This paper develops a method for computing the $ l_{\infty} $-induced norm of a multivariable discrete-time linear system, for which an infinite-dimensional matrix should be intrinsically concerned with. To make such a computation feasible, we treat the infinite-dimensional matrix in a truncated fashion, and an upper bound and a lower bound on the $ l_\infty $-induced norm of the original multivariable discrete-time linear system are derived. More precisely, the matrix $ \infty $-norm of the (infinite-dimensional) tail part can be approximately computed by deriving its upper and lower bounds, while that of the (finite-dimensional) truncated part can be exactly obtained. With these values, an upper bound and a lower bound on the original $ l_\infty $-induced norm can be computed. Furthermore, these bounds are shown to converge to each other within an exponential order of $ N $, where $ N $ is the corresponding truncation parameter. Finally, some numerical examples are provided to demonstrate the theoretical validity and practical effectiveness of the developed computation method.
Citation: Oe Ryung Kang, Jung Hoon Kim. The $ l_\infty $-induced norm of multivariable discrete-time linear systems: Upper and lower bounds with convergence rate analysis[J]. AIMS Mathematics, 2023, 8(12): 29140-29157. doi: 10.3934/math.20231492
This paper develops a method for computing the $ l_{\infty} $-induced norm of a multivariable discrete-time linear system, for which an infinite-dimensional matrix should be intrinsically concerned with. To make such a computation feasible, we treat the infinite-dimensional matrix in a truncated fashion, and an upper bound and a lower bound on the $ l_\infty $-induced norm of the original multivariable discrete-time linear system are derived. More precisely, the matrix $ \infty $-norm of the (infinite-dimensional) tail part can be approximately computed by deriving its upper and lower bounds, while that of the (finite-dimensional) truncated part can be exactly obtained. With these values, an upper bound and a lower bound on the original $ l_\infty $-induced norm can be computed. Furthermore, these bounds are shown to converge to each other within an exponential order of $ N $, where $ N $ is the corresponding truncation parameter. Finally, some numerical examples are provided to demonstrate the theoretical validity and practical effectiveness of the developed computation method.
[1] | J. C. Doyle, K. Glover, P. P. Khargonekar, B. A. Francis, State-space solutions to standard $\mathcal{H}_2$ and $\mathcal{H}_{\infty}$ control problems, IEEE T. Automat. Contr., 34 (1989), 831–847. https://doi.org/10.1109/9.29425 doi: 10.1109/9.29425 |
[2] | T. Hagiwara, Y. Ito, M. Araki, Computation of the frequency response gain and $H_\infty$-norm of a sampled-data system, Syst. Control Lett., 25 (1995), 281–288. https://doi.org/10.1016/0167-6911(94)00083-8 doi: 10.1016/0167-6911(94)00083-8 |
[3] | T. Hagiwara, K. Okada, Modified fast-sample/fast-hold approximation and $\gamma$-independent $H_\infty$-discretisation for general sampled-data systems by fast-lifting, Int. J. Control, 82 (2009), 1762–1771. https://doi.org/10.1080/00207170902748732 doi: 10.1080/00207170902748732 |
[4] | S. Luemsai, T. Botmart, W. Weera, S. Charoensin, Improved results on mixed passive and $H_{\infty}$ performance for uncertain neural networks with mixed interval time-varying delays via feedback control, AIMS Math., 6 (2021), 2653–2679. https://doi.org/10.3934/math.2021161 doi: 10.3934/math.2021161 |
[5] | B. Meesuptong, P. Singkibud, P. Srisilp, K. Mukdasai, New delay-range-dependent exponential stability criterion and $H_{\infty}$ performance for neutral-type nonlinear system with mixed time-varying delays, AIMS Math., 8 (2023), 691–712. https://doi.org/10.3934/math.2023033 doi: 10.3934/math.2023033 |
[6] | H. T. Choi, H. Y. Park, J. H. Kim, Output-based event-triggered control for discrete-time systems with three types of performance analysis, AIMS Math., 8 (2023), 17091–17111. https://doi.org/10.3934/math.2023873 doi: 10.3934/math.2023873 |
[7] | M. A. Rotea, The generalized $H_2$ control problem, Automatica, 29 (1993), 373–385. https://doi.org/10.1016/0005-1098(93)90130-L doi: 10.1016/0005-1098(93)90130-L |
[8] | D. A. Wilson, M. A. Nekoiu, G. D. Halikias, An LQR weight selection approach to the discrete generalized $H_2$ control problem, Int. J. Control, 71 (1998), 93–101. https://doi.org/10.1080/002071798221948 doi: 10.1080/002071798221948 |
[9] | V. Chellaboina, W. M. Haddad, D. S. Bernstein, D. A. Wilson, Induced convolution operator norms of linear dynamical systems, Math. Control Signal., 13 (2000), 216–239. https://doi.org/10.1007/PL00009868 doi: 10.1007/PL00009868 |
[10] | J. H. Kim, T. Hagiwara, Upper/lower bounds of generalized $H_2$ norms in sampled-data systems with convergence rate analysis and discretization viewpoint, Syst. Control Lett., 107 (2017), 28–35. http://dx.doi.org/10.1016/j.sysconle.2017.06.008 doi: 10.1016/j.sysconle.2017.06.008 |
[11] | J. H. Kim, T. Hagiwara, The generalized $H_2$ controller synthesis problem of sampled-data systems, Automatica, 142 (2022), 110400. https://doi.org/10.1016/j.automatica.2022.11040 doi: 10.1016/j.automatica.2022.11040 |
[12] | M. A. Dahleh, J. Pearson, $L^{1}$-optimal compensators for continuous-time systems, IEEE T. Automat. Control, 32 (1987), 889–895. https://doi.org/10.1109/TAC.1987.1104455 doi: 10.1109/TAC.1987.1104455 |
[13] | Y. Ohta, H. Maeda, S. Kodama, Rational approximation of $L_1$ optimal controllers for SISO systems, IEEE T. Automat. Control, 37 (1992), 1683–1691. https://doi.org/10.1109/9.173139 doi: 10.1109/9.173139 |
[14] | M. Vidyasagar, Optimal rejection of persistent bounded disturbances, IEEE T. Automat. Control, 31 (1986), 527–534. https://doi.org/10.1109/TAC.1986.1104315 doi: 10.1109/TAC.1986.1104315 |
[15] | M. A. Dahleh, J. Pearson, $l^{1}$-optimal feedback controllers for MIMO discrete-time systems, IEEE T. Automat. Control, 32 (1987), 314–322. https://doi.org/10.1109/TAC.1987.1104603 doi: 10.1109/TAC.1987.1104603 |
[16] | I. J. Diaz-Bobillo, M. A. Dahleh, Minimization of the maximum peak-to-peak gain: the general multiblock problem, IEEE T. Automat. Control, 38 (1993), 1459–1482. https://doi.org/10.1109/9.241561 doi: 10.1109/9.241561 |
[17] | M. Khammash, A new approach to the solution of the $\ell_1$ control problem: the scaled-$Q$ method, IEEE T. Automat. Control, 45 (2000), 180–187. https://doi.org/10.1109/9.839942 doi: 10.1109/9.839942 |
[18] | J. H. Kim, T. Hagiwara, Computing the $L_{\infty}[0, h)$-induced norm of a compression operator via fast-lifting, Syst. Control Lett., 67 (2014), 1–8. https://doi.org/10.1016/j.sysconle.2014.01.009 doi: 10.1016/j.sysconle.2014.01.009 |
[19] | J. H. Kim, T. Hagiwara, Computing the $L_{\infty}$-induced norm of linear time‐invariant systems via Kernel approximation and its comparison with input approximation, IET Control Theory A., 9 (2015), 700–709. https://doi.org/10.1049/iet-cta.2014.0453 doi: 10.1049/iet-cta.2014.0453 |
[20] | J. H. Kim, T. Hagiwara, $L_{\infty}$-induced norm analysis of sampled-data systems via piecewise constant and linear approximations, Automatica, 51 (2015), 223–232. https://doi.org/10.1016/j.automatica.2014.10.102 doi: 10.1016/j.automatica.2014.10.102 |
[21] | J. H. Kim, T. Hagiwara, Further results on the $L_1$ analysis of sampled-data systems via kernel approximation approach, Int. J. Control, 89 (2016), 1684–1697. https://doi.org/10.1080/00207179.2016.1144239 doi: 10.1080/00207179.2016.1144239 |
[22] | D. Kwak, J. H. Kim, T. Hagiwara, Generalized framework for computing the $L_\infty$-induced norm of sampled-data systems, Appl. Math. Comput., 437 (2023), 127518. https://doi.org/10.1016/j.amc.2022.127518 doi: 10.1016/j.amc.2022.127518 |
[23] | D. Kwak, J. H. Kim, T. Hagiwara, Robust stability analysis of sampled-data systems with uncertainties characterized by the ${\mathcal{L}}_\infty$-induced norm: gridding treatment with convergence rate analysis, IEEE T. Automat. Control. https://doi.org/10.1109/TAC.2023.3288631 |
[24] | H. T. Choi, J. H. Kim, Set-invariance-based interpretations for the $L_1$ performance of nonlinear systems with non-unique solutions, Int. J. Robust Nonlin., 33 (2023), 1858–1875. https://doi.org/10.1002/rnc.6469 doi: 10.1002/rnc.6469 |
[25] | S. Boyd, J. Doyle, Comparison of peak and RMS gains for discrete-time systems, Syst. Control Lett., 9 (1987), 1–6. https://doi.org/10.1016/0167-6911(87)90002-8 doi: 10.1016/0167-6911(87)90002-8 |
[26] | V. Balakrishnan, S. Boyd, On computing the worst-case peak gain of linear systems, Syst. Control Lett., 19 (1992), 265–269. https://doi.org/10.1016/0167-6911(92)90064-Y doi: 10.1016/0167-6911(92)90064-Y |
[27] | I. S. Khalil, J. C. Doyle, K. Glover, Robust and optimal control, Prentice hall, 1996 |
[28] | R. L. Burden, J. D. Faires, A. M. Burden, Numerical analysis, Cengage learning, 2001. |
[29] | T. Chen, B. A. Francis, Optimal sampled-data control systems, Springer Science & Business Media, 2012 |