Research article Special Issues

An $ L_{\infty} $ performance control for time-delay systems with time-varying delays: delay-independent approach via ellipsoidal $ \mathcal{D} $-invariance

  • Received: 24 August 2024 Revised: 02 October 2024 Accepted: 17 October 2024 Published: 25 October 2024
  • MSC : 34H05, 93C23, 93C43

  • This paper is concerned with a delay-independent output-feedback controller synthesis suppressing the $ L_{\infty} $-gain of linear time-delay systems with time-varying delays. We first proposed a continuous-time version of the existing discrete-time ellipsoidal $ {{\mathcal D}} $-invariant set and established its existence condition in terms of some linear matrix inequalities (LMIs). This existence condition was further extended to characterizing the $ L_{\infty} $-gain of linear time-delay systems with time-varying delays. Because of the delay-independent property of the proposed $ {{\mathcal D}} $-invariant set, the $ L_{\infty} $-gain analysis does not depend on the choice of delays including their magnitudes and time derivatives. Based on this analysis method, we also constructed an output-feedback controller synthesis for ensuring the $ L_{\infty} $-gain of time-delay systems bounded by a performance level $ \rho $. In an equivalent fashion to the $ L_\infty $-gain analysis method, this controller synthesis is independent of the delays in the sense that the obtained controller coefficients do not depend on the delay characteristics. Finally, numerical results were given to demonstrate the effectiveness and validity of the proposed results.

    Citation: Hyung Tae Choi, Jung Hoon Kim. An $ L_{\infty} $ performance control for time-delay systems with time-varying delays: delay-independent approach via ellipsoidal $ \mathcal{D} $-invariance[J]. AIMS Mathematics, 2024, 9(11): 30384-30405. doi: 10.3934/math.20241466

    Related Papers:

  • This paper is concerned with a delay-independent output-feedback controller synthesis suppressing the $ L_{\infty} $-gain of linear time-delay systems with time-varying delays. We first proposed a continuous-time version of the existing discrete-time ellipsoidal $ {{\mathcal D}} $-invariant set and established its existence condition in terms of some linear matrix inequalities (LMIs). This existence condition was further extended to characterizing the $ L_{\infty} $-gain of linear time-delay systems with time-varying delays. Because of the delay-independent property of the proposed $ {{\mathcal D}} $-invariant set, the $ L_{\infty} $-gain analysis does not depend on the choice of delays including their magnitudes and time derivatives. Based on this analysis method, we also constructed an output-feedback controller synthesis for ensuring the $ L_{\infty} $-gain of time-delay systems bounded by a performance level $ \rho $. In an equivalent fashion to the $ L_\infty $-gain analysis method, this controller synthesis is independent of the delays in the sense that the obtained controller coefficients do not depend on the delay characteristics. Finally, numerical results were given to demonstrate the effectiveness and validity of the proposed results.



    加载中


    [1] M. Vidyasagar, Optimal rejection of persistent bounded disturbances, IEEE Trans. Automat. Control, 31 (1986), 527–534. https://doi.org/10.1109/TAC.1986.1104315 doi: 10.1109/TAC.1986.1104315
    [2] M. Dahleh, J. Pearson, $\mathcal{L}^{1}$ optimal compensators for continuous-time systems, IEEE Trans. Automat. Control, 32 (1987), 889–895. https://doi.org/10.1109/TAC.1987.1104455 doi: 10.1109/TAC.1987.1104455
    [3] Y. Ohta, H. Maeda, S. Kodama, Rational approximation of $L_{1}$ optimal controllers for SISO systems, Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, UK, 1991. https://doi.org/10.1109/CDC.1991.261457
    [4] H. Karloff, Linear programming, Springer Science Business Media, 2008.
    [5] A. W. Naylor, G. R. Sell, Linear operator theory in engineering and science, Springer Science Business Media, 1982.
    [6] H. Y. Park, J. H. Kim, Model-free control approach to uncertain Euler-Lagrange equations with a Lyapunov-based $L_{\infty}$-gain analysis, AIMS Math., 8 (2023) 17666–17686. https://doi.org/10.3934/math.2023902 doi: 10.3934/math.2023902
    [7] O. R. Kang, J. H. Kim, Robust sliding mode control for robot manipulators with analysis on trade‐off between reaching time and $L_{\infty}$ gain, Math. Methods Appl. Sci., 47 (2024), 7270–7287. https://doi.org/10.1002/mma.9972 doi: 10.1002/mma.9972
    [8] H. Y. Park, J. H. Kim, K. Yamamoto, A new stability framework for trajectory tracking control of biped walking robots, IEEE Trans. Indus. Inform., 18 (2022), 6767–6777. https://doi.org/10.1109/TII.2021.3139909 doi: 10.1109/TII.2021.3139909
    [9] H. Y. Park, J. H. Kim, Robust balancing control of biped robots for external forces, 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 2024, 13257–13262. https://doi.org/10.1109/ICRA57147.2024.10611281
    [10] H. Y. Park, J. H. Kim, The $l_{1}$ optimal state estimator for load frequency control of power systems: a comparative and extensive study, IEEE Access, 10 (2022), 120680–120689. https://doi.org/10.1109/ACCESS.2022.3222487 doi: 10.1109/ACCESS.2022.3222487
    [11] D. Kwak, J. H. Kim, T. Hagiwara, Generalized framework for computing the $L_{\infty}$-induced norm of sampled-data systems, Appl. Math. Comput., 437 (2023), 127518. https://doi.org/10.1016/j.amc.2022.127518 doi: 10.1016/j.amc.2022.127518
    [12] D. Kwak, J. H. Kim, T. Hagiwara, A new quasi-finite-rank approximation of compression operators with application to the $L_{1}$ discretization for sampled-data systems, 2023 62nd IEEE Conference on Decision and Control (CDC), Singapore, 2023, 8806–8811. https://doi.org/10.1109/CDC49753.2023.10383268
    [13] D. Kwak, J. H. Kim, T. Hagiwara, A new quasi-finite-rank approximation of compression operators on $L_{\infty}[0, H)$ with applications to sampled-data and time-delay systems: piecewise linear kernel approximation approach, J. Franklin Inst., 361 (2024), 107271. https://doi.org/10.1016/j.jfranklin.2024.107271 doi: 10.1016/j.jfranklin.2024.107271
    [14] D. Kwak, J. H. Kim, T. Hagiwara, Robust stability analysis of sampled-data systems with uncertainties characterized by the ${\mathcal {L}} _\infty $-induced norm: gridding treatment with convergence rate analysis, IEEE Trans. Automat. Control, 68 (2023), 8119–8125. https://doi.org/10.1109/TAC.2023.3288631 doi: 10.1109/TAC.2023.3288631
    [15] C. Briat, Robust stability and stabilization of uncertain linear positive systems via integral linear constraints: $L_{1}$-gain and $L_{\infty}$-gain characterization, Int. J. Robust Nonlinear Control, 23 (2013), 1932–1954. https://doi.org/10.1002/rnc.2859 doi: 10.1002/rnc.2859
    [16] J. Shen, J. Lam, $\ell_{\infty}/L_{\infty}$-gain analysis for positive linear systems with unbounded time-varying delays, IEEE Trans. Automat. Control, 60 (2014), 857–862. https://doi.org/10.1109/TAC.2014.2344295 doi: 10.1109/TAC.2014.2344295
    [17] G. Yang, F. Hao, L. Zhang, L. Gao, Stabilization of discrete-time positive switched TS fuzzy systems subject to actuator saturation, AIMS Math., 8 (2023), 12708–12728. https://doi.org/10.3934/math.2023640 doi: 10.3934/math.2023640
    [18] H. T. Choi, H. Y. Park, J. H. Kim, Output-based event-triggered control for discrete-time system with three types of performance analysis, AIMS Math., 8 (2023), 17091–17111. https://doi.org/10.3934/math.2023873 doi: 10.3934/math.2023873
    [19] H. Y. Park, H. T. Choi, J. H. Kim, The $l_{\infty/p}$-gains for discrete-time observer-based event-triggered systems, Int. J. Robust Nonlinear Control, 33 (2023), 6121–6134. https://doi.org/10.1002/rnc.6685 doi: 10.1002/rnc.6685
    [20] W. M. Lu, Rejection of persistent $\mathcal{L}_{\infty}$-bounded disturbances for nonlinear systems, IEEE Trans. Automat. Control, 43 (1998), 1692–1702. https://doi.org/10.1109/9.736066 doi: 10.1109/9.736066
    [21] H. T. Choi, J. H. Kim, Set-invariance-based interpretations for the $L_{1}$ performance of nonlinear systems with non-unique solutions, Int. J. Robust Nonlinear Control, 33 (2023), 1858 – 1875. https://doi.org/10.1002/rnc.6469 doi: 10.1002/rnc.6469
    [22] H. T. Choi, J. H. Kim, The $\mathcal{L}_{1}$ controller synthesis for piecewise continuous nonlinear systems via set invariance principles, Int. J. Robust Nonlinear Control, 33 (2023), 8670–8692. https://doi.org/10.1002/rnc.6843 doi: 10.1002/rnc.6843
    [23] H. T. Choi, J. H. Kim, T. Hagiwara, Characterizing $L_{1}$ output-feedback controller for nonlinear systems: existence conditions via output controlled invariance domain, Int. J. Robust Nonlinear Control, 34 (2024), 11760–11785. https://doi.org/10.1002/rnc.7589 doi: 10.1002/rnc.7589
    [24] F. Blanchini, Set invariance in control, Automatica, 35 (1999), 1747–1767. https://doi.org/10.1016/S0005-1098(99)00113-2 doi: 10.1016/S0005-1098(99)00113-2
    [25] J. P. Aubin, Viability theory, New York, NY, USA: Springer, 1991.
    [26] M. Magnehem, R. G. Sanfelice, Sufficient conditions for forward invariance and contractivity in hybrid inclusion using barrier functions, Automatica, 124 (2021), 109328. https://doi.org/10.1016/j.automatica.2020.109328 doi: 10.1016/j.automatica.2020.109328
    [27] J. P. Richard, Time-delay systems: an overview of some recent advances and open problems, Automatica, 39 (2003), 1667–1694. https://doi.org/10.1016/S0005-1098(03)00167-5 doi: 10.1016/S0005-1098(03)00167-5
    [28] F. A. Rihan, Delay differential equations and applications to biology, Springer, Singapore, 2021. https://doi.org/10.1007/978-981-16-0626-7
    [29] L. P. Song, R. P. Zhang, L. P. Feng, Q. Shi, Pattern dynamics of a spatial epidemic model with time delay, Appl. Math. Comput., 292 (2017), 390–399. https://doi.org/10.1016/j.amc.2016.07.013 doi: 10.1016/j.amc.2016.07.013
    [30] H. Gao, T. Chen, J. Lam, A new delay system approach to network-based control, Automatica, 44 (2008), 39–52. https://doi.org/10.1016/j.automatica.2007.04.020 doi: 10.1016/j.automatica.2007.04.020
    [31] M. Jin, S. H. Kang, P. H. Chang, J. Lee, Robust control of robot manipulators using inclusive and enhanced time delay control, IEEE/ASME Trans. Mech., 22 (2017), 2141–2152. https://doi.org/10.1109/TMECH.2017.2718108 doi: 10.1109/TMECH.2017.2718108
    [32] E. Fridman, Tutorial on Lyapunov-based methods for time-delay systems, Eur. J. Control, 20 (2014), 271–283. https://doi.org/10.1016/j.ejcon.2014.10.001 doi: 10.1016/j.ejcon.2014.10.001
    [33] P. Park, J. W. Ko, Stability and robust stability for systems with a time-varying delay, Automatica, 43 (2007), 1855–1858. https://doi.org/10.1016/j.automatica.2007.02.022 doi: 10.1016/j.automatica.2007.02.022
    [34] F. Long, L. Jiang, Y. He, M. Wu, Stability analysis of systems with time-varying delay via novel augmented Lyapunov-Krasovskii functionals and an improved integral inequality, Appl. Math. Comput., 357 (2019), 325–337. https://doi.org/10.1016/j.amc.2019.04.004 doi: 10.1016/j.amc.2019.04.004
    [35] T. Petaratip, P. Niamsup, Stability analysis of an unemployment model with time delay, AIMS Math., 6 (2021), 7421–7440. https://doi.org/10.3934/math.2021434 doi: 10.3934/math.2021434
    [36] E. Fridman, U. Shaked, Delay-dependent stability and $H_{\infty}$ control: constant and time-varying delays, Int. J. Control, 76 (2003), 48–60. https://doi.org/10.1080/0020717021000049151 doi: 10.1080/0020717021000049151
    [37] P. Gahinet, Explicit controller formulas for LMI-based $H_{\infty}$ synthesis, Automatica, 32 (1996), 1007–1014. https://doi.org/10.1016/0005-1098(96)00033-7 doi: 10.1016/0005-1098(96)00033-7
    [38] G. I. Song, J. H. Kim, Time‐delay compensation‐based robust control of mechanical manipulators: operator‐theoretic analysis and experiment validation, Math. Methods Appl. Sci., 47 (2024), 318–335. https://doi.org/10.1002/mma.9656 doi: 10.1002/mma.9656
    [39] S. Luemsai, T. Botmar, W. Weera, S. Charoensin, Improved results on mixed passive and $H_{\infty}$ performance for uncertain neural networks with mixed interval time-varying delays via feedback control, AIMS Math., 6 (2021), 2653–2679. https://doi.org/10.3934/math.2021161 doi: 10.3934/math.2021161
    [40] M. Sun, Y. Jia, J. Du, F. Yu, Rejection of persistent bounded disturbance for a class of time-delay systems, IFAC Proc. Vol., 41 (2008), 3919–3922. https://doi.org/10.3182/20080706-5-KR-1001.00659 doi: 10.3182/20080706-5-KR-1001.00659
    [41] M. Sun, Y. Jia, Persistent bounded disturbance rejection for uncertain time-delay systems, Control Cybern., 38 (2009), 593–607.
    [42] P. Li, X. Liu, W. Zhao, Finite-gain $L_{\infty}$ stability from disturbance to output of a class of time delay system, J. Inequal. Appl., 2017 (2017), 18. https://doi.org/10.1186/s13660-016-1290-y doi: 10.1186/s13660-016-1290-y
    [43] W. Lombardi, S. Olaru, M. Lazar, G. Bitsoris, S. I. Niculescu, On the polyhedral set-invariance conditions for time-delay systems, IFAC Proc. Vol., 44 (2011), 308–313. https://doi.org/10.3182/20110828-6-IT-1002.02803 doi: 10.3182/20110828-6-IT-1002.02803
    [44] M. T. Laraba, S. Olaru, S. I. Niculescu, F. Blanchini, G. Giordano, D. Casagrande, et al., Set invariance for delay difference equations, IFAC-PapersOnLine, 48 (2015), 215–220. https://doi.org/10.1016/j.ifacol.2015.09.380 doi: 10.1016/j.ifacol.2015.09.380
    [45] M. T. Laraba, S. Olaru, S. I. Niculescu, F. Blanchini, G. Giordano, D. Casagrande, et al., Guide on set invariance for delay difference equations, Ann. Rev. Control, 41 (2016), 13–23. https://doi.org/10.1016/j.arcontrol.2016.04.020 doi: 10.1016/j.arcontrol.2016.04.020
    [46] M. W. Hirsch, S. Smale, R. L. Devaney, Differential equations, dynamical systems, and an introduction to chaos, Academic Press, 2013.
    [47] S. Boyd, L. E. Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, Society for Industrial and Applied Mathematics (SIAM), 1994.
    [48] M. S. Mahmoud, P. Shi, Persistent bounded disturbance rejection for discrete-time delay systems, Int. J. Syst. Sci., 42 (2011), 921–930. https://doi.org/10.1080/00207720903260150 doi: 10.1080/00207720903260150
    [49] K. Zhou, J. C. Doyle, K. Glover, Robust and optimal control, New Jersey, USA: Prentice Hall, 1996.
    [50] J. Zhou, J. H. Park, H. Shen, Non-fragile reduced-order dynamic output feedback $H_{\infty}$ control for switched systems with average dwell-time switching, Int. J. Control, 89 (206), 281–296. https://doi.org/10.1080/00207179.2015.1075175 doi: 10.1080/00207179.2015.1075175
    [51] J. Zhou, J. H. Park, Q. Kong, Robust resilient $L_{2}$-$L_{\infty}$ control for uncertain stochastic systems with multiple time delays via dynamic output feedback, J. Franklin Inst., 353 (2016), 3078–3103. https://doi.org/10.1016/j.jfranklin.2016.06.004 doi: 10.1016/j.jfranklin.2016.06.004
    [52] W. Ji, J. Qui, S. F. Su, H. Zhang, Fuzzy observer-based output feedback control of continuous-time nonlinear two-dimensional systems, IEEE Trans. Fuzzy Syst., 31 (2022), 1391–1400. https://doi.org/10.1109/TFUZZ.2022.3201282 doi: 10.1109/TFUZZ.2022.3201282
    [53] W. Ji, J. Qui, C. Song, Y. Fu, New results on nonsynchronous-observer-based output-feedback control of fuzzy-affine-model-based discrete-time nonlinear systems, IEEE Trans. Fuzzy Syst., 31 (2023), 2836–2847. https://doi.org/10.1109/TFUZZ.2023.3237657 doi: 10.1109/TFUZZ.2023.3237657
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(222) PDF downloads(45) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog