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1. Introduction

The first attempts to generalize the classical function spaces of the Lebesgue type Lp were made
by Birnhaum and Orlicz in 1931 [1]. The more abstract generalization was established by Nakano [2]
in 1950 and refined and generalized by Musielak and Orlicz [3] in 1959 under the name of modular and
modular spaces. Lately, Chistyakov [4, 5] developed modular spaces and metric spaces by introducing
modular metric spaces (or metric modular spaces). The main idea behind this new concept is physical
interpretation of the modular metric spaces [6]. Here, we look at modular metric spaces as the nonlinear
version of the classical modular spaces as introduced by Nakano [7], on the vector spaces and modular
function spaces introduced by Musielack [8] and Orlicz [9]. It is worth noting that there is another
similar generalization, i.e., (q1, q2)-quasimetric spaces, which were recently introduced and studied by
Arutyunov and Greshnov in [10–12].

Over the past hundred years, fixed-point theory, as one of the centers of mathematical analysis,
has been used in many different fields of mathematics such as topology, analysis and operator theory;
see [13–18]. Let A be a non-empty subset of a metric space (X, d) and T : A → A be a self-mapping.
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A point x ∈ A is said to be a fixed point of T if T x = x. However, in many practical applications, T
does not satisfy the condition for a self-mapping. In other words, the mapping T : A→ B (A ∩ B = ∅)
does not have any fixed point. In this case, it is quite natural to investigate an element x ∈ X such
that d(x,T x) is minimized. In 2010, Basha [19] introduced the notion for a best proximity point of
non-self mappings. Let A, B be two non-empty subsets of a metric space (X, d) and T : A → B be a
non-self mapping. A point x ∈ A satisfying that d(x,T x) = d(A, B) is called a best proximity point of
the non-self mapping T . If A ∩ B , ∅, then the best proximity point becomes a fixed point of T .

Recently, Beg et al. [20] introduced a new type of generalized F-proximal contractions and
investigated the unique best proximity point of generalized F-proximal contractions on a complete
metric space. Motivated by the recent results, in this paper, we investigate α-η-type generalized
F-proximal contractions of the first and second kind in the context of modular metric spaces by
focusing on the uniform approximation property of the set. Then, we state several best proximity
point theorems for some proximal contractions in modular metric spaces. Some examples are given to
demonstrate our theoretical results. Moreover, we give an application of our main results to establish
the existence of the solution of a non-linear integral equation.

2. Preliminaries

Throughout this paper, N and R denote the sets of positive integers and real numbers respectively.
We write N0 = N ∪ {0}. First, we recall some prerequisites.

Let X be a non-empty set. For any x, y ∈ X, we also write wλ(x, y) := w(λ, x, y) for all λ > 0 and
w = {wλ}λ>0 for which wλ : X × X → [0,∞].

Definition 2.1. [4,5] Let X be a non-empty set and x, y, z ∈ X. A function w : (0,∞)×X ×X → [0,∞]
is said to be modular (metric) on X if it satisfies the following conditions:

(i) wλ(x, y) = 0 if and only if x = y for all λ > 0;
(ii) wλ(x, y) = wλ(y, x) for all λ > 0;

(iii) wλ+µ(x, y) ≤ wλ(x, z) + wµ(z, y) for all λ, µ > 0.

If we utilize the condition

(ip) wλ(x, x) = 0 for all λ > 0,

instead of (i), then w is called pseudomodular on X. If w satisfies ip and

(is) wλ(x, y) = 0 if and only if x = y for some λ > 0,

then w is called strictly modular on X. If condition (iii) is replaced by

(ic) wλ+µ(x, y) ≤ λ
λ+µ

wλ(x, z) + µ

λ+µ
wµ(z, y), for all λ, µ > 0,

then w is called convexly modular on X.
Some examples of modular metrics are as follows.

Example 2.1. [4] If (X, d) is a metric space for any x, y ∈ X and λ > 0, then

wλ1(x, y) = d(x, y)
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is a modular metric and
wλ2(x, y) =

d(x, y)
λ

is a convex modular.

Definition 2.2. [4] Let w be pseudomodular on X and x0 be a fixed element of X. Then the sets

Xw = Xw(x0) = {x ∈ X : wλ(x, x0)→ 0 as λ→ ∞} ,

X∗w = X∗w(x0) = {x ∈ X : ∃λ = λ(x) > 0, such that wλ(x, x0) < ∞}

are called modular metric spaces (around x0).

Obviously, Xw ⊂ X∗w holds. If w is a modular metric on X, then the modular space Xw can be
equipped with a (nontrivial) metric dw, was generated by w and given by

dw(x, y) = inf{λ > 0 : wλ(x, y) ≤ λ}, x, y ∈ Xw.

If w is a convex modular metric on X, then Xw = X∗w and this common set can be endowed with a metric
d∗w given by

d∗w(x, y) = inf{λ > 0 : wλ(x, y) ≤ 1}, x, y ∈ X∗w.

Given λ, r > 0 and x ∈ X∗w, set

Bλ,r ≡ Bw
λ,r =

{
y ∈ X∗w : wλ(x, y) < r

}
.

Definition 2.3. [21] A non-empty set A ⊂ X is said to be w-open (or modular open) if, for every x ∈ A
and λ > 0 there is r > 0 (possibly depending on x and λ) such that Bλ,r ⊂ A.

Denote by π(w) the family of all w-open subsets of X∗w. Clearly, π(w) is a topology on X∗w; see [21].

Definition 2.4. [6, 21] Let Xw and X∗w be modular metric spaces and {xn} be in Xw (or X∗w); then,

(1) the sequence {xn} is said to be w-convergent to x ∈ X if and only if wλ(xn, x) → 0 as n → ∞ for
some λ > 0;

(2) the sequence {xn} is said to be w-Cauchy if wλ(xn, xm)→ 0 as m, n→ ∞ for some λ > 0;
(3) a subset A of Xw (or X∗w) is said to be w-complete if any w-Cauchy sequence in A is a w-convergent

sequence and its w-limit lies in A.
(4) a subset A of Xw (or X∗w) is said to be w-closed if the w-limit of a w-convergent sequence of A

always belongs to A.

It is easy to see that if w is strict, then we have uniqueness of the w-limit. Indeed, If xn → x
and xn → y, then wλ(xn, x) → 0 and wλ(xn, y) → 0 for some λ > 0. By axiom (iii), w2λ(x, y) ≤
wλ(x, xn) + wλ(xn, y); thus, w2λ(x, y) = 0. If w is strict, then x = y.

Definition 2.5. [22] Let w be a modular metric on X. We say that w satisfies the Fatou property if

wλ(x, y) ≤ lim inf
n→∞

wλ(xn, yn),

for some λ > 0 whenever {xn} is w-convergent to x ∈ X and {yn} is w-convergent to y ∈ X.

AIMS Mathematics Volume 9, Issue 4, 8940–8960.



8943

Samet et al. [23] introduced the notion of α-admissible mappings as follows.

Definition 2.6. [23] Let T be a self-mapping on X and α : X × X → [0,∞) be a function. We say that
T is an α-admissible mapping if

α(x, y) ≥ 1⇒ α(T x,Ty) ≥ 1,

for all x, y ∈ X.

Salimi et al. [24] modified the notion of α-admissible mappings as follows.

Definition 2.7. [24] Let T be a self-mapping on X and α, η : X × X → [0,∞) be two functions. We
say that T is an α-admissible mapping with respect to η if

α(x, y) ≥ η(x, y)⇒ α(T x,Ty) ≥ η(T x,Ty)

for all x, y ∈ X.

In 2012, Wardowski [25] introduced the concept of an F-contraction.

Definition 2.8. [25] Let F : (0,∞)→ R be a function such that

(F1) F is strictly increasing;
(F2) for any sequence {ξn} ⊆ (0,∞) , then

lim
n→∞

ξn = 0⇔ lim
n→∞

F(ξn) = −∞;

(F3) there exists k ∈ (0, 1) such that lim
ξ→0+

ξkF(ξ) = 0 for any ξ ∈ (0,∞).

We denote by F the set of all functions F : (0,∞)→ R satisfying (F1)–(F3).

Example 2.2. [25] Let t > 0. The following functions F : (0,∞)→ R belong to F:

(1) F(t) = ln t;
(2) F(t) = t + ln t;
(3) F(t) = − 1

√
t
;

(4) F(t) = ln(t2 + t).

Definition 2.9. [25] Let (X, d) be a metric space and T : X → X a mapping. If there exist F ∈ F and
τ > 0 such that

τ + F(d(T x,Ty)) ≤ F(d(x, y)),

for all x, y ∈ X with d(T x,Ty) > 0, then T is called an F-contraction.

Define

d(A, B) = inf{d(x, y) : x ∈ A, y ∈ B},

A0 = {x ∈ A : d(x, y) = d(A, B) f or some y ∈ B} and

B0 = {y ∈ B : d(x, y) = d(A, B) f or some x ∈ A} .

Now, we put forward the definition of a P-property.
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Definition 2.10. [26] Let (A, B) be a pair of non-empty subsets of a metric space (X, d) with A0 , ∅.
We say that the pair (A, B) has the weak P-property if and only if the following holds:{

d(x1, y1) = d(A, B)
d(x2, y2) = d(A, B)

⇒ d(x1, x2) = d(y1, y2),

for all x1, x2 ∈ A and y1, y2 ∈ B.

Zhang et al. [27] introduced the notion of the weak P-property which is weaker than the P-property.

Definition 2.11. [27] Let (A, B) be a pair of non-empty subsets of a metric space (X, d) with A0 , ∅.
We say that the pair (A, B) has the weak P-property if and only if the following holds:{

d(x1, y1) = d(A, B)
d(x2, y2) = d(A, B)

⇒ d(x1, x2) ≤ d(y1, y2),

for all x1, x2 ∈ A and y1, y2 ∈ B.

Recently, Basha [28] introduced the concept of the uniform approximation of a set.

Definition 2.12. [28] Let (A, B) be a pair of non-empty subsets of a metric space (X, d) with A0 , ∅.
A is said to have uniform approximation in B if and only if, given ε > 0, there exists σ > 0 such that
the following holds: 

d(x1, y1) = d(A, B)
d(x2, y2) = d(A, B)
d(x1, x2) < σ

⇒ d(y1, y2) < ε,

for all x1, x2 ∈ A and y1, y2 ∈ B.

It is trivial to see that A (or B) has uniform approximation in B (or A) and the pairs (A, B) and (B, A)
do not necessarily have the weak P-property (see [28] and Example 3.1).

3. Main results

Let A and B be two non-empty subsets of a modular metric space (X,w). For all λ > 0, we set

wλ(A, B) = inf{wλ(x, y) : x ∈ A, y ∈ B},

Aλ
0 = {x ∈ A : wλ(x, y) = wλ(A, B) f or some y ∈ B} and

Bλ
0 = {y ∈ B : wλ(x, y) = wλ(A, B) f or some x ∈ A} .

Definition 3.1. Let (A, B) be a pair of non-empty subsets of a modular metric space (X,w), and let
α, η : X × X → [0,∞) be two functions. We say that T : A → B is an α-proximal admissible mapping
with respect to η if the following holds:

α(u1, u2) ≥ η(u1, u2)
wλ (x1,Tu1) = wλ(A, B)
wλ (x2,Tu2) = wλ(A, B)

⇒ α(x1, x2) ≥ η(x1, x2),

for all x1, x2, u1, u2 ∈ A and λ > 0.
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Definition 3.2. Let (A, B) be a pair of non-empty subsets of a modular metric space (X,w); the
subspace A is said to have uniform approximation in the subspace B if and only if, for given ε > 0,
there exists δ > 0 such that the following holds:

wλ(x1, y1) = wλ(A, B)
wλ(x2, y2) = wλ(A, B)
wλ(x1, x2) < σ

⇒ wλ(y1, y2) < ε,

for all x1, x2 ∈ A, y1, y2 ∈ B and λ > 0.

Here, we introduce the concept of an α-η-type generalized F-proximal contraction of the first and
second kind in modular metric spaces.

Definition 3.3. Let (A, B) be a pair of non-empty subsets of a modular metric space (X,w). A non-self
mapping T : A → B is said to be an α-η-type generalized F-proximal contraction of the first kind if
there exist F ∈ F, λ0 > 0, and a, b, c, e, τ > 0 with a + b + c + 2e = 1 such that the following holds:

α(u1, u2) ≥ η(u1, u2)
wλ(x1,Tu1) = wλ(A, B)
wλ(x2,Tu2) = wλ(A, B)

⇒τ + F(wλ(x1, x2)) ≤ F(w λ
a
(u1, u2) + w λ

b
(x1, u1) + w λ

c
(x2, u2) + w λ

e
(x1, u2) + w λ

e
(x2, u1)),

for any x1, x2, u1, u2 ∈ A with x1 , x2 and 0 < λ ≤ λ0.

Definition 3.4. Let (A, B) be a pair of non-empty subsets of a modular metric space (X,w). A non-self
mapping T : A→ B is said to be an α-η-type generalized F-proximal contraction of the second kind if
there exist F ∈ F, λ0 > 0, and a, b, c, e, τ > 0 with a + b + c + 2e = 1 such that the following holds:

α(u1, u2) ≥ η(u1, u2)
wλ(x1,Tu1) = wλ(A, B)
wλ(x2,Tu2) = wλ(A, B)

⇒τ + F(wλ(T x1,T x2)) ≤ F(w λ
a
(Tu1,Tu2) + w λ

b
(T x1,Tu1) + w λ

c
(T x2,Tu2) + w λ

e
(T x1,Tu2)

+ w λ
e
(T x2,Tu1)),

for any x1, x2, u1, u2 ∈ A with T x1 , T x2 and 0 < λ ≤ λ0.

Now we state and prove the main results of this section.

Theorem 3.1. Let w be a strict convex modular metric with the Fatou property on X and X∗w be a
w-complete modular metric space induced by w. Suppose that (A, B) is a pair of non-empty w-closed
subsets of X∗w such that A has uniform approximation in B. Assume that T is an α-η-type generalized
F-proximal contraction of the first kind that satisfies the following assertions:

(1) Aλ
0 and Bλ

0 are non-empty sets and T (Aλ
0) ⊆ Bλ

0 for all 0 < λ ≤ λ0;
(2) T is an α-admissible mapping with respect to η;
(3) there exist elements x0, x1 ∈ Aλ

0 for all 0 < λ ≤ λ0 such that wλ(x1,T x0) = wλ(A, B) and α(x0, x1) ≥
η(x0, x1);
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(4) if {xn} is a sequence such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N0 and xn → x as n → ∞, then
α(xn, x) ≥ η(xn, x) for all n ∈ N0.

If, for every 0 < λ ≤ λ0, there exists an x ∈ X∗w satisfying that wλ(x,T x) = wλ(A, B) implies that
wλ(x,T x) < ∞, then T has a best proximity point. If, in addition, for any x, u ∈ X∗w satisfying that
wλ(x,T x) = wλ(u,Tu) = wλ(A, B) implies that wλ(x, u) < ∞ and α(x, u) ≥ η(x, u), then the best
proximity point of T is unique. Further, for any x0 ∈ A0, the sequence {xn} defined by

wλ(xn+1,T xn) = wλ(A, B),

w-converges to the best proximity point.

Proof. Let x0, x1 ∈ Aλ
0 such that

wλ(x1,T x0) = wλ(A, B) and α(x0, x1) ≥ η(x0, x1).

Given the fact that T (Aλ
0) ⊆ Bλ

0, there exists x2 in Aλ
0 such that

wλ(x2,T x1) = wλ(A, B).

Since T is an α-admissible mapping with respect to η, we have that α(x1, x2) ≥ η(x1, x2). Again, in
view of the fact that T (Aλ

0) ⊆ Bλ
0, there exists x3 ⊆ Aλ

0 such that

wλ(x3,T x2) = wλ(A, B).

Similarly, we have that α(x2, x3) ≥ η(x2, x3). Continuing this process, we get:

wλ(xn+1,T xn) = wλ(A, B) and α(xn, xn+1) ≥ η(xn, xn+1)

for all n ∈ N. If there exists n0 ∈ N0 such that xn0 = xn0+1, then wλ(xn0 ,T xn0) = wλ(A, B), which implies
that xn0 is a best proximity point of T . Hence, we suppose that xn , xn+1 for all n ∈ N0. Given the fact
that T is an α-η-type generalized F-proximal contraction of the first kind, we have

τ + F(wλ(xn, xn+1)) ≤F(w λ
a
(xn−1, xn) + w λ

b
(xn, xn−1) + w λ

c
(xn+1, xn) + w λ

e
(xn, xn) + w λ

e
(xn−1, xn+1)).

(3.1)

By the convexity of w, we get

w λ
a
(xn−1, xn) = wλ+ 1−a

a λ(xn−1, xn)

≤
λ
λ
a

wλ(xn−1, xn) +
1−a

a λ

λ
a

w 1−a
a λ(xn, xn)

= awλ(xn−1, xn)

which implies that

w λ
a
(xn−1, xn) ≤ awλ(xn−1, xn). (3.2)
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Similarly, we can obtain

w λ
b
(xn−1, xn) ≤ bwλ(xn−1, xn), (3.3)

w λ
c
(xn, xn+1) ≤ cwλ(xn, xn+1). (3.4)

Also,

w λ
e
(xn−1, xn+1) = wλ+ 1−e

e λ(xn−1, xn+1)

≤ ewλ(xn−1, xn) + (1 − e)w 1−e
e λ(xn, xn+1)

≤ ewλ(xn−1, xn) + ewλ(xn, xn+1)(as e ∈ (0,
1
2

)).

(3.5)

Applying (3.2)–(3.5) in (3.1), we obtain

τ + F (wλ(xn, xn+1)) ≤ F ((a + b + e)wλ(xn−1, xn) + (c + e)wλ(xn, xn+1)) . (3.6)

Since F is strictly increasing, we derive

wλ(xn, xn+1) ≤ (a + b + e)wλ(xn−1, xn) + (c + e)wλ(xn, xn+1).

Thus,

wλ(xn, xn+1) ≤
a + b + e
1 − c − e

wλ(xn−1, xn).

Since a + b + c + 2e = 1 and a, b, c, e > 0, we have

wλ(xn, xn+1) ≤ wλ(xn−1, xn),

for any n ∈ N0 and 0 < λ ≤ λ0. Thus, from (3.6), we have

τ + F(wλ(xn, xn+1)) ≤ F(wλ(xn−1, xn)).

Therefore,

F(wλ(xn, xn+1)) ≤ F(wλ(xn−1, xn)) − τ
≤ F(wλ(xn−2, xn−1)) − 2τ ≤ ...
≤ F(wλ(x0, x1)) − nτ.

(3.7)

Denote γλn = wλ(xn, xn+1) for any n ∈ N0 and 0 < λ ≤ λ0. From (3.7), we deduce that lim
n→∞

F(γλn) = −∞.
Using (F2), we get

lim
n→∞

γλn = 0. (3.8)

Taking into account (F3), there exists k ∈ (0, 1) such that

lim
n→∞

(
γλn

)k
F(γλn) = 0. (3.9)
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It follows from (3.7) that (
γλn

)k
F(γλn) −

(
γλn

)k
F(γλ0) ≤ −

(
γλn

)k
nτ ≤ 0.

Letting n→ ∞ in the above inequality, and combining it with (3.8) and (3.9) we get

lim
n→∞

(
γλn

)k
n = 0.

So, there exists n1 ∈ N0 such that
(
γλn

)k
n ≤ 1 for all n ≥ n1. Consequently, we have

γλn ≤
1

n1/k ,

for all n ≥ n1 and 0 < λ ≤ λ0. Set λi =
(

1
2

)i
λ0 for any i ∈ N. It is easy to see that 0 < λi ≤ λ0. Thus, we

have

γλi
n ≤

1
n1/k (3.10)

for all n ≥ n1. For any positive integers m, n with 1 < m < n, we obtain

wλh(xm, xn) ≤
λm

λh
wλm(xm, xm+1) +

λm+1

λh
wλm+1(xm+1, xm+2) + ... +

λn−1

λh
wλn−1(xn−1, xn), (3.11)

where λh = λm + λm+1 + ... + λn−1. Since λh =
1

2mλ0 +
1

2m+1λ0 + ... +
1

2n+1λ0 ≤
1

2m−1λ0 < λ0, the
inequalities (3.10) and (3.11) imply that

wλh(xm, xn) ≤
λm

λh
wλm(xm, xm+1) +

λm+1

λh
wλm+1(xm+1, xm+2) + ... +

λn−1

λh
wλn(xn−1, xn)

≤ γλm
m + γ

λm+1
m+1 + ... + γ

λn−1
n ≤

n∑
j=m

1
j1/k ≤

∞∑
j=m

1
j1/k → 0.

Hence, lim
m,n→∞

wλh(xm, xn) = 0. Given that 0 < λh < λ0, we have that lim
m,n→∞

wλ0(xm, xn) = 0, which

implies that {xn} is a w-Cauchy sequence. Because the space A has uniform approximation in the space
B, it follows that {T xn} must be a w-Cauchy sequence in B. Since X∗w is a w-complete modular metric
space and (A, B) is a pair of non-empty w-closed subsets of X∗w , the sequence {xn} w-converges to some
element x in A and the sequence {T xn} w-converges to some element y in B. Noting that w satisfies the
Fatou property, then

wλ0(A, B) ≤ wλ0(x, y) ≤ lim inf
n→∞

wλ0(xn+1,T xn) = wλ0(A, B),

thus, wλ0(x, y) = wλ0(A, B), which implies that x is a member in A0. Given that T (A0) ⊆ B0, we have
that

wλ0(p,T x) = wλ0(A, B)

for some element p in A. If, for some n ∈ N0, we have that xn+1 = p, so wλ0(xn+1,T x) = wλ0(A, B);
then,

wλ0(A, B) ≤ wλ0(x,T x) ≤ lim inf
n→∞

wλ0(xn+1,T xn) = wλ0(A, B),
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which implies that wλ0(x,T x) = wλ0(A, B) and the conclusion is immediate. Therefore, we assume that
xn , p for all n ∈ N0. Again, since T is an α-η-type generalized F-proximal contraction of the first
kind, we have

τ + F(wλ0(p, xn+1)) ≤F(w λ0
a

(x, xn) + w λ0
b

(p, x) + w λ0
c

(xn+1, xn) + w λ0
e

(p, xn) + w λ0
e

(x, xn+1)).

Since F is strictly increasing, we obtain

wλ0(p, xn+1) ≤w λ0
a

(x, xn) + w λ0
b

(p, x) + w λ0
c

(xn+1, xn) + w λ0
e

(p, xn) + w λ0
e

(x, xn+1)

≤awλ0(x, xn) + bwλ0(p, x) + cwλ0(xn+1, xn) + ewλ0(p, x) + ewλ0(x, xn) + ewλ0(xn+1, x).

Letting n → ∞ in the above inequality, we get that lim
n→∞

wλ0(p, xn+1) ≤ (b + e)wλ0(p, x); hence,
wλ0(p, x) ≤ (b + e)wλ0(p, x), which implies that p and x should be identical. Thus,
wλ0(x,T x) = wλ0(A, B) and x is a best proximity point of T . To prove the uniqueness of the result,
suppose that there is another best proximity point u of T such that wλ0(u,Tu) = wλ0(A, B). Given that
T is an α-η-type generalized F-proximal contraction of the first kind, we have

τ + F(wλ0(x, u)) ≤ F(w λ0
a

(x, u) + w λ0
e

(u, x) + w λ0
e

(x, u)).

Since F is strictly increasing, we obtain

wλ0(x, u) ≤ w λ0
a

(x, u) + w λ0
e

(u, x) + w λ0
e

(x, u)

≤ awλ0(x, u) + ewλ0(x, u) + ewλ0(x, u)
= (a + 2e)wλ0(x, u).

Since a + 2e > 0, it follows that wλ0(x, u) = 0, which implies that x and u are identical. This complete
the proof.

Let α(x, y) = η(x, y) = 1 for all x, y ∈ X in Theorem 3.1; we can deduce the following best proximity
point theorem in the setting of a modular metric space.

Corollary 3.1. Let w be a strict convex modular metric with the Fatou property on X and X∗w be a
w-complete modular metric space induced by w. Suppose that (A, B) is a pair of non-empty w-closed
subsets of X∗w such that A has uniform approximation in B. Assume that T : A → B is a generalized
F-proximal contraction of Reich type of the first kind, that is, for any x1, x2, u1, u2 ∈ A with x1 , x2,
F ∈ F and τ > 0, there exists λ0 > 0 such that the following holds:{

wλ(x1,Tu1) = wλ(A, B)
wλ(x2,Tu2) = wλ(A, B)

⇒ τ + F(wλ(x1, x2)) ≤ F(w λ
a
(u1, u2) + bw λ

b
(x1, u1) + cw λ

c
(x2, u2))

for all 0 < λ ≤ λ0 and a, b, c > 0 with a + b + c = 1. Also,

(1) Aλ
0 and Bλ

0 are non-empty sets and T (Aλ
0) ⊆ Bλ

0 for all 0 < λ ≤ λ0;
(2) there exist elements x0, x1 ∈ Aλ

0 for all 0 < λ ≤ λ0 such that wλ(x1,T x0) = wλ(A, B).
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If, for every 0 < λ ≤ λ0, there exists an x ∈ X∗w satisfying that wλ(x,T x) = wλ(A, B) implies that
wλ(x,T x) < ∞, then T has a best proximity point. If in addition, for any x, u ∈ X∗w, wλ(x,T x) =
wλ(u,Tu) = wλ(A, B) implies that wλ(x, u) < ∞, then the best proximity point of T is unique. Further,
for any fixed element x0 ∈ A0, the sequence {xn} defined by

wλ(xn+1,T xn) = wλ(A, B),

w-converges to the best proximity point.

The following results without the convexity assumption of Corollary 3.1.

Corollary 3.2. Let w be a strict modular metric with the Fatou property on X and X∗w be a w-complete
modular metric space induced by w. Suppose that (A, B) is a pair of non-empty w-closed subsets of X∗w
such that A has uniform approximation in B. Assume that T : A → B is an F-proximal contraction of
the first kind, that is, for any x1, x2, u1, u2 ∈ A with x1 , x2, there exists F ∈ F, τ > 0, and λ0 > 0 such
that the following holds:{

wλ(x1,Tu1) = wλ(A, B)
wλ(x2,Tu2) = wλ(A, B)

⇒ τ + F(wλ(x1, x2)) ≤ F(wλ(u1, u2))

for all 0 < λ ≤ λ0. Also, suppose that T satisfies the following assertions:

(1) Aλ
0 and Bλ

0 are non-empty sets and T (Aλ
0) ⊆ Bλ

0 for all 0 < λ ≤ λ0;
(2) there exist elements x0, x1 ∈ Aλ

0 for all 0 < λ ≤ λ0 such that wλ(x1,T x0) = wλ(A, B).

If, for every 0 < λ ≤ λ0, there exists an x ∈ X∗w satisfying that wλ(x,T x) = wλ(A, B) implies that
wλ(x,T x) < ∞, then T has a best proximity point. If in addition, for any x, u ∈ X∗w, wλ(x,T x) =
wλ(u,Tu) = wλ(A, B) implies that wλ(x, u) < ∞, then the best proximity point of T is unique. Further,
for any fixed element x0 ∈ A0, sequence {xn} defined by

wλ(xn+1,T xn) = wλ(A, B),

w-converges to the best proximity point.

We present an illustrative example.

Example 3.1. Let us consider the subsets

A =
{
(x1, x2) : x2

1 + x2
2 = 4 and 0 ≤ x1, x2 ≤ 2

}
,

B =
{
(y1, y2) : y2

1 + y2
2 = 1 and 0 ≤ y1, y2 ≤ 1

}
in the space X = R2 with the modular metric wλ : (0,∞) × X × X → [0,∞] defined by

wλ ((x1, x2), (y1, y2)) =
|x1 − y1| + |x2 − y2|

λ

for any λ > 0. Then, we have that wλ(A, B) = 1, A0 = A, and B0 = B. It is easy to see that (X,wλ) is
a w-complete modular metric space, w satisfies the Fatou property, and A has uniform approximation
in B; however, the pair (A, B) does not have the weak P-property. Let F : (0,∞) → R defined by
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F(x) = ln x for all x > 0. Thus, F belongs to F. Let T : A → B be a mapping that satisfies the
following for each (x1, x2) ∈ A:

T (x1, x2) = (Px1,

√
1 − (Px1)2),

where Px1 =
x1

2+x1
. We can observe that T (Aλ

0) ⊆ Bλ
0 for all λ > 0. Assume that u1, u2, u3, u4 are elements

in A such that wλ(u1,Tu2) = wλ(u3,Tu4) = wλ(A, B). Set u2 = (r1,
√

4 − r2
1) and u4 = (r2,

√
4 − r2

2)

for some 1 ≤ r1, r2 ≤ 2. Then, Tu2 = ( r1
2+r1

,
√

1 − (Pr1)2) and Tu4 = ( r2
2+r2

,
√

1 − (Pr2)2). So u1 =

( 2r1
2+r1

, 2
√

1 − (Pr1)2) and u3 = ( 2r2
2+r2

, 2
√

1 − (Pr2)2). We obtain

wλ(u1, u3) =

∣∣∣∣ 2r1
2+r1
−

2r2
2+r2

∣∣∣∣ + ∣∣∣∣2 √
1 − (Pr1)2 − 2

√
1 − (Pr2)2

∣∣∣∣
λ

=

∣∣∣∣ 2r1
2+r1
−

2r2
2+r2

∣∣∣∣ + ∣∣∣∣∣2 √
1 − ( r1

2+r1
)2
− 2

√
1 − ( r2

2+r2
)2
∣∣∣∣∣

λ

≤ e−τ
|r1 − r2| +

∣∣∣∣∣ √4 − r2
1 −

√
4 − r2

2

∣∣∣∣∣
λ

= e−τwλ(u2, u4).

When we set r1 = 0 and r2 = 1, we get that e−τ ≥ 6−3
√

3
8−2
√

2
or τ ∈ (0, ln 8−2

√
2

6−3
√

3
). Consequently, T is

an F-proximal contraction of the first kind. Thus, all of the conditions of Corollary 3.2 are satisfied.
Hence, T has a unique best proximity point (2, 0).

Next, we state and prove the best proximity point theorem for a α-η-type generalized F-proximal
contraction of the second kind in a modular metric space.

Theorem 3.2. Let w be a strict convex modular metric with the Fatou property on X and X∗w be a
w-complete modular metric space induced by w. Suppose that (A, B) is a pair of non-empty w-closed
subsets of X∗w such that B has uniform approximation in A. Assume that T is a continuous α-η-type
generalized F-proximal contraction of the second kind that satisfies the following assertions:

(1) Aλ
0 and Bλ

0 are non-void and T (Aλ
0) ⊆ Bλ

0;
(2) T is an α-admissible mapping with respect to η;
(3) there exist elements x0, x1 ∈ Aλ

0 for all 0 < λ ≤ λ0 such that wλ(x1,T x0) = wλ(A, B) and α(x0, x1) ≥
η(x0, x1).

If, for every 0 < λ ≤ λ0, there exists an x ∈ X∗w satisfying that wλ(x,T x) = wλ(A, B) implies that
wλ(x,T x) < ∞, then T has a best proximity point. If in addition, for any x, u ∈ X∗w satisfying
wλ(x,T x) = wλ(u,Tu) = wλ(A, B) implies that wλ(x, u) < ∞ and α(x, u) ≥ η(x, u), then the best
proximity point of T is unique. Further, for any x0 ∈ A0, the sequence {xn} defined by

wλ(xn+1,T xn) = wλ(A, B),

w-converges to the best proximity point.
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Proof. Similar to Theorem 3.1, we can obtain that there is a sequence {xn} in Aλ
0 such that

wλ(xn+1,T xn) = wλ(A, B) and α(xn, xn+1) ≥ η(xn, xn+1),

for all n ∈ N0 and 0 < λ ≤ λ0. Without loss of generality, we assume that xn+1 , xn for all n ∈ N0.
Given the fact that T is an α-η-type generalized F-proximal contraction of the second kind, we have

τ + F(wλ(T xn,T xn+1)) ≤F(w λ
a
(T xn−1,T xn) + w λ

b
(T xn,T xn−1) + w λ

c
(T xn+1,T xn)

+ w λ
e
(T xn,T xn) + w λ

e
(T xn−1,T xn+1)).

Since F is strictly increasing, we obtain

wλ(T xn,T xn+1) ≤w λ
a
(T xn−1,T xn) + w λ

b
(T xn,T xn−1) + w λ

c
(T xn+1,T xn) + w λ

e
(T xn−1,T xn+1)

≤awλ(T xn−1,T xn) + bwλ(T xn,T xn−1) + cwλ(T xn+1,T xn) + ewλ(T xn−1,T xn)
+ ewλ(T xn,T xn+1),

and, thus,

wλ(T xn,T xn+1) ≤
a + b + e
1 − c − e

wλ(T xn−1,T xn) ≤ wλ(T xn−1,T xn).

We can obtain that lim
m,n→∞

wλ0(T xm,T xn) = 0 and {T xn} is a w-Cauchy sequence by using a similar

technique as in Theorem 3.1. Because the space B has uniform approximation in the space A, it
follows that {T xn} must be a w-Cauchy sequence in A. Since X∗w is a w-complete modular metric space
and A is a non-empty w-closed subset of X∗w, the sequence {xn} w-converges to some element x in A.
By virtue of the fact that w satisfies the Fatou property and T is a continuous mapping, we have

wλ0(A, B) ≤ wλ0(x,T x) ≤ lim inf
n→∞

wλ0(xn+1,T xn) = wλ0(A, B).

So, wλ0(x,T x) = wλ0(A, B), which implies that x is a best proximity point of T . To prove the uniqueness
of the result, suppose that there is another best proximity point u of T such that wλ0(u,Tu) = wλ0(A, B).
Given that T is an α-η-type generalized F-proximal contraction of the second kind, we have

τ + F(wλ0(T x,Tu)) ≤ F(w λ0
a

(T x,Tu) + w λ0
e

(Tu,T x) + w λ0
e

(T x,Tu)).

Since F is strictly increasing, we obtain

wλ0(T x,Tu) ≤ w λ0
a

(T x,Tu) + w λ0
e

(Tu,T x) + w λ0
e

(T x,Tu)

≤ awλ0(T x,Tu) + ewλ0(T x,Tu) + ewλ0(T x,Tu)
= (a + 2e)wλ0(T x,Tu),

Since a + 2e > 0, we have that wλ0(T x,Tu) = 0, which implies that T x = Tu. This completes the
proof.

Letting α(x, y) = η(x, y) = 1 for all x, y ∈ X in Theorem 3.2, we can deduce the following best
proximity point theorem in the setting of a modular metric space.
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Corollary 3.3. Let w be a strict convex modular metric with the Fatou property on X and X∗w be a
w-complete modular metric space induced by w. Suppose that (A, B) is a pair of non-empty w-closed
subsets of X∗w such that B has uniform approximation in A. Assume that T : A→ B is a generalized F-
proximal contraction of Reich type of the second kind, that is, for any x1, x2, u1, u2 ∈ A with T x1 , T x2,
there exist F ∈ F, τ > 0, and a λ0 > 0 such that the following holds:{

wλ(x1,Tu1) = wλ(A, B)
wλ(x2,Tu2) = wλ(A, B)

⇒ τ+F(wλ(T x1,T x2)) ≤ F(w λ
a
(Tu1,Tu2)+bw λ

b
(T x1,Tu1)+cw λ

c
(T x2,Tu2))

for all 0 < λ ≤ λ0 and a, b, c > 0 with a + b + c = 1. Also,

(1) Aλ
0 and Bλ

0 are non-empty sets and T (Aλ
0) ⊆ Bλ

0 for all 0 < λ ≤ λ0;
(2) there exist elements x0, x1 ∈ Aλ

0 for all 0 < λ ≤ λ0 such that wλ(x1,T x0) = wλ(A, B).

If, for every 0 < λ ≤ λ0, there exists an x ∈ X∗w satisfying that wλ(x,T x) = wλ(A, B) implies that
wλ(x,T x) < ∞, then T has a best proximity point. If, in addition, for any x, u ∈ X∗w, wλ(x,T x) =
wλ(u,Tu) = wλ(A, B) implies that wλ(x, u) < ∞, then the best proximity point of T is unique. Further,
for any fixed element x0 ∈ A0, the sequence {xn} defined by

wλ(xn+1,T xn) = wλ(A, B),

w-converges to the best proximity point.

Corollary 3.4. Let w be a strict modular metric with the Fatou property on X and X∗w be a w-complete
modular metric space induced by w. Suppose that (A, B) is a pair of non-empty w-closed subsets of X∗w
such that B has uniform approximation in A. Assume that T : A → B is an F-proximal contraction
of the second kind, that is, for any x1, x2, u1, u2 ∈ A with T x1 , T x2, there exist F ∈ F, τ > 0, and a
λ0 > 0 such that the following holds:{

wλ(x1,Tu1) = wλ(A, B)
wλ(x2,Tu2) = wλ(A, B)

⇒ τ + F(wλ(T x1,T x2)) ≤ F(wλ(Tu1,Tu2))

for all 0 < λ ≤ λ0. Also,

(1) Aλ
0 and Bλ

0 are non-empty sets and T (Aλ
0) ⊆ Bλ

0 for all 0 < λ ≤ λ0;
(2) there exist elements x0, x1 ∈ Aλ

0 for all 0 < λ ≤ λ0 such that wλ(x1,T x0) = wλ(A, B);

If, for every 0 < λ ≤ λ0, there exists an x ∈ X∗w satisfying that wλ(x,T x) = wλ(A, B) implies that
wλ(x,T x) < ∞, then T has a best proximity point. If, in addition, for any x, u ∈ X∗w, wλ(x,T x) =
wλ(u,Tu) = wλ(A, B) implies that wλ(x, u) < ∞, then the best proximity point of T is unique. Further,
for any fixed element x0 ∈ A0, sequence {xn} defined by

wλ(xn+1,T xn) = wλ(A, B),

w-converges to the best proximity point.

We present an illustrative example.
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Example 3.2. Let us consider the subsets

A = {(x1, x2) : x1 = 1 and x2 ≥ 0} ,
B = {(y1, y2) : y1 = 0 and y2 ≥ 0}

in the space X = R2 with the modular metric wλ : (0,∞) × X × X → [0,∞] defined by

wλ ((x1, x2), (y1, y2)) =
|x1 − y1| + |x2 − y2|

λ

for any λ > 0. Then, we have that wλ(A, B) =
√

2, A0 = A and B0 = B. It is easy to see that (X,wλ) is a
w-complete modular metric space, w satisfies the Fatou property and B has uniform approximation in
A. Let F : (0,∞)→ R be defined by F(x) = ln x for all x > 0. Thus, F belongs to F. Let T : A→ B be
a mapping that satisfies the following for each (x1, x2) ∈ A:

T (x1, x2) = (0, Px2),

where Px2 =
x2

1+x2
. We can observe that T (Aλ

0) ⊆ Bλ
0 for all λ > 0. Assume that u1, u2, u3, u4 are

elements in A such that wλ(u1,Tu2) = wλ(u3,Tu4) = wλ(A, B). Set u2 = (1, i1) and u4 = (1, i2) for some
1 ≤ i1, i2 ≤ 2. Then, Tu2 = (0, Pi1) and Tu4 = (0, Pi2). So, u1 = (1, Pi1) and u3 = (1, Pi2). We obtain

wλ(Tu1,Tu3) =

∣∣∣P2(i1) − P2(i2)
∣∣∣

λ
=

∣∣∣∣ i1
1+2i1
−

i2
1+2i2

∣∣∣∣
λ

≤ e−τ

∣∣∣∣ i1
1+i1
−

i2
1+i2

∣∣∣∣
λ

= e−τwλ(Tu2,Tu4).

When we set i1 = 0 and i2 = 1, we get that e−τ ≥ 2
3 or τ ∈ (0, ln 3

2 ). Consequently , T is an F-proximal
contraction of the second kind. Thus, all of the conditions of Corollary 3.4 are satisfied. Hence, T has
a unique best proximity point (1, 0).

Our next result is obtained for α-η-type generalized F-proximal contractions of the first kind, as
well as α-η-type generalized F-proximal contractions of the second kind without the assumption of
uniform approximation of the domains or the co-domain of the mappings.

Theorem 3.3. Let w be a strict convex modular metric with the Fatou property on X and X∗w be a
w-complete modular metric space induced by w. Suppose that (A, B) is a pair of non-empty w-closed
subsets of X∗w. Moreover, assume the following:

(1) Aλ
0 and Bλ

0 are non-empty sets and T (Aλ
0) ⊆ Bλ

0;
(2) T is an α-η-type generalized F-proximal contraction of the first kind as well as an α-η-type

generalized F-proximal contraction of the second kind;
(3) there exist elements x0, x1 ∈ Aλ

0 for all 0 < λ ≤ λ0 such that wλ(x1,T x0) = wλ(A, B) and α(x0, x1) ≥
η(x0, x1);

(4) if {xn} is a sequence such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N0 and xn → x as n → ∞, then
α(xn, x) ≥ η(xn, x) for all n ∈ N0.

If, for every 0 < λ ≤ λ0, there exists an x ∈ X∗w satisfying that wλ(x,T x) = wλ(A, B) implies that
wλ(x,T x) < ∞, then T has a best proximity point. If, in addition, for any x, y ∈ X∗ such that wλ(x,T x) =
wλ(u,Tu) = wλ(A, B), we have that wλ(x, u) < ∞ and α(x, u) ≥ η(x, u), then the best proximity point of
T is unique. Further, for any fixed element x0 ∈ A0, the sequence {xn} defined by

wλ(xn+1,T xn) = wλ(A, B),

w-converges to the best proximity point.
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Proof. Similar to Theorem 3.1, we can obtain that there is a sequence {xn} in Aλ
0 such that

wλ(xn+1,T xn) = wλ(A, B) and α(xn, xn+1) ≥ η(xn, xn+1)

for all n ∈ N0 and 0 < λ ≤ λ0. Proceeding as in Theorem 3.1, we obtain that the sequence {xn} is a
w-Cauchy sequence and w-converges to some element x in A. Similar to Theorem 3.2, we obtain that
the sequence {T xn} is a w-Cauchy sequence and w-converges to some element y in B. Noting that w
satisfies the Fatou property, it follows that

wλ0(A, B) ≤ wλ0(x, y) ≤ lim inf
n→∞

wλ0(xn+1,T xn) = wλ0(A, B),

thus, wλ0(x, y) = wλ0(A, B), which implies that x is a member in Aλ
0. Given that T (Aλ

0) ⊆ Bλ
0, we have

wλ0(p,T x) = wλ0(A, B)

for some element p in A. If for some n ∈ N0 such that xn+1 = p we have that wλ0(xn+1,T x) = wλ0(A, B),
then

wλ0(A, B) ≤ wλ0(x,T x) ≤ lim inf
n→∞

d(xn+1,T x) = wλ0(A, B)

which implies that wλ0(x,T x) = wλ0(A, B) and the conclusion is immediate. Therefore, we assume that
xn , p for all n ∈ N0. Again, since T is an α-η-type generalized F-proximal contraction of the first
kind, we have

τ + F(wλ0(p, xn+1)) ≤F(w λ0
a

(x, xn) + w λ0
b

(p, x) + w λ0
c

(xn+1, xn) + w λ0
e

(p, xn) + w λ0
e

(x, xn+1)).

Since F is strictly increasing, we obtain

wλ0(p, xn+1) ≤w λ0
a

(x, xn) + w λ0
b

(p, x) + w λ0
c

(xn+1, xn) + w λ0
e

(p, xn) + w λ0
e

(x, xn+1)

≤awλ0(x, xn) + bwλ0(p, x) + cwλ0(xn+1, xn) + ewλ0(p, x) + ewλ0(x, xn) + ewλ0(x, xn+1).

Letting n → ∞ in the above inequality, we get that lim
n→∞

wλ0(p, xn+1) ≤ (b + e)wλ0(p, x); hence,
wλ0(p, x) ≤ (b + e)wλ0(p, x), which implies that p and x should be identical. Thus,
wλ0(x,T x) = wλ0(A, B) and x is a best proximity point of T . As in the proof of Theorem 3.1, the
uniqueness of the best proximity point of mapping T follows.

4. Applications

Let (X,wλ) be a metric space and A, B be two subsets of X. If A ∩ B , ∅, then d(A, B) = 0. In this
case, a best proximity result turns to a fixed point result.

Letting α(x, y) = η(x, y) = 1 for all x, y ∈ X in Theorem 3.1, we can obtain the following:

Corollary 4.1. Let w be a strict convex modular metric with the Fatou property on X and X∗w be a
w-complete modular metric space induced by w. Assume that T is a self mapping on X if there exist
F ∈ F, λ0 > 0, and a, b, c, e, τ > 0 with a + b + c + 2e = 1 such that the following holds:

τ + F (wλ(T x,Ty)) ≤ F
(
w λ

a
(x, y) + w λ

b
(x,T x) + w λ

c
(y,Ty) + w λ

e
(x,Ty) + w λ

e
(y,T x)

)
,
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for all x, y ∈ X and 0 < λ ≤ λ0. If, for every 0 < λ ≤ λ0, there exists an x ∈ X∗w satisfying that
wλ(x,T x) < ∞, then T has a fixed point. If, in addition, for any x, u ∈ X∗w satisfying that wλ(x, u) < ∞,
then the fixed point of T is unique. Further, for any x0 ∈ A0, the sequence {xn} defined by {T xn}

w-converges to the fixed point.

Corollary 4.2. Let w be a strict convex modular metric with the Fatou property on X and X∗w be a
w-complete modular metric space induced by w. Assume that T is a self-mapping on X if there exist
F ∈ F, λ0 > 0, and a, b, c, τ > 0 with a + b + c = 1 such that the following holds:

τ + F (wλ(T x,Ty)) ≤ F
(
w λ

a
(x, y) + w λ

b
(x,T x) + w λ

c
(y,Ty)

)
,

for all x, y ∈ X and 0 < λ ≤ λ0. If, for every 0 < λ ≤ λ0, there exists an x ∈ X∗w satisfying that
wλ(x,T x) < ∞, then T has a fixed point. If, in addition, for any x, u ∈ X∗w satisfying that wλ(x, u) < ∞,
then the fixed point of T is unique. Further, for any x0 ∈ A0, the sequence {xn} defined by {T xn}

w-converges to the fixed point.

Corollary 4.3. Let w be a strict convex modular metric with the Fatou property on X and X∗w be a
w-complete modular metric space induced by w. Assume that T be a self mapping on X, if there exist
F ∈ F, λ0 > 0, and τ > 0 such that

τ + F (wλ(T x,Ty)) ≤ F (wλ(x, y)) , (4.1)

for all x, y ∈ X and 0 < λ ≤ λ0. If, for every 0 < λ ≤ λ0, there exists an x ∈ X∗w satisfying that
wλ(x,T x) < ∞, then T has a fixed point. If, in addition, for any x, u ∈ X∗w satisfying that wλ(x, u) < ∞,
then the fixed point of T is unique. Further, for any x0 ∈ A0, the sequence {xn} defined by {T xn}

w-converges to the fixed point.

Letting α(x, y) = η(x, y) = 1 for all x, y ∈ X in Theorem 3.2, we can obtain the following:

Corollary 4.4. Let w be a strict convex modular metric with the Fatou property on X and X∗w be a
w-complete modular metric space induced by w. Assume that T is a self-mapping on X, if there exist
F ∈ F, λ0 > 0, and a, b, c, e, τ > 0 with a + b + c + 2e = 1 such that the following holds:

τ + F
(
wλ(T 2x,T 2y)

)
≤ F

(
w λ

a
(T x,Ty) + w λ

b
(T x,T 2x) + w λ

c
(Ty,T 2y) + w λ

e
(T x,T 2y) + w λ

e
(Ty,T 2x)

)
,

for all x, y ∈ X and 0 < λ ≤ λ0. If, for every 0 < λ ≤ λ0, there exists an x ∈ X∗w satisfying that
wλ(x,T x) < ∞, then T has a fixed point. If, in addition, for any x, u ∈ X∗w satisfying that wλ(x, u) < ∞,
then the fixed point of T is unique. Further, for any x0 ∈ A0, the sequence {xn} defined by {T xn}

w-converges to the fixed point.

Corollary 4.5. Let w be a strict convex modular metric with the Fatou property on X and X∗w be a
w-complete modular metric space induced by w. Assume that T is a self-mapping on X, if there exist
F ∈ F, λ0 > 0, and a, b, c, τ > 0 with a + b + c = 1 such that the following holds:

τ + F
(
wλ(T 2x,T 2y)

)
≤ F

(
w λ

a
(T x,Ty) + w λ

b
(T x,T 2x) + w λ

c
(Ty,T 2y)

)
,

for all x, y ∈ X and 0 < λ ≤ λ0. If, for every 0 < λ ≤ λ0, there exists an x ∈ X∗w satisfying that
wλ(x,T x) < ∞, then T has a fixed point. If, in addition, for any x, u ∈ X∗w satisfying that wλ(x, u) < ∞,
then the fixed point of T is unique. Further, for any x0 ∈ A0, the sequence {xn} defined by {T xn}

w-converges to the fixed point.
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Corollary 4.6. Let w be a strict convex modular metric with the Fatou property on X and X∗w be a
w-complete modular metric space induced by w. Assume that T is a self-mapping on X, if there exist
F ∈ F, λ0 > 0, and τ > 0 such that the following holds:

τ + F
(
wλ(T 2x,T 2y)

)
≤ F (wλ(T x,Ty)) ,

for all x, y ∈ X and 0 < λ ≤ λ0. If, for every 0 < λ ≤ λ0, there exists an x ∈ X∗w satisfying that
wλ(x,T x) < ∞, then T has a fixed point. If, in addition, for any x, u ∈ X∗w satisfying that wλ(x, u) < ∞,
then the fixed point of T is unique. Further, for any x0 ∈ A0, the sequence {xn} defined by {T xn}

w-converges to the fixed point.

Taking into account Corollary 4.3, we give an existence and uniqueness result for a solution of the
Fredholm linear integral equation:

x(t) = h(t) +
∫ β(t)

0
G(t, θ)L(θ, x(θ))dθ, (4.2)

for t ∈ I = [0, 1], where h : I → X, β : I → I, G : I × I → R, and L : I × I → R are continuous
functions. Let C(I,R) be the space of all continuous functions on I with the norm ∥x∥ = sup

t∈[0,1]
|x(t)|, and

the modular metric wλ(x, y) = ∥x−y∥
λ

for all x, y ∈ C(I,R). We consider the following assumptions:

(A1) The function G(t, θ) is continuous and nonnegative on I × I with ∥G∥∞ = sup {G(t, θ) : t, θ ∈ I};
(A2) |L(θ, x(θ)) − L(θ, y(θ))| ≤ δ |x(θ) − y(θ)| for all θ ∈ I.

Theorem 4.1. Assume that the hypotheses (A1) and (A2) hold. If ∥G∥∞δ ≤ e−
1
δ for some δ > 0, then

(4.2) has a unique solution in C(I,R).

Proof. Note that (C(I,R),wλ) is a w-complete modular metric space. Define a self-map T on C(I,R)
by

T x(t) = h(t) + β
∫ b

a
G(t, θ)L(θ, x(θ))dθ, f or all x(t) ∈ C(I,R).

By the hypotheses (H1) and (H2), and by using the Cauchy-Schwarz inequality, we get

wλ(T x,Ty) =
1
λ

sup
θ∈I

∣∣∣∣∣∣
∫ β(θ)

0
G(t, θ)L(θ, x(θ))dθ −

∫ β(θ)

0
G(t, θ)L(θ, y(θ)dθ

∣∣∣∣∣∣
≤
δ

λ
sup
θ∈I

∫ β(θ)

0
|G(t, θ)| |x(θ) − y(θ)| dθ

≤
δ

λ
sup
θ∈I

(∫ β(θ)

0
G2(t, θ)dθ

)1/2(∫ β(θ)

0
|x(θ) − y(θ)|2dθ

)1/2
≤
δ

λ
∥k∥∞ sup

θ∈I
|x(θ) − y(θ)|

≤ e−
1
δ wλ(x, y).

This implies that wλ(T x,Ty) ≤ e−
1
δ wλ(x, y). Hence, (4.1) is satisfied for F(α) = lnα, α > 0 and τ = 1

δ
.

Therefore, all conditions of Corollary 4.3 hold; thus, the integral given by (4.2) has a unique positive
solution.
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5. Conclusions

The main motivation of the current paper is to show that the best proximity point results for α-η-
type generalized F-proximal contraction mappings in the framework of modular metric spaces. We
have achieved some best proximity point theorems for modular metric spaces. Our new results extend
and improve many recent results. We also gave some examples to show the validity of our results and
an application to nonlinear integral inclusions. Finally, we plan on looking into two future directions:
the first direction is proving the existence of the best proximity points for cyclic mappings in modular
metric spaces and the second direction is applying the results of this paper in the settings of other
spaces, such as fuzzy metric spaces [29] and (q1, q2)-quasimetric spaces [11].
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