This paper is concerned with the long-time dynamical behavior of a piezoelectric system with magnetic effect, which has nonlinear damping terms and external forces with a parameter. At first, we use the nonlinear semigroup theory to prove the well-posedness of solutions. Then, we investigate the properties of global attractors and the existence of exponential attractors. Finally, the upper semicontinuity of global attractors has been investigated.
Citation: Gongwei Liu, Mengru Wang, Pengyan Ding. Long-time dynamical behavior for a piezoelectric system with magnetic effect and nonlinear dampings[J]. Electronic Research Archive, 2022, 30(9): 3397-3421. doi: 10.3934/era.2022173
This paper is concerned with the long-time dynamical behavior of a piezoelectric system with magnetic effect, which has nonlinear damping terms and external forces with a parameter. At first, we use the nonlinear semigroup theory to prove the well-posedness of solutions. Then, we investigate the properties of global attractors and the existence of exponential attractors. Finally, the upper semicontinuity of global attractors has been investigated.
[1] | A. Ö. Özer, Stabilization results for well-posed potential formulations of a current-controlled piezoelectric beam and their approximations, Appl. Math. Optim., 84 (2021), 877–914. https://doi.org/10.1007/s00245-020-09665-4 doi: 10.1007/s00245-020-09665-4 |
[2] | Z. W. Liang, Y. M. Li, Z. Zhao, L. Z. Xu, Structure optimization of a grain impact piezoelectric sensor and its application for monitoring separation losses on tangential-axial combine harvesters, Sensors, 15 (2015), 1496–1517. https://doi.org/10.3390/s150101496 doi: 10.3390/s150101496 |
[3] | L. Z. Xu, C. C. Wei, Z. W. Liang, X. Y. Chai, Y. M. Li, Q. Liu, Development of rapeseed cleaning loss monitoring system and experiments in a combine harvester, Biosyst. Eng., 178 (2019), 118–130. https://doi.org/10.1016/J.BIOSYSTEMSENG.2018.11.001 doi: 10.1016/J.BIOSYSTEMSENG.2018.11.001 |
[4] | C. Dagdeviren, P. Joe, O. L. Tuzman, K. Park, K. J. Lee, Y. Shi, et al., Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation, Extreme Mech. Lett., 9 (2016), 269–281. https://doi.org/10.1016/J.EML.2016.05.015 doi: 10.1016/J.EML.2016.05.015 |
[5] | C. Dagdeviren, B. D. Yang, Y. W. Su, P. Tran, P. Joe, E. Anderson, et al., Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm, Proc. Natl. Acad. Sci. U. S. A., 111 (2014), 1927–1932. https://doi.org/10.1073/pnas.1317233111 doi: 10.1073/pnas.1317233111 |
[6] | D. Buxi, J. M. Redouté, M. Yuce, Frequency sensing of medical signals using low-voltage piezoelectric sensors, Sens. Actuators A, 220 (2014), 373–381. https://doi.org/10.1016/j.sna.2014.10.022 doi: 10.1016/j.sna.2014.10.022 |
[7] | H. K. Ma, W. F. Luo, J. Y. Lin, Development of a piezoelectric micropump with novel separable design for medical applications, Sens. Actuators A, 236 (2015), 57–66. https://doi.org/10.1016/j.sna.2015.10.010 doi: 10.1016/j.sna.2015.10.010 |
[8] | S. Q. Zhang, Y. X. Li, R. Schmidt, Active shape and vibration control for piezoelectric bonded composite structures using various geometric nonlinearities, Compos. Struct., 122 (2015), 239–249. https://doi.org/10.1016/J.COMPSTRUCT.2014.11.031 doi: 10.1016/J.COMPSTRUCT.2014.11.031 |
[9] | A. J. A. Ramos, A. Ö. Özer, M. M. Freitas, D. S. A. Júnior, J. D. Martins, Exponential stabilization of fully dynamic and electrostatic piezoelectric beams with delayed distributed damping feedback, Z. Angew. Math. Phys., 72 (2021), 1–15. https://doi.org/10.1007/s00033-020-01457-8 doi: 10.1007/s00033-020-01457-8 |
[10] | R. C. Smith, Smart Material Systems: Model Development, Society for Industrial and Applied Mathematics, Philadelphia, 2005. https://doi.org/10.1137/1.9780898717471 |
[11] | L. Y. Tebou, E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation, Adv. Comput. Math., 26 (2006), 337–365. https://doi.org/10.1007/s10444-004-7629-9 doi: 10.1007/s10444-004-7629-9 |
[12] | A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Port. Math., 46 (1989), 245–258. |
[13] | J. C. Maxwell, A Dynamical Theory of the Electromagnetic Field, Scottish Academic Press, Edinburgh, 1982. |
[14] | J. C. Maxwell, A Treatise on Electricity and Magnetism, The Clarendon Press, Oxford University Press, New York, 1998. |
[15] | K. Morris, A. Ö. Özer, Strong stabilization of piezoelectric beams with magnetic effects, in The Proceedings of 52nd IEEE Conference on Decision and Control, Italy, (2013), 3014–3019. https://doi.org/10.1109/CDC.2013.6760341 |
[16] | K. A. Morris, A. Ö. Özer, Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects, SIAM. J. Control Optim., 52 (2014), 2371–2398. https://doi.org/10.1137/130918319 doi: 10.1137/130918319 |
[17] | A. Ö. Özer, Further stabilization and exact observability results for voltage-actuated piezoelectric beams with magnetic effects, Math. Control Signals Syst., 27 (2015), 219–244. https://doi.org/10.1007/s00498-015-0139-0 doi: 10.1007/s00498-015-0139-0 |
[18] | A. J. A. Ramos, C. S. L. Goncalves, S. S. C. Neto, Exponential stability and numerical treatment for piezoelectric beams with magnetic effect, ESAIM-Math. Model. Numer. Anal., 53 (2018), 255–274. https://doi.org/10.1051/m2an/2018004 doi: 10.1051/m2an/2018004 |
[19] | A. J. A. Ramos, M. M. Freitas, D. S. Almeida, S. S. Jesus, T. R. Moura, Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect, Z. Angew. Math. Phys., 70 (2019), 1–14. https://doi.org/10.1007/S00033-019-1106-2 doi: 10.1007/S00033-019-1106-2 |
[20] | R. Dakto, Representation of solutions and stability of linear differential-difference equations in a Banach space, J. Differ. Equations, 29 (1978), 105–166. https://doi.org/10.1016/0022-0396(78)90043-8 doi: 10.1016/0022-0396(78)90043-8 |
[21] | R. Dakto, J. Lagnese, M. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152–156. https://doi.org/10.1137/0324007 doi: 10.1137/0324007 |
[22] | R. Dakto, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697–713. https://doi.org/10.1137/0326040 doi: 10.1137/0326040 |
[23] | R. Datko, Two questions concerning the boundary control of certain elastic systems, J. Differ. Equations, 92 (1991), 27–44. https://doi.org/10.1016/0022-0396(91)90062-E doi: 10.1016/0022-0396(91)90062-E |
[24] | M. M. Freitas, A. J. A. Ramos, A. Ö. Özer, D. S. Almerida Júnior, Long-time dynamics for a fractional piezoelectric system with magnetic effects and Fourier's law, J. Differ. Equations, 280 (2021), 891–927. https://doi.org/10.1016/J.JDE.2021.01.030 doi: 10.1016/J.JDE.2021.01.030 |
[25] | M. M. Freitas, A. J. A. Ramos, M. J. Santos, J. Almeida, Dynamics of piezoelectric beams with magnetic effects and delay term, ESAIM-Math. Model. Numer. Anal., 11 (2022), 583–603. https://doi.org/10.3934/EECT.2021015 doi: 10.3934/EECT.2021015 |
[26] | T. F. Ma, P. N. Seminario-Huertas, Attractors for semilinear wave equations with localized damping and external forces, Commun. Pure Appl. Anal., 19 (2020), 2219–2233. https://doi.org/10.3934/cpaa.2020097 doi: 10.3934/cpaa.2020097 |
[27] | I. Lasiecka, A. R. Ruzmaikina, Finite dimensionality and regularity of attractors for 2-D semilinear wave equation with nonlinear dissipation, J. Math. Anal. Appl., 270 (2002), 16–50. https://doi.org/10.1016/S0022-247X(02)00006-9 doi: 10.1016/S0022-247X(02)00006-9 |
[28] | M. M. Freitas, M. J. Dos Santos, A. J. A. Ramos, M. S. Vinhote, M. L. Santos, Quasi-stability and continuity of attractors for nonlinear system of wave equations, Nonauton. Dyn. Syst., 8 (2021), 27–45. https://doi.org/10.1515/msds-2020-0125 doi: 10.1515/msds-2020-0125 |
[29] | M. M. Freitas, A. J. A. Ramos, B. W. Feng, M. L. Santos, H. C. M. Rodrigues, Existence and continuity of global attractors for ternary mixtures of solids, Discrete Contin. Dyn. Syst. -B, 27 (2022), 3563–3583. https://doi.org/10.3934/dcdsb.2021196 doi: 10.3934/dcdsb.2021196 |
[30] | W. Charles, J. A. Soriano, F. A. Nascimento, J. H. Rodrigues, Decay rates for Bresse system with arbitrary nonlinear localized damping, J. Differ. Equations, 255 (2013), 2267–2290. https://doi.org/10.1016/J.JDE.2013.06.014 doi: 10.1016/J.JDE.2013.06.014 |
[31] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer New York, NY, 1983. https://doi.org/10.1007/978-1-4612-5561-1 |
[32] | P. Pei, M. A. Rammaha, D. Toundykov, Local and global well-posedness of semilinear Reissner-Mindlin-Timoshenko plate equations, Nonlinear Anal., 105 (2014), 62–85. https://doi.org/10.1016/j.na.2014.03.024 doi: 10.1016/j.na.2014.03.024 |
[33] | V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer New York, NY, 2010. https://doi.org/10.1007/978-1-4419-5542-5 |
[34] | I. Chueshov, M. Eller, I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Commun. Partial Differ. Equations, 27 (2002), 1901–1951. https://doi.org/10.1081/PDE-120016132 doi: 10.1081/PDE-120016132 |
[35] | F. Bucci, I. Chueshov, Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations, Discrete Contin. Dyn. Syst., 22 (2008), 557–586. https://doi.org/10.3934/DCDS.2008.22.557 doi: 10.3934/DCDS.2008.22.557 |
[36] | I. Chueshov, I. Lasiecka, Von Karman Evolution Equations: Well-posedness and Long Time Dynamics, Springer New York Dordrecht Heidelberg London, New York, 2010. https://doi.org/10.1007/978-0-387-87712-9 |
[37] | J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001. https://doi.org/10.1115/1.1579456 |
[38] | R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer New York, NY, 1997. https://doi.org/10.1007/978-1-4612-0645-3 |
[39] | L. Hoang, E. Olson, J. C. Robinson, On the continuity of global attractors, Proc. Am. Math. Soc., 143 (2015), 4389–4395. https://doi.org/10.1090/proc/12598 doi: 10.1090/proc/12598 |
[40] | A. V. Babin, S. Yu. Pilyugin, Continuous dependence of attractors on the shape of domain, J. Math. Sci., 87 (1997), 3304–3310. https://doi.org/10.1007/BF02355582 doi: 10.1007/BF02355582 |
[41] | J. K. Hale, G. Raugel, Lower semicontinuity of attractors of gradient systems and applications, Ann. Mat. Pura Appl., 154 (1989), 281–326. https://doi.org/10.1007/BF01790353 doi: 10.1007/BF01790353 |
[42] | P. G. Geredeli, I. Lasiecka, Asymptotic analysis and upper semicontinuity with respect to rotational inertia of attractors to von Karman plates with geometrically localized dissipation and critical nonlinearity, Nonlinear Anal. Theory Methods Appl., 91 (2013), 72–92. https://doi.org/10.1016/J.NA.2013.06.008 doi: 10.1016/J.NA.2013.06.008 |
[43] | J. K. Hale, G. Raugel, Upper semicontinuity of the attractor for a singulary perturbed hyperbolic equation, J. Differ. Equations, 73 (1988), 197–214. https://doi.org/10.1016/0022-0396(88)90104-0 doi: 10.1016/0022-0396(88)90104-0 |
[44] | J. Simon, Compact sets in the space $L_{p}(0, T;B)$, Ann. Mat. Pura Appl., 146 (1986), 65–96. https://doi.org/10.1007/BF01762360 doi: 10.1007/BF01762360 |