021), 166120. http://doi.org/10.1016/j.ijleo.2020.166120 doi: 10.1016/j.ijleo.2020.166120
    [30] N. A. Kudryashov, Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation, Optik, 206 (2020), 164335. http://doi.org/10.1016/j.ijleo.2020.164335 doi: 10.1016/j.ijleo.2020.164335
    [31] E. M. E. Zayed, A. H. Arnous, A. Secer, M. Ozisik, M. Bayram, N. Ali Shah, et al., Highly dispersive optical solitons in fiber Bragg Gratings for stochastic Lakshmanan-Porsezian-Daniel equation with spatio-temporal dispersion and multiplicative white noise, Results Phys., 55 (2023), 107177. http://doi.org/10.1016/j.rinp.2023.107177 doi: 10.1016/j.rinp.2023.107177
    [32] A. H. Arnous, M. Mirzazadeh, M. S. Hashemi, N. Ali Shah, J. D. Chung, Three different integration schemes for finding soliton solutions in the (1+1)-dimensional Van Der Waals gas system, Results Phys., 55 (2023), 107178. http://doi.org/10.1016/j.rinp.2023.107178 doi: 10.1016/j.rinp.2023.107178
    [33] E. M. E. Zayed, R. M. A. Shohib, M. E. M. Alngar, A. Biswas, Y. Yildirim, A. Dakova, et al., Optical solitons in the Sasa-Satsuma model with multiplicative noise via Ito calculus, Ukr. J. Phys. Opt., 23 (2022), 9–14.
    [34] N. Sirendaoreji, Unified Riccati equation expansion method and its application to two new classes of Benjamin–Bona–Mahony equations, Nonlinear Dyn., 89 (2017), 333–344. http://doi.org/10.1007/s11071-017-3457-6 doi: 10.1007/s11071-017-3457-6
    [35] C. Xiang, Jacobi elliptic function solutions for (2+1)-dimensional Boussinesq and Kadomtsev-Petviashvilli equation, Appl. Math, 2 (2011), 1313–1316. http://doi.org/10.4236/am.2011.211183 doi: 10.4236/am.2011.211183
    [36] N. A. Kudryashov, First integral and general solution of traveling wave reduction for the Triki–Biswas equation, Optik, 185 (2019), 275–281. http://doi.org/10.1016/j.ijleo.2019.03.087 doi: 10.1016/j.ijleo.2019.03.087
    [37] N. A. Kudryashov, A generalized model for description pulses in optical fiber, Optik, 189 (2019), 42–52. http://doi.org/10.1016/j.ijleo.2019.05.069 doi: 10.1016/j.ijleo.2019.05.069
    [38] N. A. Kudryashov, Traveling wave solutions of the generalized nonlinear Schrödinger equation with cubic–quintic nonlinearity, Optik, 188 (2019), 27–35. http://doi.org/10.1016/j.ijleo.2019.05.026 doi: 10.1016/j.ijleo.2019.05.026
    [39] N. A. Kudryashov, General solution of the traveling wave reduction for the Kundu–Mukherjee–Naskar model, Optik, 186 (2019), 22–27. http://doi.org/10.1016/j.ijleo.2019.04.072 doi: 10.1016/j.ijleo.2019.04.072
    [40] N. A. Kudryashov, General solution of the traveling wave reduction for the Chen–Lee–Liu equation, Optik, 186 (2019), 339–349. http://doi.org/10.1016/j.ijleo.2019.04.127 doi: 10.1016/j.ijleo.2019.04.127
    [41] N. A. Kudryashov, Traveling wave solutions of the generalized nonlinear Schrödinger equation with cubic-quintic, Optik, 186 (2019), 27–35. http://doi.org/10.1016/j.ijleo.2019.05.026 doi: 10.1016/j.ijleo.2019.05.026
    [42] N. A. Kudryashov, First integrals and general solution of the Fokas–Lenells equation, Optik, 195 (2019), 163135. http://doi.org/10.1016/j.ijleo.2019.163135 doi: 10.1016/j.ijleo.2019.163135
    [43] R. Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14 (1973), 805–809.
    [44] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, Rogue waves and rational solutions of the Hirota equation, Phys. Rev. E, 81 (2010), 046602. http://doi.org/10.1103/PhysRevE.81.046602 doi: 10.1103/PhysRevE.81.046602
    [45] A. Maccari, A generalized Hirota equation in 2+1 dimensions, J. Math. Phys., 39 (1998), 6547–6551.
    [46] H. Triki, F. Azzouzi, A. Biswas, S. P. Moshokoa, M. Belic, Bright Optical Solitons With Kerr law Nonlinearity and Fifth Order Dispersion, Optik, 128 (2017), 172–177. http://doi.org/10.1016/j.ijleo.2016.10.026 doi: 10.1016/j.ijleo.2016.10.026
    [47] A. Chowdury, D. J. Kedziora, A. Ankiewicz, N. Akhmediev, Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy, Phys. Rev. E, 91 (2015), 032928. http://doi.org/10.1103/PhysRevE.91.032928 doi: 10.1103/PhysRevE.91.032928
    [48] A. Chowdury, D. J. Kedziora, A. Ankiewicz, N. Akhmediev, Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms, Phys. Rev. E, 91 (2014), 032922. http://doi.org/10.1103/PhysRevE.90.032922 doi: 10.1103/PhysRevE.90.032922
    [49] A. Chowdury, D. J. Kedziora, A. Ankiewicz, N. Akhmediev, Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions, Phys. Rev. E, 91 (2015), 022919. http://doi.org/10.1103/PhysRevE.91.022919 doi: 10.1103/PhysRevE.91.022919
    [50] A. Ankiewicz, N. Akhmedie, Higher-order integrable evolution equation and its soliton solutions, Phys. Lett. A, 378 (2014), 358–361. http://doi.org/10.1016/j.physleta.2013.11.031 doi: 10.1016/j.physleta.2013.11.031
    [51] A. H. Arnous, A. Biswas, A. H. Kara, Y. Yildirim, L. Moraru, C. Iticescu, et al., Optical Solitons and Conservation Laws for the Concatenation Model with Spatio-Temporal Dispersion (Internet Traffic Regulation), J. Eur. Opt. Society-Rapid Publ., 19 (2023), 35. http://doi.org/10.1051/jeos/2023031 doi: 10.1051/jeos/2023031
    [52] A. H. Arnous, A. Biswas, A. H. Kara, Y. Yildirim, L. Moraru, C. Iticescu, et al., Optical Solitons and Conservation Laws for the Concatenation Model: Power-Law Nonlinearity, Ain Shams Eng. J., 15 (2023), 102381. http://doi.org/10.1016/j.asej.2023.102381 doi: 10.1016/j.asej.2023.102381
    [53] N. Sirendaoreji, A method for constructing Weierstrass elliptic function solutions and their degenerated solutions of the mKdV equation, 2022, arXiv: 2210.03302v1. http://doi.org/10.48550/arXiv.2210.03302
    [54] E. M. E. Zayed, A. H. Arnous, A. Biswas, Y. Yildirim, A. Asiri, Optical solitons for the concatenation model with multiplicative white noise, J. Opt., 2023. http://doi.org/10.1007/s12596-023-01381-w
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(767) PDF downloads(70) Cited by(4)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog