Research article

Best proximity point of $ \alpha $-$ \eta $-type generalized $ F $-proximal contractions in modular metric spaces

  • Received: 20 December 2023 Revised: 16 February 2024 Accepted: 22 February 2024 Published: 04 March 2024
  • MSC : 47H10, 54H25

  • The purpose of this paper is to present a study of $ \alpha $-$ \eta $-type generalized $ F $-proximal contraction mappings in the framework of modular metric spaces and to prove some best proximity point theorems for these types of mappings. Some examples are given to show the validity of our results. We also apply our results to establish the existence of solutions for a certain type of non-linear integral equation.

    Citation: Yao Yu, Chaobo Li, Dong Ji. Best proximity point of $ \alpha $-$ \eta $-type generalized $ F $-proximal contractions in modular metric spaces[J]. AIMS Mathematics, 2024, 9(4): 8940-8960. doi: 10.3934/math.2024436

    Related Papers:

  • The purpose of this paper is to present a study of $ \alpha $-$ \eta $-type generalized $ F $-proximal contraction mappings in the framework of modular metric spaces and to prove some best proximity point theorems for these types of mappings. Some examples are given to show the validity of our results. We also apply our results to establish the existence of solutions for a certain type of non-linear integral equation.



    加载中


    [1] Z. Birnhaum, W. Orlicz, Uber die verallgemeinerung des begriffes der zueinander konjugierten potenzen, Stud. Math., 3 (1931), 1–67. http://dx.doi.org/10.4064/sm-3-1-1-67 doi: 10.4064/sm-3-1-1-67
    [2] H. Nakano, Modular semi-ordered spaces, Tokyo, 1950.
    [3] J. Musielak, W. Orlicz, On modular spaces, Stud. Math., 18 (1959), 49–65. http://dx.doi.org/10.4064/sm-18-1-49-65 doi: 10.4064/sm-18-1-49-65
    [4] V. V. Chistyakov, Modular metric spaces, Ⅰ: basic concepts, Nonlinear Anal. Theor., 72 (2010), 1–14. https://doi.org/10.1016/j.na.2009.04.057 doi: 10.1016/j.na.2009.04.057
    [5] V. V. Chistyakov, Modular metric spaces, Ⅱ: application to superposition operators, Nonlinear Anal. Theor., 72 (2010), 15–30. https://doi.org/10.1016/j.na.2009.04.018 doi: 10.1016/j.na.2009.04.018
    [6] V. V. Chistyakov, A fixed point theorem for contractions in modular metric spaces, 2010. https://doi.org/10.48550/arXiv.1112.5561
    [7] H. Nakano, Modulared semi-ordered linear spaces, Maruzen Company, 1950.
    [8] J. Musielak, Orlicz spaces and modular spaces, In: Lecture notes in mathematics, Berlin: Springer, 1983. https://doi.org/10.1007/BFb0072210
    [9] W. Orlicz, Collected papers, part I, II, PWN polish scientific publishers, Warsaw, 1988.
    [10] A. V. Arutyunov, A. V. Greshnov, $(q_{1}, q_{2})$-quasimetric spaces. Covering mappings and coincidence points. A review of the results, Fixed Point Theor., 23 (2022), 473–486. https://doi.org/10.24193/fpt-ro.2022.2.03 doi: 10.24193/fpt-ro.2022.2.03
    [11] A. V. Arutyunov, A. V. Greshnov, $(q_{1}, q_{2})$-quasimetric spaces. Covering mappings and coincidence points, Izv. Math., 82 (2018), 245. https://doi.org/10.1070/IM8546 doi: 10.1070/IM8546
    [12] A. Greshnov, V. Potapov, About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics, AIMS Math., 8 (2023), 6191–6205. https://doi.org/10.3934/math.2023313 doi: 10.3934/math.2023313
    [13] A. Nowakowski, R. Plebaniak, Fixed point theorems and periodic problems for nonlinear Hill's equation, Nonlinear Differ. Equ. Appl., 30 (2023), 16. https://doi.org/10.1007/s00030-022-00825-9 doi: 10.1007/s00030-022-00825-9
    [14] M. V. Paunović, S. H. Bonab, V. Parvaneh, Weak-Wardowski contractions in generalized triple-controlled modular metric spaces and generalized triple-controlled fuzzy metric spaces, In: Soft computing, CRC Press, 2023, 45–66. https://doi.org/10.1201/9781003312017-4
    [15] L. L. Chen, X. Liu, Y. F. Zhao, Exponential stability of a class of nonlinear systems via fixed point theory, Nonlinear Anal., 196 (2020), 111784. https://doi.org/10.1016/j.na.2020.111784 doi: 10.1016/j.na.2020.111784
    [16] L. L. Chen, C. B. Li, R. Kaczmarek R, Y. F. Zhao, Several fixed point theorems in convex b-metric spaces and applications, Mathematics, 8 (2020), 242. https://doi.org/10.3390/math8020242 doi: 10.3390/math8020242
    [17] K. H. Alam, Y. Rohen, N. Saleem, Fixed Points of $\alpha, \beta, F^{*}$ and $\alpha, \beta, F^{**}$-Weak Geraghty Contractions with an Application, Symmetry, 15 (2023), 243. https://doi.org/10.3390/sym15010243 doi: 10.3390/sym15010243
    [18] A. Gholidahneh, S. Sedghi, O. Ege, Z. D. Mitrovic, M. de la Sen, The Meir-Keeler type contractions in extended modular $b$-metric spaces with an application, AIMS Math., 6 (2021), 1781–1799. https://doi.org/10.3934/math.2021107
    [19] S. S. Basha, Extensions of Banachs contraction principle, Numer. Funct. Anal. Optim., 31 (2010), 569–576. https://doi.org/10.1080/01630563.2010.485713 doi: 10.1080/01630563.2010.485713
    [20] I. Beg, G. Mani, A. J. Gnanaprakasam, Best proximity point of generalized F-proximal non-self contractions, J. Fixed Point Theory Appl., 23 (2021), 49. https://doi.org/10.1007/s11784-021-00886-w doi: 10.1007/s11784-021-00886-w
    [21] V. V. Chistyakov, Metric modular spaces: Theory and applications, Cham: Springer, 2015.
    [22] A. A. Abdou, M. A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces, Fixed Point Theory Appl., 2013 (2013), 163. https://doi.org/10.1186/1687-1812-2013-163 doi: 10.1186/1687-1812-2013-163
    [23] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal. Theor., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
    [24] P. Salimi, A. Latif, N. Hussain, Modified $\alpha$-$\psi$-contractive mappings with applications, Fixed Point Theory Appl., 2013 (2013), 151. https://doi.org/10.1186/1687-1812-2013-151 doi: 10.1186/1687-1812-2013-151
    [25] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
    [26] V. S. Raj, A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal. Theor., 74 (2011), 4804–4808. https://doi.org/10.1016/j.na.2011.04.052 doi: 10.1016/j.na.2011.04.052
    [27] J. Zhang, Y. Su, Q. Cheng, A note on 'A best proximity point theorem for Geraghty-contractions', Fixed Point Theory Appl., 2013 (2013), 99. https://doi.org/10.1186/1687-1812-2013-99 doi: 10.1186/1687-1812-2013-99
    [28] S. S. Basha, Best proximity point theorems for some classes of contractions, Acta. Math. Hungar., 156 (2018), 336–360. https://doi.org/10.1007/s10474-018-0882-z doi: 10.1007/s10474-018-0882-z
    [29] V. Gregori, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy set. syst., 125 (2002), 245–252. https://doi.org/10.1016/S0165-0114(00)00088-9 doi: 10.1016/S0165-0114(00)00088-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(619) PDF downloads(63) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog