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Abstract: This paper addresses the new concatenation model incorporating quintic-order dispersion,
incorporating four well-known nonlinear models. The concatenated models are the nonlinear
Schrodinger equation, the Hirota equation, the Lakshmanan-Porsezian-Daniel equation, and the
nonlinear Schrodinger equation with quintic-order dispersion. The model itself is innovative and serves
as an encouragement for investigating and analyzing the extracted optical solitons. These models play
a crucial role in nonlinear optics, especially in studying optical fibers. Three integration algorithms
are implemented to investigate the optical solitons with the governing model. These techniques are
the Weierstrass-type projective Riccati equation expansion method, the addendum to Kudryashov’s
method, and the new mapping method. The solutions obtained include various solitons, such as bright,
dark, and straddled solitons. Additionally, the paper reports hyperbolic solutions and Weierstrass-type
doubly periodic solutions. These solutions are novel and have never been reported before. Visual
depictions of some selected solitons illustrate these solutions’ dynamic behavior and wave structure.
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1. Introduction

Different dispersion characteristics can be designed into modern optical fibers. Thus, it is not as
absurd as it might first appear to think that some predictions might allow for experimental
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confirmations. Realistically, when pulses are near 20 ps in length, fifth-order concatenation model
dispersion does affect current laser studies [1]. A universal paradigm for modelling wave dynamics in
many nonlinear systems is the nonlinear Schrodinger equation (NLSE). The only two terms in the
NLSE that permit bright and dark soliton-type pulse propagation in anomalous and normal dispersion
regimes for picosecond light pulses are the self-phase modulation and the group velocity dispersion
(GVD), which are well-known in the fiber [2-5]. For instance, the y° nonlinearity (cubic-quintic
medium) should be included in the NLSE at high light intensities. Be aware that semiconductor
double-doped optical fibers can realize the competing cubic-quintic nonlinearity. Additionally, it has
been shown that higher-order effects in nonlinear media become significant for pulses shorter than
100 femto-seconds.

The study of solitons in nonlinear models has become increasingly common in engineering and
science, emerging as a dynamic and quickly advancing field of research. Researchers from different
fields have investigated this area of study in recent years, leading to its rapid growth and progress. The
NLSE describes the behavior of optical solitons in optical fiber. This equation is considered integrable,
meaning it can be solved exactly. It is worth noting that different dispersion regions give rise to distinct
types of optical solitons. The NLSE-types are formulated as a theoretical framework within the field
of quantum mechanics. This model has become one of the most widely used to study solitons in
different media types, such as plasma, water waves, and optical fibers. Multiple governing models can
be utilized to investigate the transmission of solitons across optical fibers. However, there has been
a recent development in this specific field that involves combining existing models to construct new
structures for efficiently controlling the flow of solitons over vast distances between continents [6—16].

Note that the NLSE with higher order elements has undergone substantial numerical and
theoretical study [17-20], making it a model with physical importance. Having optical soliton
solutions is the most crucial aspect of nonlinear science. There are numerous schemes created by
authors, such as the extended auxiliary equation method [21,22], new mapping method [23-26], an
addendum to Kudryashov’s method [27-30], the enhanced Kudryashov’s method [31, 32], unified
Riccati equation expansion method [33, 34], unified Auxiliary equation [33], Jacobi elliptic function
method [35], and so on. However, because of the unique differential equation structure, the previously
successful method of constructing exact solutions using the logistic function is insufficiently effective
in constructing the optical solitons that are defined by generalized Schrédinger equations [36—42].

In dimensionless form, the quintic operator, Lakshmanan-Porsezian-Daniel operator [6—8], Hirota
operator [43—45], and nonlinear Schrodinger operator are four well-known nonlinear models that make
up the fifth-order concatenation model. The notation for this concatenation model is [46—52]:

lgx + %C[n + |‘I|2 q-Lla (Clm +6 |Q|2 CI:)

+7 (qun + 81qP g + 6qlgI* + 4qlq.” + 647" + 24°q) (L.1)

=10 (g + 10 |CI|2 qu + 30 |‘I|4 9: + 1099.q,, + 109°q:q. + 2094, 9.« + 10q12q;k] =0,
where g(x, t) is a complex envelope of the waves; ¢*(x, ) is the complex conjugate; x is the propagation
variable, and # is the transverse variable; (> = —1; and «, ¥, and § are non-zero constants. The coefficient
of « is the Hirota operator, the coefficient of vy is the Lakshmanan-Porsezian-Daniel (LPD) operator,
and the coefficient of ¢ is the quintic operator. If @ = y = 6 = 0, then Eq (1.1) can be reduced to the
standard NLSE which describes the propagation of picosecond pulses in optical fibers. If y = 6 = 0,
then Eq (1.1) can be reduced to the Hirota equation. If « = 6 = 0, then Eq (1.1) can be reduced to
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the LPD equation. If @« = y = 0, then Eq (1.1) can be reduced to quintic NLSE. Eq (1.1) has been
discussed in [46] when a,7y, and 6 are non-zero constants using the ansatz approach. The authors
have found just one solution, via bright soliton. Equation (1.1) has also been discussed in [50] when
0 = 0 and in [48] when @ = y = 0. In this paper, Eq (1.1) is solved when the parameters «,,
and ¢ are non-zero constants. The novelty of Eq (1.1) is unique because it is a combination of four
well-known equations that describe the propagation of soliton dynamics through optical fibers across
inter-continental distances. Equation (1.1) with @, y, and ¢ as non-zero constants is also unique in the
sense that all the perturbations and dispersive effects describe the soliton propagations dynamics.

The following is the organization of this project: In Section 2, the governing model is provided.
Section 3 introduces the mathematical analysis. The fifth-order concatenation model (1.1) is solved in
Section 4 by the Weierstrass type projective Riccati equation expansion method. Using the Kudryashov
method addendum, we solve the fifth-order concatenation model (1.1) in Section 5. Using the new
mapping strategy, we solve the fifth-order concatenation model (1.1) in Section 6. Several numerical
simulations that were obtained are shown in Section 7. Section 8 presents the conclusions.

2. Mathematical analysis of the governing equation

For solving Eq (1.1), set
q(x.1) = @(€) TN £=1 -V, 2.1)

where w is the wave number, 6, is the phase constant, V' is the shift of the soliton’s inverse group
velocity, and « is the soliton frequency. The shape of the pluse is represented by ¢(£), which is a
valued function of &, where € is the traveling coordinate. Plugging (2.1) into Eq (1.1) with the real and
imaginary parts separated, we have the ordinary differential equation (ODE):

(v + 56w)e™ (&) + (3 + 3aw — 6yw? — 106w*)¢” (&) - (%wz — Kk + aw® -yt - 6w5) @ (&)
+(1 + 62w — 12yw* = 2060°)¢* (€) + 6(y + 56w)¢’ (£) + 10(y + S6w)¢” (£) ¢ (£) (2.2)
+10(y + 56w)p () ¢ (£)] = 0,

and
590(5) &)+ (@ —4yw — 10(50)2)90"' é - (w-V+ 3aw? - 4)/1(1)3 - 560)4)90’ &)
+6(a — dyw — 106w*)@* (€) ¢’ (€) + 306¢* (&) ¢’ (£) + 106¢* (£) ¢ (&) (2.3)
+406¢ (£) ¢’ (&) ¢ (€) + 106¢" (£) = 0.

Integrating (2.2) with zero constant of integration, we get:

oW (&) + (a — dyw — 106" (€) — (w = V + 3aw? — dyw? — 56w*)p (¢)

#2(a — 4yw - 10066 (€) + 65¢° () + 10662 ()¢ () + 108 @ g2 ©) = 0. Y
Equations (2.2) and (2.4) are equivalent if the following conditions are satisfied:
v+S5w6 =9
% +230zw — 6yw? - 106w* = a — 4yw — 106w? 2.5)

w? — k+ aw’ —yw* - 60’ = w -V + 3aw? - 4yw? - S6w*

1
2
1 + 60w — 12yw? — 206w* = 2(a — 4yw — 106w?).
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We obtain
_ oy
w_15_68 40w?(3y-56)-206w>
_ 14+8yw—-4w”(3y-56)-206w
@ = 2(1-3w) (2.6)

V=k+w+@Ba-Ho? - 4y + 0)o’ + (y - 56)w* — 6w,

provided w # % Equation (2.2) can be written in the form:

D)+ A1g” (&) + 1007 (£) " (€) + 100 (£) 97 (€) = Mo () + A3’ () + 6¢° (6) =0, (2.7)

where
% +3aw-6yw?-106w’

Ay = ,

y+56w
Ay = %a)z—K+aw3—yw4—6w5
2 = ’
y+50w 2
Ax = (1+6aw—12yw?—206w>) ( 8)
3= y+50w >
v+ 50w # 0.

provided 0 # 0,0 # v, w # % Let us now solve the ODE (2.7) using the following three mathematical
methods, the Weierstrass type projective Riccati equation expansion method, an addendum to
Kudryashov’s method, and the new mapping approach.

3. Weierstrass type projective Riccati equation expansion method

To apply the Weierstrass method [53,54] to Eq (2.7), we first balance ¢ (&) with ¢’ (€) to get the
balance number n = 1. The solution of Eq (2.7) is:

@) =ao+aF(&)+bG (&), (3.1)

where ay, a;, and b, are constants that need to be found, af + bf # 0; and F (¢) and G (¢) are solutions
of the projective Riccati equations

F'(¢) = pFOG®),
G' &) = q+pGi&—-rFE) (3.2)

such that p, g, and r are constants. Weierstrass elliptic solutions to Eqgs (3.2) are known in reference
[53]. They are as follows:

Set 1: )
F(f) = 6% + p_rSO(é:’ 82, g3)’
_ __12¢0'($,82.83)
G = p[pq+12s0(fz,gzs,g3)]’ 3.3)
G(&) = -+ LF(©).
Set 2:

_5¢ , __5¢p
F(f) = or + 27r(€,82,83)°

G(¢) = —q9’(£.82,83) (3.4)

[gp+129(£,82,83)19(£.82.83)°

GX¢) = -4+ ZF(#) - ZF (),

25pq
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Set 3:

_ 2+9)lpg+129(£.82.83)]
F) = 12p+pg+129(£,82,83)1°

G(f) _ 9’ (£,82,83) s (35)

(9(&.82.83)+5+E2 -1

G =L+ ZFE) - ;(;q:z‘;; F2(é),

where g, and g3, the invariants, are provided by

re . _ra (3.6)

Furthermore, the Weierstrass function (g) satisfies the relations

50(5’ 12° 216 =1 —sechz( \/_f) 6> 0,

12

_ 2,V
0 5 12° 216) £ + Yesch’(5526),60 > 0,

(3.7)
0, G~ = & - 2 secr (Vo). 0 < 0,
P& L -2y = L~ 8escX( ‘/_g) 6 < 0.

Type 1: Add Egs (3.1), (3.2), and (3.3) to Eq (2.7); collect each coefficient of F'(£)G/ (&)
(i=1,.,5,j=0,1); and then set them to zero, then we have the following algebraic equations:
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F3(é) : 6a; =0,
F4¢&) : 50a; pr + 30apay + l%b%a?r =0,
F€) : 307 pa = 20pgay + 60ray(pagay + rb}) + 90r°a, b}
+ 20praga’ + Agal 60b¢ alq +60a (2) ? + 360b2paoa2r N 120b42a1r2

F(&) : —=15rp*qa; + 3Aa,pr — 4qua1b2 + 20ga, (paga; + rb2)

=0,

6b% air

+ 3()a1r(pao qbz) + 50r aob2 - 10pqa0a + A3(3a0a +

180aob?a? 120ba;r 360b3adarr | 120b}agr?
— —1 4 60aia® — p2q+ 4 = =0,

p
Fé): p q a; + Aapg — 20qra0b - IOqal(paO qbz)
" A3(3(11(10 6b? jaor ’)b a1q) AQ a + 30bp121|q _ 180bpa 041q + 30(13(11
_ 120bfagrq | 120b%adr _ (3.8)
" N ! -0 30b%apg®  60b%alq
Fo(f) A3a0 + 3610[9 q-— Mragy + ;72 - 117 =+ 6(15 =0,
bIA
FU&GE) : — A 3A3agb1 Arbq + %(szag 10pqa0b2 + q2b4) =

F&GE): —p qrb1 + A prby — 10b,(2pgapa, — praO + qrb%) + 6A3a0a1b1
283b3r

P 24b1 = (5p? Cloal Sanomb% + Spra%b% - qrb‘l‘) ~0
FA)GE) : 6P21’2b1 20[71([751611 —4prapa, — rzb%) - 10pqafb1 + 20prapa, b
+ 10r2b? + %(ISpZaga% — 5pqaib} + 20praga;b? + 2r*b) = 0
F3(§)G(§) : 110rpa%bl n 120a2b,
FY&)G(&) : 30ath, = 0.

)

(paga; + rb%) =0

Using Maple to solve the algebraic Eqgs (3.8) yields:

ag = 0,a1 0 b] (39)

6

\/ 3p( VA3 + 24A2 - A3)

provided pg( Az + 24A; — A3) < 0,(As + 24A;) > 0. Substituting (3.9), (3.3) into Eq (3.1) by using
(2.1) we derive the travelling wave solution of the Weierstrass type of Eq (1.1) as:

(3.10)

ree 06 _ 6
o = \/—3( Vo 28 ) 295 f)

provided g(vA; + 24A, — A3) < 0. By substituting the conversion formula (3.7) with 6 = —pgq into
Eq (3.10), the dark soliton solution is:

g (x,1) = % \/3p( VA, + 247, — A3) tanh [—“;’”](z - Vx)] QoK) G3.11)

and the singular soliton solution:
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Figure 1. Visual depiction of the straddled soliton solution (3.11).

4 (3, 1) = % \/3p( VAs + 247, — A3) coth [—V;pq(z - Vx)] oK) (3.12)

provided pg < 0, p( A3 + 24A, — A3) > 0.
Type 2: Substite Egs (3.1), (3.2), and (3.4) into Eq (2.7); collect each coefficient of F' (&) G’ (¢)
i=1,.,5j=0,1); set them to zero. Then, we get these algebraic equations, we can solve with

Maple, to get
S¢ 8re f—6A1 —16A,
= — +/—6A s - —_— ’b :O, = y 3.13
ao 18 1,41 15 4 1 p 9 ( )

provided A; < 0,g > 0, € = 1. Substituting Eqs (3.13) and (3.4) into Eq (3.1), the following
Weierstrass type travelling wave solution is obtained:

gl ==

—6A, [_ 5, A

L(—kx+wt+6p)
e s (3.14)
18 ﬂma%—%n]
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where g, and g3, the invariants, are provided by

6442 512A)
243 °5 7 T19683

g = (3.15)

Substituting the conversion formula (3.7) with 6 = —pg = 16A‘

solitary wave solutions:

into Eq (3.14), we get the following

V=6A 32A
g(x,n = X221 e ! e, (3.16)
27| B + Blsech’(~ q(t - Vx))]
—6A 32A
g(en="3Y21 |3+ ! g Ems), (3.17)
27|72 — Beseh® (NP ¢ - Vx))]

provided A < 0,p < 0,e = £1.

Type 3: Substite Egs (3.1), (3.2), and (3.5) into Eq (2.7); collect every coeflicient of F' (&) G/ (¢)
(i=1,.,57j=0,1), and then set them to zero. Then, we get these algebraic equations that we can
solve using Maple to obtain:

= g\/—3( VA3 +24A; - A3),a) = %,bl = 0. (3.18)

Substituting Eqs (3.18) and (3.5) into Eq (3.1), the following Weierstrass type travelling wave
solution is obtained:

+Dlpg + 129(&, 3, 1 ,
& (Va2 - a o YRR 20E 932‘]6) (3 19)

q(x,1) =

where (VA3 + 24A; — A3) < 0,(A; + 24A;) > 0, p > 0, and € = +1. Substituting the conversion
formula (3.7) with 8 = —pgq into Eq (3.19), we get the following straddled soliton solutions:

g+ 4)sech2(—V‘pq(t . Vx))—
(l VX))

et(—Kx+wt+90)’ (320)

01 ) = | S Br= 208; - gy - L

4 + gsech?(2=

€ Vpq(q + Hesch? (5 P4 Vx))_
(—'_z(t - Vx))

g (x,1) = g \/—3( VA; + 247, — A) -

eL(—Kx+Wl+90), (321)

4 — gesch?
provided (VA3 + 24A; — A3) < 0, (A3 +24A;) > 0, pg < 0,€ = +1.
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4. An addendum to Kudryashov’s method

Using this technique [27-32], Eq (2.7) has the formal solution:

M
() = ) BRI, @.1)

J=0

where B; (j = 1,2,..., M) are constants, such that By, # 0, and R (£) represents the auxiliary equation’s
solution:
RE=R@[1-xR”®|In°K, 0<K#1, (4.2)

where y is a constant. It is simple to demonstrate that the solution to Eq (4.2) is:

A ] : (4.3)

R =
© [‘W expy (p€) + x expy (—pé)

where A is a constant that is not zero, p is a positive constant and exp (p€) = K?. Balancing ¢ (&)
with ¢’ (£) in Eq (2.7), we get:
M+4p=5M = M = p. 4.4)

Now, the following are different cases that arise: Case—1. If we choose p = 1, then M = 1. Thus,
we deduce that:

¢ (&) = By + BiR(). (4.5)

Substituting Eqs (4.5) and Eq (4.2) where p = 1 into Eq (2.7), assembling every power of a
coeflicient of [R(&)]" [R'(&)]”,(q1 =0,1,2,...5, g =0,1), and setting each of these coefficients to
zero, the following results are the outcome of Maple solving the algebraic equations:

By =0,B; = {yIn’K, (4.6)

Ay =20 =11 KQIn* K + Ay) 7

and

provided y > 0. Substituting Eqs (4.6) and (4.3) into Eq (4.5), one gets the solutions of Eq (1.1) in the

forms:
[ 12
4A X ln K et(—Kx+wt+6) .

4A2ZK@Vx) y K==V0

q(x,t) = 4.8)

It is easy to see that Eq (4.8) reduces to the straddled soliton solution:

} 2
4A Xln K eL(—Kx+wt+€)

(4A% + y)coshéIn K + (4A% — y) sinhéIn K

q(x,t) = 4.9)

In particular, if we set y = 4A? in Eq (4.9), then we have the bright soliton solutions of Eq (1.1) as

g(x,1) = InKsech[(t — Vx)In K] e ™+ero), (4.10)
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Under the conditions (4.7), the solutions (4.8)—(4.10) exist.

0.25

a) 3D visualization of g(x, t)

0.3

ax1)
—=—-q(x2)
0z} atx3)
———-qx4)

0251

01561

011

0.05

0

¢) 2D visualization of g(x, r) with different values of ¢

Figure 2. Visual depiction of the straddled soliton solution (4.10).

Case—2. If we choose p = 2, then M = 2. Thus, Eq (2.7) has the formal solution:

¢ (&) = By + BiR(&) + B.R*(9). 4.11)
Substituting Eqs (4.11) and Eq (4.2) where p = 2 into Eq (2.7), collecting all coefficients for every

power of [R(&)]" [R'()]",(q1 =0,1,2,...10, g, = 0, 1), and setting these coeflicients to zero, we get
an algebraic equation system that we can solve with Maple to get

By=0,B; =0,B, = 2y In’K, (4.12)

Ap=2,A =21 K(As + 81n° K) (4.13)

and

provided y > 0. The solutions of Eq (1.1) can be obtained by substituting Eqs (4.12) and
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(4.3) into Eq (4.11).

[ 2
SA Xhl K et(—Kx+wt+H).

q(x,1) = AAZK20-V) § y K20V (4.14)
It is easy to see that Eq (4.14) reduces to the straddled soliton solution in the form
8A \/xyIn* K Cevrorsd)
1) = - Hrkmers, 4.15
9060 = | AT+ vy cosh(2€In K) + (4A7 — ) sinh2€n K) | © .15
In particular, if we set y = 4A? in Eq (4.15), we have the bright soliton solution of Eq (1.1):
g(x,1) =2 InKsech [2(r — Vx)In K] " *+oit0), (4.16)

Under the condition (4.13), the solutions (4.14)—(4.16) exist.

Similar to that, we can find a variety of solutions by selecting various values for p and M; however,
for simplicity, those solutions have been excluded here.

5. New mapping approach

With the new mapping method [23-26], the solution to Eq (2.7) is as follows:

9 (&) = ap + 1 Z(E) + }Z* (§), (5.1

where @, @; and a, are constants which will be determined, also @, # 0, the function Z (&) satisfies
the first order equation:

2@ =r+pZ2E)+ gz‘* @ + §z6 ©), (5.2)

Let r, p, g, and s be constants, where s is not equal to zero. By substituting Eqs (5.1) and (5.2)
into Eq (2.7), and gathering the coeflicients of each power of Z" (¢)[Z' (¢)]’, (h =0 — 10, j = 0,1),
we can analyse the resulting expression. By setting these coeflicients to zero, the following algebraic
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equations are obtained.

Z" ) :
Z° &) :
Z8 (&) :
7' (&) :
Z°():
Z2©&):
ZH(é)
Z2(§):

Z2(é):

B, +40sa3 + 6a5 = 0,
335 sPay + 9Osa1a2 +30a;a; =0,
80gsa;, + msa/ a/2 + msa [ + Sqa/2 + 30a/0a/2 + 6()a =0,
20gsa; + 260sa/00/1a/2 + 110qa/1a2 + 4—0sa1 + 120010a1a/2 + 60a/ =0,
320psa2 + 30ga;, + Alsaz + —saoaz + ZOsaoa] + 6Oqaoa2 + 75qa s + IOOpcz2
20qaoa2 g—osaoal + A3a2 + 60%&2 + 30a* 1@ + 19Oa0a 2 =0,
26psa; + 6q*a; + Ajsa; + lOsaoa/l + lOOqaoa/la/z + 15qa/1 + 19Opa1a/%

+ 3A30/10/§ + 24013011611; + 123015&@2 + 120&061/?0/2 + 24000/%0/2 =0,
60pqa; + 80rsa; + 3A ga; + 30gagas + 25qaga; + 100paga; + 110paia; + 40ra;
+ 3A300; + 3Mz05 @, + 6007 ; + 168agaias + 48apar) = 0,
10pga; + 20rsa; + Ajqay + 10qa0a1 + 140papaa, + 20paf + IOOrcxla% + Az [6a0a1a2 + aﬂ
+ 24a0a1a2 + 6Oa0a/1a2 + 24%&1 + 12%&1&2 + 24a0a1a2 + 144a0a a =0,
16p*a, + 36gra, + 4A, pa, + 40pa0a2 + 30paoa1 + 60ra/0a2 + 70ra? 12
— Ay + 3A4 [aoaz + aoal] + 30a0a2 + 600z0a] =0,

Z (&) : ptay + 6gra; + A pa; + IOpaocxl + 80rapaan + 10ra? - Mag + 3A3a(2)041

Z&:

+ 30aoa'1 =0,
8payr + 2Aanr + 20ra0a2 + lOra/oa/1 Aagy + A3a/0 + 6a0 0.

(5.3)
With reference to [23-26], algebraic equations can be solved by three cases.
Case 1. The following are the results of substituting s = %, r = 16” into the system of algebraic

equations (5.3) and solving them by Maple or Mathematica:

and

A 2
@ = \/—g,al = 0,0, = —{’—Al, (5.4)

A 5A2
=LA = LAy =24, (5.5)

provided A; < 0. From Eqgs (5.1) and (5.4), the straddled soliton solutions have been obtained as

follows:

A
8 tanh2 [e _Fl (t— Vx)
Q(x, t) — =1 1 _ eL(—KX+Wt+90)’ (56)
A
3[3 + tanh? [e _Fl (t— V) J
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Figure 3. Visual depiction of the straddled soliton solution (5.6).

and

A
- 8 coth? [e —?1 (t — Vx)]
q(x, t) — _71 1— = eL(—Kx+wt+00)’ (5.7)
3[3 + coth? [e _Fl (t— V) ]

where € = +1. Under the conditions (5.5), solutions (5.6) and (5.7) are possible.
Case 2. Inserting s = %, r = 0 into the algebraic equations (5.3) and solving them by Maple or

Mathematica, we obtain the following results:

1 15
= VT30 F A, = 0,00 = ~2q 4| ——>—, .
@ = 15 5(-2A3 + Ay),a1 =0, q (oA + A (5.8)

—A3+%A1 1 2A% 2A§
— A =——(A/A —_— = —), 5.9
30 2 25( 1Az + 3 3 ) (5.9)

and
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provided (-2A3; + A;) > 0. From Eqgs (5.1) and (5.8), the dark soliton solution is

15

1 —2A; + A
q(x, 1) = —— /15(=2A; + A,) tanh [e (2—0+1) (t- Vx)} gt rtwitto) (5.10)
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¢) 2D visualization of g(x, r) with different values of ¢

Figure 4. Visual depiction of the dark soliton solution (5.10).

and the singular soliton solution is

1 —2A; + A
g(x, 1) = -1 V15(=24A5 + Ay) coth [e % (t- Vx)} gtTrrtnito) (5.11)

With the constraint conditions (5.9), the solutions (5.10) and (5.11) exist.

Case 3. Inserting r = 0 into the system of algebraic equations (5.3), if we extract those equations and

solving them by Maple, we get
16
@ =0, a1 =0, ay = 1|-—, (5.12)
Ay
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and

_ A @25@+285M0A A
P="5p 27 1205 BT

provided sA; < 0. From Eqs (5.1) and (5.12), we get the straddled soliton solutions:

Ay
h?| \[-—— (¢ -V
365A42 e [ 20 X)J
q(_x’ l’) _ . 25 5 el(—Kx+WI+(9())’
, A
_3q2 + A [1 + etanh( —2—5 (t— Vx)]
] A
2| 2,
36SA1q2 csch [ 20 (t VX)) L(—kx+wit+6p)
q(‘x’ t) = - - 25 A 2 e 0 9
»3q2 + % [1 + ecoth[\/—z—(]) (r- Vx))) ‘
Ay
W -2 -V
365A, e ( 20 X)]
q(_x, t) _ _ 25 et(—Kx+Wt+90)’

3A A

3g + de— 2(;S tanh( —2—(1)(t—Vx)]

csch? ( - Vx)]
q(x t) __ _36SA1 20 et(—K}H—WH'e())
’ 25 A A ’
3q + de |- 265 coth( -5 - Vx)]

esech( —% (t- Vx)]

q(_x [) = - —9SA1 et(—Kx+wt+6)0)
’ V" 25 A )
VM - 3eqsech(, /—?1 (t - Vx))

C]()C, t) =—124/- ﬁ ! el(—Kx+wt+90)

€ VM cosh [ —% (r— Vx)} -3q

b

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

provided s > 0,A; < O, M = (9q2 + 12%) > 0, and € = +1.Under the constraint conditions (5.13), the

solutions (5.14)—(5.19) are valid.
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6. Graphical representation

Visual representation is the most efficient technique for understanding the visible bodily movements
of real-life situations. The graphs in this section depict solitons retrieved with the concatenation model
having quintic-order dispersion. We obtain solutions of the Weierstrass type projective Riccati equation
expansion approach by employing the Weierstrass type. These solutions can be further reduced using
the conversion formula to yield dark, singular, and straddled soliton solutions. We utilize the dark
soliton solution (3.11) to generate Figure 1 by carefully selecting appropriate values for the parameters
Ay =0.96,A; =0.59,p = 1.45,9 = —0.27, and v = 0.5. By employing the addendum to Kudryashov’s
method, we obtain closed-form expressions for exact solutions. These solutions can be simplified
to bright soliton solutions. To demonstrate this, we select solution (4.10) and plot it with specific
parameter values K = 1.661 and v = 0.5, as depicted in Figure 2. Finally, by employing the new
mapping method, we can obtain explicit dark and straddled soliton solutions. In contrast, for the
straddled soliton solution (5.6), we utilize the values A; = —1.5 and v = 0.5 which correspond to bright
soliton solutions (refer to Figure 3). We select the values A; = 1.7, A; = —1.72, and v = 0.5, for the
dark soliton solution (5.10) (refer to Figure 4).

7. Conclusions

This work has successfully derived various types of solitons, including bright solitons, dark
solitons, and combo straddled solitons, for the fifth-order concatenation model with four combined
well-known nonlinear NLSE-type models. The study has also identified the novel Weierstrass-type
traveling wave solutions, which can be reduced to optical soliton solutions using the conversion
formula. These findings contribute to the understanding of soliton dynamics and have implications for
various fields of research. Three distinct methods have been employed in this study to obtain
solutions for the model at hand. These include the Weierstrass-type projective Riccati equation
expansion method, the addendum to Kudryashov’s method, and the new mapping methods. These
approaches have contributed to the advancement of research in this field.

The findings of this research provide substantial evidence and accuracy in elucidating various
physical phenomena and provide a comprehensive overview of the requirements for the existence of
soliton solutions. The listed criteria serve as crucial guidelines for identifying and understanding the
behaviour of solitons in various physical systems. By establishing these conditions, researchers can
effectively analyze and predict the presence and characteristics of solitons, contributing to
advancements in fields such as nonlinear optics, fluid dynamics, and quantum mechanics. The
behaviour of the solutions (3.11), (4.10), (5.6), and (5.10) has been visually represented through the
plotting of their 2D, 3D, and contour plots in Section 6. These figures provide valuable insights into
the characteristics and patterns exhibited by these solutions. The findings validate the advantages and
applicability of the employed methodologies. Furthermore, the approaches described are reliable and
applicable to a wide range of nonlinear models in mathematical physics. Finally, the obtained results
were validated through the utilization of Maple, as satisfied by the verification of Eq (1.1).

AIMS Mathematics Volume 9, Issue 4, 8961-8980.



8977

Use of Al tools declaration
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Acknowledgements

This work was supported by the Technology Innovation Program (20018869, Development of Waste
Heat and Waste Cold Recovery Bus Air-conditioning System to Reduce Heating and Cooling Load by
10%) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Conflict of interest

The authors declare that they have no competing interests.

References

1. S.Backus, C. Durfee, G. Mourou, H. C. Kapteyn, M. M. Murnane, 0.2-TW laser system at 41 kHz,
Opt. lett., 22 (1997), 1256—1258. http://doi.org/10.1364/0OL.22.001256

2. Y.-L. Ma, Interaction and energy transition between the breather and rogue wave for a generalized
nonlinear Schrodinger system with two higher-order dispersion operators in optical fibers,
Nonlinear Dyn., 97 (2019), 95-105. http://doi.org/10.1007/s11071-019-04956-0

3. J. Vega-Guzman, M. F. Mahmood, Q. Zhou, H. Triki, A. H. Arnous, A. Biswas, et al., Solitons
in nonlinear directional couplers with optical metamaterials, Nonlinear Dyn., 87 (2016), 427-458.
http://doi.org/10.1007/s11071-016-3052-2

4. A. H. Arnous, Optical solitons to the cubic quartic Bragg gratings with anti-cubic nonlinearity
using new approach, Optik, 251 (2022), 168356. http://doi.org/10.1016/}.ijle0.2021.168356

5. A. H. Arnous, A. Biswas, Y. Yildirim, L. Moraru, M. Aphane, S. Moshokoa, et al., Quiescent
optical solitons with Kudryashov’s generalized quintuple-power and nonlocal nonlinearity having
nonlinear chromatic dispersion, Universe, 8 (2022), 501. http://doi.org/10.3390/universe8100501

6. B.-Q. Li, Y.-L. Ma, Optical soliton resonances and soliton molecules for the Lakshmanan-
Porsezian-Daniel system in nonlinear optics, Nonlinear Dyn., 111 (2022), 6689—6699.
http://doi.org/10.1007/s11071-022-08195-8

7. Y.-L.Ma, B.-Q. Li, Novel optical soliton structures for a defocusing Lakshmanan-Porsezian-Daniel
optical system, Optik, 284 (2023), 17093 1. http://doi.org/10.1016/].ijle0.2023.170931

8. Y.-L. Ma, B.-Q. Li, Optical soliton resonances, soliton molecules to breathers for a
defocusing Lakshmanan-Porsezian- Daniel system, Opt. Quant. Electron., 56 (2023), 151.
http://doi.org/10.1007/s11082-023-05687-8

9. Y.-L. Ma, A.-M. Wazwaz, B.-Q. Li, Soliton resonances, soliton molecules, soliton oscillations
and heterotypic solitons for the nonlinear Maccari system, Nonlinear Dyn., 111 (2023), 113327
113341. http://doi.org/10.1007/s11071-023-08529-0

10. Y.-L. Ma, B.-Q. Li, Soliton resonances for a transient stimulated Raman scattering system,
Nonlinear Dyn., 111 (2022), 2631-2640. http://doi.org/10.1007/s11071-022-07945-y

AIMS Mathematics Volume 9, Issue 4, 8961-8980.


https://dx.doi.org/http://doi.org/10.1364/OL.22.001256
https://dx.doi.org/http://doi.org/10.1007/s11071-019-04956-0
https://dx.doi.org/http://doi.org/10.1007/s11071-016-3052-2
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2021.168356
https://dx.doi.org/http://doi.org/10.3390/universe8100501
https://dx.doi.org/http://doi.org/10.1007/s11071-022-08195-8
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2023.170931
https://dx.doi.org/http://doi.org/10.1007/s11082-023-05687-8
https://dx.doi.org/http://doi.org/10.1007/s11071-023-08529-0
https://dx.doi.org/http://doi.org/10.1007/s11071-022-07945-y

8978

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

B.-Q. Li, Y.-L. Ma, A firewall effect during the rogue wave and breather interactions to the
Manakov system, Nonlinear Dyn., 111 (2023), 1565-1575. http://doi.org/10.1007/s11071-022-
07878-6

B.-Q. Li, Y.-L. Ma, Soliton resonances and soliton molecules of pump wave and Stokes wave for
a transient stimulated Raman scattering system in optics, Eur. Phys. J. Plus, 137 (2022), 1227.
http://doi.org/10.1140/epjp/s13360-022-03455-3

B.-Q. Li, Y.-L. Ma, Interaction properties between rogue wave and breathers to the manakov system
arising from stationary self-focusing electromagnetic systems, Chaos, Soliton. Fract., 156 (2022),
111832. http://doi.org/10.1016/j.chaos.2022.111832

B.-Q. Li, Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising
from high-frequency wave propagation in electromagnetic physics, Appl. Math. Lett., 112 (2021),
106822. http://doi.org/10.1016/j.am1.2020.106822

A. R. Seadawy, A. H. Arnous, A. Biswas, M. Belic, Optical solitons with sasa-satsuma equation
by F-expansion scheme, Optoelectron. Adv. Mater., Rapid Commun., 13 (2019), 31-36.

A. H. Arnous, M. S. Hashemi, K. S. Nisar, M. Shakeel, J. Ahmad, I. Ahmad, et al., Investigating
solitary wave solutions with enhanced algebraic method for new extended Sakovich equations in
fluid dynamics, Results Phys., 57 (2024), 107369. http://doi.org/10.1016/j.rinp.2024.107369

Z. Li, L.Li, H. Tian, G. Zhou, New types of solitary wave solutions for the
higher order nonlinear Schrodinger equation, Phys. Rev. Lett., 84 (2000), 4096.
http://doi.org/10.1103/PhysRevLett.84.4096

H. Triki, F. Azzouzi, P. Grelu, Multipole solitary wave solutions of the higher-order nonlinear
Schrédinger equation with quintic non-Kerr terms, Opt. Commun., 309 (2013), 71-79.
http://doi.org/10.1016/j.optcom.2013.06.039

F. Azzouzi, H. Triki, K. Mezghiche, A. El Akrmi, Solitary wave solutions for high dispersive
cubic-quintic nonlinear Schrodinger equation, Chaos Soliton. Fract., 39 (2009), 1304-1307.
http://doi.org/10.1016/j.chaos.2007.06.024

W. P. Hong, Optical solitary wave solutions for the higher order nonlinear Schrodinger
equation with cubic-quintic non- Kerr terms, Optics Commun., 194 (2001), 217-223.
http://doi.org/10.1016/j.geomphys.2022.104616

G. Xu, Extended auxiliary equation method and its applications to three generalized NLS
equations, Abstr. Appl. Anal., 7 (2014), 541370. http://doi.org/10.1155/2014/541370

E. M. E. Zayed, K. A. E. Alurrfi, Extended auxiliary equation method and its applications for
finding the exact solutions for a class of nonlinear Schrodinger-type equations, Appl. Math.
Comput., 289 (2016), 111-131. http://doi.org/10.1016/j.amc.2016.04.014

E. M. E. Zayed, M. E. M. El-Ngar, A. G. Al-Nowehy, On solving the nonlinear Schrodinger
equation with an anti-cubic nonlinearity in presence of Hamiltonian perturbation terms, Optik,
178 (2019), 488-508. http://doi.org/10.1016/j.ijleo.2018.09.064

E. M. E. Zayed, K. A. E. Alurrfi, Solitons and other solutions for two nonlinear
Schrodinger equations using the new mapping method, Optik, 144 (2017), 132-148,
http://doi.org/10.1016/j.1j1e0.2017.06.101

E. M. E. Zayed, A. G. Al-Nowehy, Many new exact solutions to the higher-order nonlinear
Schrodinger equation with derivative non Kerr nonlinear terms using three different techniques,
Optik, 143 (2017), 84-103. http://doi.org/10.1016/j.ijle0.2017.06.025

AIMS Mathematics Volume 9, Issue 4, 8961-8980.


https://dx.doi.org/http://doi.org/10.1007/s11071-022-07878-6
https://dx.doi.org/http://doi.org/10.1007/s11071-022-07878-6
https://dx.doi.org/http://doi.org/10.1140/epjp/s13360-022-03455-3
https://dx.doi.org/http://doi.org/10.1016/j.chaos.2022.111832
https://dx.doi.org/http://doi.org/10.1016/j.aml.2020.106822
https://dx.doi.org/http://doi.org/10.1016/j.rinp.2024.107369
https://dx.doi.org/http://doi.org/10.1103/PhysRevLett.84.4096
https://dx.doi.org/http://doi.org/10.1016/j.optcom.2013.06.039
https://dx.doi.org/http://doi.org/10.1016/j.chaos.2007.06.024
https://dx.doi.org/http://doi.org/10.1016/j.geomphys.2022.104616
https://dx.doi.org/http://doi.org/10.1155/2014/541370
https://dx.doi.org/http://doi.org/10.1016/j.amc.2016.04.014
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2018.09.064
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2017.06.101
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2017.06.025

8979

26

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

. X. Zeng, X. Yong, A new mapping method and its applications to nonlinear partial differential
equations, Phys. Lett. A, 372 (2008), 6602—6607. http://doi.org/10.1016/j.physleta.2008.09.025

E. M. E. Zayed, M. E. M. Alngar, A. Biswas, Y. Yildirim, M. Ekici, H. M. Alshehri, et al., Cubic—
quartic solitons in couplers with optical metamaterials having parabolic law nonlinearity, Optik,
247 (2021), 167960. http://doi.org/10.1016/j.ijle0.2021.167960

K. A. Gepreel, E. M. E. Zayed, M. E. M. Alngar, New optical solitons perturbation in the
birefringent fibers for the CGL equation with Kerr law nonlinearity using two integral schemes
methods, Optik, 227 (2021), 166099. http://doi.org/10.1016/j.ijle0.2020.166099

T. A. Nofal, E. M. E. Zayed, M. E. M. Alngar, R. M. A. Shohib, M. Ekici, Highly
dispersive optical solitons perturbation having Kudryashov’s arbitrary form with sextic-
power law refractive index and generalized non-local laws, Optik, 228 (2021), 166120.
http://doi.org/10.1016/j.ijle0.2020.166120

N. A. Kudryashov, Highly dispersive optical solitons of the generalized nonlinear eighth-order
Schrédinger equation, Optik, 206 (2020), 164335. http://doi.org/10.1016/].ij1e0.2020.164335

E. M. E. Zayed, A. H. Arnous, A. Secer, M. Ozisik, M. Bayram, N. Ali Shah, et al., Highly
dispersive optical solitons in fiber Bragg Gratings for stochastic Lakshmanan-Porsezian-Daniel
equation with spatio-temporal dispersion and multiplicative white noise, Results Phys., 55 (2023),
107177. http://doi.org/10.1016/j.rinp.2023.107177

A. H. Arnous, M. Mirzazadeh, M. S. Hashemi, N. Ali Shah, J. D. Chung, Three different integration
schemes for finding soliton solutions in the (1+1)-dimensional Van Der Waals gas system, Results
Phys., 55 (2023), 107178. http://doi.org/10.1016/j.rinp.2023.107178

E. M. E. Zayed, R. M. A. Shohib, M. E. M. Alngar, A. Biswas, Y. Yildirim, A. Dakova, et al.,
Optical solitons in the Sasa-Satsuma model with multiplicative noise via Ito calculus, Ukr. J. Phys.
Opt., 23 (2022), 9-14.

N. Sirendaoreji, Unified Riccati equation expansion method and its application to two
new classes of Benjamin—Bona—Mahony equations, Nonlinear Dyn., 89 (2017), 333-344.
http://doi.org/10.1007/s11071-017-3457-6

C. Xiang, Jacobi elliptic function solutions for (2+1)-dimensional Boussinesq and Kadomtsev-
Petviashvilli equation, Appl. Math, 2 (2011), 1313-1316. http://doi.org/10.4236/am.2011.211183
N. A. Kudryashov, First integral and general solution of traveling wave reduction for the Triki—
Biswas equation, Optik, 185 (2019), 275-281. http://doi.org/10.1016/}.ijle0.2019.03.087

N. A. Kudryashov, A generalized model for description pulses in optical fiber, Optik, 189 (2019),
42-52. http://doi.org/10.1016/j.ijle0.2019.05.069

N. A. Kudryashov, Traveling wave solutions of the generalized nonlinear
Schrodinger equation with cubic—quintic nonlinearity, Optik, 188 (2019), 27-35.
http://doi.org/10.1016/j.ij1e0.2019.05.026

N. A. Kudryashov, General solution of the traveling wave reduction for the Kundu—Mukherjee—
Naskar model, Optik, 186 (2019), 22-27. http://doi.org/10.1016/].ijle0.2019.04.072

N. A. Kudryashov, General solution of the traveling wave reduction for the Chen—Lee-Liu
equation, Optik, 186 (2019), 339-349. http://doi.org/10.1016/].ijle0.2019.04.127

N. A. Kudryashov, Traveling wave solutions of the generalized nonlinear Schrodinger equation
with cubic-quintic, Optik, 186 (2019), 27-35. http://doi.org/10.1016/j.ij1e0.2019.05.026

AIMS Mathematics Volume 9, Issue 4, 8961-8980.


https://dx.doi.org/http://doi.org/10.1016/j.physleta.2008.09.025
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2021.167960
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2020.166099
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2020.166120
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2020.164335
https://dx.doi.org/http://doi.org/10.1016/j.rinp.2023.107177
https://dx.doi.org/http://doi.org/10.1016/j.rinp.2023.107178
https://dx.doi.org/http://doi.org/10.1007/s11071-017-3457-6
https://dx.doi.org/http://doi.org/10.4236/am.2011.211183
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2019.03.087
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2019.05.069
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2019.05.026
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2019.04.072
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2019.04.127
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2019.05.026

8980

42

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

. N. A. Kudryashov, First integrals and general solution of the Fokas—Lenells equation, Optik, 195
(2019), 163135. http://doi.org/10.1016/.ijle0.2019.163135

R. Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14 (1973),
805-809.

A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, Rogue waves and rational solutions of the Hirota
equation, Phys. Rev. E, 81 (2010), 046602. http://doi.org/10.1103/PhysRevE.81.046602

A. Maccari, A generalized Hirota equation in 2+1 dimensions, J. Math. Phys., 39 (1998), 6547—
6551.

H. Triki, F. Azzouzi, A. Biswas, S. P. Moshokoa, M. Belic, Bright Optical Solitons
With Kerr law Nonlinearity and Fifth Order Dispersion, Optik, 128 (2017), 172-177.
http://doi.org/10.1016/j.ij1e0.2016.10.026

A. Chowdury, D. J. Kedziora, A. Ankiewicz, N. Akhmediev, Breather-to-soliton conversions
described by the quintic equation of the nonlinear Schrddinger hierarchy, Phys. Rev. E, 91 (2015),
032928. http://doi.org/10.1103/PhysRevE.91.032928

A. Chowdury, D. J. Kedziora, A. Ankiewicz, N. Akhmediev, Soliton solutions of an
integrable nonlinear Schrodinger equation with quintic terms, Phys. Rev. E, 91 (2014), 032922.
http://doi.org/10.1103/PhysRevE.90.032922

A. Chowdury, D. J. Kedziora, A. Ankiewicz, N. Akhmediev, Breather solutions of the integrable
quintic nonlinear Schrédinger equation and their interactions, Phys. Rev. E, 91 (2015), 022919.
http://doi.org/10.1103/PhysRevE.91.022919

A. Ankiewicz, N. Akhmedie, Higher-order integrable evolution equation and its soliton solutions,
Phys. Lett. A, 378 (2014), 358-361. http://doi.org/10.1016/j.physleta.2013.11.031

A. H. Arnous, A. Biswas, A. H. Kara, Y. Yildirim, L. Moraru, C. Iticescu, et al.,
Optical Solitons and Conservation Laws for the Concatenation Model with Spatio-Temporal
Dispersion (Internet Traffic Regulation), J. Eur Opt. Society-Rapid Publ., 19 (2023), 35.
http://doi.org/10.1051/je0s/2023031

A. H. Arnous, A. Biswas, A. H. Kara, Y. Yildirim, L. Moraru, C. Iticescu, et al., Optical Solitons
and Conservation Laws for the Concatenation Model: Power-Law Nonlinearity, Ain Shams Eng.
J., 15 (2023), 102381. http://doi.org/10.1016/j.asej.2023.102381

N. Sirendaoreji, A method for constructing Weierstrass elliptic function solutions
and their degenerated solutions of the mKdV equation, 2022, arXiv:2210.03302v].
http://doi.org/10.48550/arXiv.2210.03302

E. M. E. Zayed, A. H. Arnous, A. Biswas, Y. Yildirim, A. Asiri, Optical solitons for the
concatenation model with multiplicative white noise, J. Opt., 2023. http://doi.org/10.1007/s12596-
023-01381-w

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

@gé; AIMS Press terms of the Creative Commons Attribution License

(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 4, 8961-8980.


https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2019.163135
https://dx.doi.org/http://doi.org/10.1103/PhysRevE.81.046602
https://dx.doi.org/http://doi.org/10.1016/j.ijleo.2016.10.026
https://dx.doi.org/http://doi.org/10.1103/PhysRevE.91.032928
https://dx.doi.org/http://doi.org/10.1103/PhysRevE.90.032922
https://dx.doi.org/http://doi.org/10.1103/PhysRevE.91.022919
https://dx.doi.org/http://doi.org/10.1016/j.physleta.2013.11.031
https://dx.doi.org/http://doi.org/10.1051/jeos/2023031
https://dx.doi.org/http://doi.org/10.1016/j.asej.2023.102381
https://dx.doi.org/http://doi.org/10.48550/arXiv.2210.03302
https://dx.doi.org/http://doi.org/10.1007/s12596-023-01381-w
https://dx.doi.org/http://doi.org/10.1007/s12596-023-01381-w
https://creativecommons.org/licenses/by/4.0

	Introduction
	Mathematical analysis of the governing equation
	Weierstrass type projective Riccati equation expansion method
	An addendum to Kudryashov's method
	New mapping approach
	Graphical representation
	Conclusions

