
In this paper, the finite element method is applied to solve the unsteady elastic equations, C-Bézier basis functions are used to construct the shape function spaces, the semi-discrete scheme of the unsteady elastic equations is obtained by Galerkin finite element method and then the fully discretized Galerkin method is obtained by further discretizing the time variable with θ-scheme finite difference. Furthermore, for several numerical examples, the accuracy of approximate solutions are improved by 1–3 order-of magnitudes compared with the Lagrange basis function in L∞ norm, L2 norm and H1 semi-norm, and the numerical examples show that the method proposed possesses a faster convergence rate. It is fully demonstrated that the C-Bézier basis functions have a better approximation effect in simulating unsteady elastic equations.
Citation: Lanyin Sun, Kunkun Pang. Numerical solution of unsteady elastic equations with C-Bézier basis functions[J]. AIMS Mathematics, 2024, 9(1): 702-722. doi: 10.3934/math.2024036
[1] | Shujie Jing, Jixiang Guan, Zhiyong Si . A modified characteristics projection finite element method for unsteady incompressible Magnetohydrodynamics equations. AIMS Mathematics, 2020, 5(4): 3922-3951. doi: 10.3934/math.2020254 |
[2] | Mohammad Ayman-Mursaleen, Md. Nasiruzzaman, Nadeem Rao, Mohammad Dilshad, Kottakkaran Sooppy Nisar . Approximation by the modified $ \lambda $-Bernstein-polynomial in terms of basis function. AIMS Mathematics, 2024, 9(2): 4409-4426. doi: 10.3934/math.2024217 |
[3] | Said Mesloub, Hassan Altayeb Gadain, Lotfi Kasmi . On the well posedness of a mathematical model for a singular nonlinear fractional pseudo-hyperbolic system with nonlocal boundary conditions and frictional damping terms. AIMS Mathematics, 2024, 9(2): 2964-2992. doi: 10.3934/math.2024146 |
[4] | Maolin Cheng, Bin Liu . A novel method for calculating the contribution rates of economic growth factors. AIMS Mathematics, 2023, 8(8): 18339-18353. doi: 10.3934/math.2023932 |
[5] | Jeong-Kweon Seo, Byeong-Chun Shin . Reduced-order modeling using the frequency-domain method for parabolic partial differential equations. AIMS Mathematics, 2023, 8(7): 15255-15268. doi: 10.3934/math.2023779 |
[6] | Joseph Lifton, Tong Liu, John McBride . Non-linear least squares fitting of Bézier surfaces to unstructured point clouds. AIMS Mathematics, 2021, 6(4): 3142-3159. doi: 10.3934/math.2021190 |
[7] | Syed Ahmad Aidil Adha Said Mad Zain, Md Yushalify Misro . A novel technique on flexibility and adjustability of generalized fractional Bézier surface patch. AIMS Mathematics, 2023, 8(1): 550-589. doi: 10.3934/math.2023026 |
[8] | Qi Xie, Yiting Huang . A class of generalized quadratic B-splines with local controlling functions. AIMS Mathematics, 2023, 8(10): 23472-23499. doi: 10.3934/math.20231193 |
[9] | Salwa Syazwani Mahzir, Md Yushalify Misro, Kenjiro T. Miura . Preserving monotone or convex data using quintic trigonometric Bézier curves. AIMS Mathematics, 2024, 9(3): 5971-5994. doi: 10.3934/math.2024292 |
[10] | Lakhlifa Sadek, Tania A Lazǎr, Ishak Hashim . Conformable finite element method for conformable fractional partial differential equations. AIMS Mathematics, 2023, 8(12): 28858-28877. doi: 10.3934/math.20231479 |
In this paper, the finite element method is applied to solve the unsteady elastic equations, C-Bézier basis functions are used to construct the shape function spaces, the semi-discrete scheme of the unsteady elastic equations is obtained by Galerkin finite element method and then the fully discretized Galerkin method is obtained by further discretizing the time variable with θ-scheme finite difference. Furthermore, for several numerical examples, the accuracy of approximate solutions are improved by 1–3 order-of magnitudes compared with the Lagrange basis function in L∞ norm, L2 norm and H1 semi-norm, and the numerical examples show that the method proposed possesses a faster convergence rate. It is fully demonstrated that the C-Bézier basis functions have a better approximation effect in simulating unsteady elastic equations.
Unsteady elastic equations are widely used to describe many engineering and physical problems. Since it is usually difficult to get analytic solutions, numerical analysis plays a vital role in solving unsteady elastic equations. There are several numerical methods, such as finite element method (FEM) [1,2], finite difference method (FDM) [3,4], finite volume method (FVM) [5,6] and spectral method (SM) [7], etc. Among them, the FEM has attracted much attention because it has strong problem-solving ability, a standardized form of discrete equations and easy preparation of general computer programs.
FEM is an important tool to solve partial differential equations (PDEs) in the field of scientific and engineering computing. In 1943, Courant [8] first proposed FEM and used piecewise linear functions to construct the Galerkin projection space. In 1960, Clough [9] formally presented the name of "finite element method" when dealing with plane elastic problems. In the 1960s, Feng [10] combined with the stress problems of dam construction, carried out the research on the numerical solutions of elliptic boundary value problems and put forward the difference scheme based on variational principle. Based on the traditional FEM, scholars have also put forward many new numerical methods, such as mixed finite element method [11,12], weak Galerkin finite element method [13,14], multi scale method [15] and so on. Liu et al. [16] proposed the smoothed finite element method based on the finite element method and the meshless method. Cheng et al. [17] used the local discontinuous finite element method to deal with singular perturbation unsteady problems. Lin et al. [18] presented a streamline upwind Petrov-Galerkin (SUPG) stabilized space time finite element method for convection-diffusion-reaction equations. Varma et al. [19] analyzed the posteriori error of the adaptive finite element method for the unsteady convection-diffusion reaction equations.
An important topic in the research of FEM is how to increase the accuracy of numerical solutions and reduce the complexity of computation. The selection of finite element basis functions will affect the accuracy of numerical solutions. In recent years, many scholars applied FEM based on spline functions to PDEs. For instance, Shi [20] combined the B-spline functions with FEM and proposed the spline finite element method to solve the equilibrium problems of the plate-beam composite elastic structures in regular regions and derived a unified computation scheme for various boundary conditions. Hughes et al. [21] put forward a new spline finite element method which applies NURBS basis functions in finite element analysis for isometric analysis. Chen et al. [22] presented spline curved surfaces based on T-meshes which can better deal with adaptive surface modeling. Peng et al. [23] developed the intrinsic extended isogeometric analysis using B-splines, in which the control points served as support points for least-squares fitting directly. Peake et al. [24] used the boundary element method based on non-uniform rational B-spline to solve the three-dimensional wave scattering problem controlled by the Helmholtz equation. Zhu et al. [25] constructed four new cubic rational Bernstein-like basis functions with two parameters by using the blossom method. These basis functions can form a normalized B-basis. Wang et al. [26] applied an integral approach to construct C-Bézier basis functions for the space Γk=span{1,t,⋯,(t)k−2,sin(t),cos(t)} that extended the spaces of mixed algebra and trigonometric polynomial.
C-Bézier basis functions are one kind of spline functions that have a nonrational form and are capable of expressing circular arc and polynomial curves of high order exactly. C-Bézier basis functions also introduce the shape parameters, which increases the degree of freedom of curve construction [27]. In previous work, scholars obtained good approximate solutions by combining spline functions with the finite element. Sun et al. [28] showed that the C-Bézier and H-Bézier basis functions have a much better approximation in simulating convection-diffusion problems. In this paper, we combine the Galerkin finite element method with C-Bézier basis functions to solve unsteady elastic equations. C-Bézier basis functions are selected to construct trial and test function spaces. The numerical examples are given, and the numerical results indicate that our method has much better precision in solving unsteady elastic equations. The numerical solutions in this paper are generated in MATLAB 2018a.
The structure of this paper is as follows: In Section 2, we introduce the two-dimensional unsteady elastic equation and recall the definitions and properties of C-Bézier basis functions. In Section 3, the Galerkin finite element method is combined with C-Bézier basis functions to solve the unsteady elastic equations. In Section 4, a prior estimate for the unsteady elastic equations of the θ-difference FEM scheme is proved. In Section 5, the error estimates and corresponding convergence order under the L∞ norm, L2 norm and H1 semi-norm are obtained through numerical examples, and the feasibility and effectiveness of the method is verified. In the final section, we not only summarize some comments on the overall work, but also touch upon some avenues of future research.
In this section, we introduce the two-dimensional unsteady elastic equation and recall the definitions and properties of C-Bézier basis functions.
The initial-boundary value problem for the unsteady elastic equation is as follows, where Ω is a polygonal domain in R2:
{utt−∇⋅σ(u)=f,inΩ×[0,T],u=g,on∂Ω×[0,T],u=u0,∂u∂t=u00,att=0andinΩ. | (2.1) |
Let u=u(x1,x2;t)=(u1,u2)t be the displacement and f=f(x1,x2;t)=(f1,f2)t be the body force.
The stress tensor σ(u) is defined as
σ(u)=(σ11(u)σ12(u)σ21(u)σ22(u)),σij(u)=λ(∇⋅u)δij+2μεij(u)(i,j=1,2), |
where λ and μ are lamˊe parameters, λ∈(0,+∞),μ∈(μ1,μ2),0<μ1<μ2.
The strain tensor is defined as
ε=(ε11ε12ε21ε22),εij=12(∂ui∂xj+∂uj∂xi). |
Definition 2.1. The C-Bézier basis functions for the space Γk=span{1,t,⋯,tk−2,sint,cost} of degrees k is defined by
Ck0(t)=1−∫t0δk−10Ck−10(s)ds,Cki(t)=∫t0δk−1i−1Ck−1i−1(s)ds−∫t0δk−1iCk−1i(s)ds,i=1,2,⋯,k−1,Ckk(t)=∫t0δk−1k−1Ck−1k−1(s)ds, | (2.2) |
where k≥2, t∈[0,α], C10(t)=sin(α−t)sinα, C11(t)=sintsinα, δki=(∫α0Cki(t)dt)−1 and the shape parameter α∈(0,π].
While k=2, C-Bézier basis functions are expressed as follows:
C20=1−cos(α−t)1−cosα,C21=−1−cost+cosα−cos(α−t)1−cosα,C22=1−cost1−cosα, | (2.3) |
where t∈[0,α] and the shape parameter α∈(0,π].
In the images below, Figure 1(a) shows the quadratic C-Bézier basis function at α=π8 and Figure 1(b) presents the quadratic C-Bézier basis function at α=2π9. We display the main properties of the C-Bézier basis here–all of these properties can be found in [26].
Property2.1. Properties at the endpoints:
At the endpoints, the C-Bézier basis has the same properties as the Bézier basis. That is, for k≥2,
Ck0(0)=Ckk(α)=1,[Cki(0)](s)=[Cki(α)](m)=0,s=0,⋯,i−1;m=0,⋯,n−i−1.[Cki(0)](s)=δk−1s−1δk−2s−2⋯δk−s0,s=1,2,⋯,n. |
Property2.2. Linear independence:
The C-Bézier basis {Csi(t)}ki=0 is linearly independent, and it is a basis for the space Γk=span{1,t,⋯,tk−2,sint,cost}.
Property2.3. Positivity:
The C-Bézier basis is positive on [0,α] and normalized, that is,
Cki(t)>0,t∈[0,α],i=0,⋯,k;k∑i=0Cki(t)=1. |
Property2.4. Symmetry:
Cki(t)=Ckk−i(α−t),t∈[0,α],i=0,⋯,k. |
Definition 2.2. A C-Bézier surface S(u,v) of s×m degrees with control points Pij(x,y,z)∈R3(i=0,1,⋯,s;j=0,1,⋯,m) is defined as
S(u,v)=s∑i=0m∑j=0Pi,jCs,mi,j(u,v),(u,v)∈[0,α]×[0,β], | (2.4) |
where Cs,mi,j(u,v)=Csi(u)Cmj(v) is the tensor-product C-Bézier basis. α and β are the shape parameters.
As shown in the following figure, Figure 2(a) is a biquadratic C-Bézier surface with the shape parameters α=π2, β=π3 and the control points P0,0=(0,0,0),P0,1=(1,0,−1),P0,2=(2,0,0),P1,0=(0,2,−1),P1,1=(1,2,−2),P1,2=(2,2,−1),P2,0=(0,4,0),P2,1=(1,4,−1),P2,2=(2,4,0); Figure 2(b) is a 2×3 degrees C-Bézier surface with the shape parameters α=π8, β=π6 and the control points are P0,0=(0,0,1),P0,1=(4,0,−2),P0,2=(8,0,2),P0,3=(10,0,12),P1,0=(0,2,2),P1,1=(4,2,−1),P1,2=(8,2,3),P1,3=(10,2,52),P2,0=(0,4,1),P2,1=(4,4,−2),P2,2=(8,4,2),P2,3=(10,4,12).
In this section, we consider combining the Galerkin finite element method with C-Bézier basis to solve the unsteady elastic equations.
As a preparation for the finite element algorithm, we briefly present the definitions of Sobolev space Hm(Ω) and corresponding norms.
Let Ω∈R2 be a bounded domain. The Sobolev space Hm(Ω) is defined by
Hm(Ω)={v∈L2(Ω):Dγv∈L2(Ω), if |γ|≤m}, |
with norm
‖v‖Hm(Ω)=(∑|γ|≤m‖Dγv‖2L2(Ω))12, |
and semi-norm
|v|Hm(Ω)=(∑|γ|=m‖Dγv‖|2L2(Ω))12. |
In the above formulas,
γ=(γ1,γ2),|γ|=(γ1+γ2),Dγ=∂|γ|∂γ1x1∂γ2x2. |
For m=1, H10(Ω) is the subspace of H1(Ω) with vanishing boundary values on ∂Ω.
Based on the above definition of Sobolev space, the functional space H2(0,T;[H1(Ω)]2) is defined as
H2(0,T;[H1(Ω)]2)={v(⋅,t),∂v∂t(⋅,t),∂2v∂t2∈[H1(Ω)]2,∀t∈[0,T]}. | (3.1) |
Now we give the weak formulation of the unsteady elastic equation in (2.1) and separate the weak formulation with Galerkin method.
Assume that u∈H2(0,T;[H1(Ω)]2), then multiplying the first equation of (2.1) by test function v∈[H10(Ω)]2 yields
∫Ωutt⋅vdx1dx2−∫Ω(∇⋅σ(u))⋅vdx1dx2=∫Ωf⋅vdx1dx2, |
then using Green formula, it's obtained as follows:
∫Ωutt⋅vdx1dx2+∫Ωσ(u):∇vdx1dx2=∫Ωf⋅vdx1dx2,∀v∈[H10(Ω)]2. |
In detail, the inner product of the second-order tensor σ(u):∇v is given by
σ(u):∇v=(σ11(u)σ12(u)σ21(u)σ22(u)):(∂v1∂x1∂v1∂x2∂v2∂x1∂v2∂x2)=σ11(u)⋅∂v1∂x1+σ12(u)⋅∂v1∂x2+σ21(u)⋅∂v2∂x1+σ22(u)⋅∂v2∂x2. |
Therefore, the weak formulation for the unsteady elastic equation can be obtained, finding u∈H2(0,T;[H1(Ω)]2) and
(utt,v)+a(u,v)=(f,v),∀v∈[H10(Ω)]2, | (3.2) |
where
(utt,v)=∫Ωutt⋅vdx1dx2,a(u,v)=∫Ωσ(u):∇vdx1dx2,(f,v)=∫Ωf⋅vdx1dx2. | (3.3) |
Taking into account the unsteady elastic equation in a rectangular domain Ω=[0,1]×[0,1]. Let Ωh be a quasi-homogeneous rectangular mesh. The mesh size is h=[h1,h2]=[1N1,1N2]. N1 and N2 represent the number of subintervals of the x-axis and y-axis of the quasi-uniform subdivision, respectively. The number of elements is N=N1N2.
The n1×n2 tensor-product C-Bézier basis functions on [0,α]×[0,β] are defined as follows:
Cn1,n2ˉi,ˉj(u,v)=Cn1ˉi(u)Cn2ˉj(v),ˉi=0,1,⋯,n1;ˉj=0,1,⋯,n2, | (3.4) |
letting ˉu=uα,ˉv=vβ, where ˉu∈[0,1], ˉv∈[0,1]. The tensor-product C-Bézier basis defined on the reference elements can be obtained:
Cn1,n2ˉi,ˉj(ˉu,ˉv)=Cn1ˉi(αˉu)Cn2ˉj(βˉv),ˉi=0,⋯,n1;ˉj=0,⋯n2. | (3.5) |
Performing an affine transformation for them, let ˉu=x−xih1, ˉv=y−yjh2. Therefore, the shape function on the local element can be obtained as follows:
Cn1,n2ˉi,ˉj(x,y)=Cn1ˉi(αx−xih1)Cn2ˉj(βy−yjh2),ˉi=0,⋯,n1;ˉj=0,⋯n2. | (3.6) |
Taking into account the biquadratic C-Bézier basis on the reference rectangular element, ˆE=◻^A1^A2^A3^A4. The four vertices of the rectangle are ^A1=(0,0), ^A2=(1,0), ^A3=(1,1), ^A4=(0,1). The midpoints of the four sides ^A1^A2, ^A2^A3, ^A3^A4 and ^A4^A1 are ^A5=(12,0), ^A6=(1,12), ^A7=(12,1) and ^A8=(0,12). The center of the rectangle is ^A9=(12,12).
From (3.5), we derive the biquadratic tensor-product type C-Bézier basis functions on the reference element [0,1]×[0,1] as follows:
C2,20,0(ˉu,ˉv)=(1−cos(α−αˉu))(1−cos(β−βˉv))(1−cosα)(1−cosβ),C2,21,0(ˉu,ˉv)=−(1−cos(ˉuα)+cosα−cos(α−ˉuα))(1−cos(β−βˉv))(1−cosα)(1−cosβ),C2,22,0(ˉu,ˉv)=(1−cos(ˉuα))(1−cos(β−βˉv))(1−cosα)(1−cosβ),C2,22,1(ˉu,ˉv)=−(1−cos(ˉuα))(1−cos(ˉvβ)+cosβ−cos(β−ˉvβ))(1−cosα)(1−cosβ),C2,22,2(ˉu,ˉv)=(1−cos(ˉuα))(1−cos(ˉvβ))(1−cosα)(1−cosβ),C2,21,2(ˉu,ˉv)=−(1−cos(ˉuα)+cosα−cos(α−ˉuα))(1−cos(ˉvβ))(1−cosα)(1−cosβ),C2,20,2(ˉu,ˉv)=(1−cos(α−αˉu))(1−cos(ˉvβ))(1−cosα)(1−cosβ),C2,20,1(ˉu,ˉv)=(1−cos(α−αˉu))(1−cos(ˉvβ)+cosβ−cos(β−ˉvβ))(1−cosα)(1−cosβ),C2,21,1(ˉu,ˉv)=(1−cos(ˉuα)+cosα−cos(α−ˉuα))(1−cos(ˉvβ)+cosβ−cos(β−ˉvβ))(1−cosα)(1−cosβ), |
where ˉu∈[0,1],ˉv∈[0,1],α∈(0,π],β∈(0,π].
As shown in the following figure, Figure 3 is the C-Bézier basis of the biquadratic tensor-product type on the reference element when α=π4, β=π6. Then we construct the finite element function spaces. We use the affine mapping between the general element E=◻A1A2A3A4 and the reference element ˆE=◻^A1^A2^A3^A4 to construct the shape functions on the local element En=◻A1nA2nA3nA4n. For En∈Ωh, the local finite element space is represented by Sh(En), that is,
Sh(En)={C,C∈span{Cn1,n2i,j(x,y)}n1,n2i,j=0,∀(x,y)∈En}. | (3.7) |
We concatenate the local finite element spaces on all elements to construct a finite dimensional subspace. The finite element space is
Uh(n1,n2)={C,C∈Sh(En),∀En∈Ωh}. | (3.8) |
Uh0 denotes a compactly supported function space with zero on the boundary of Uh as follows:
Uh0(n1,n2)={C∈Uh, C|∂Ω=0, ∀ En∈Ωh}. | (3.9) |
Subsequently, the Galerkin formulation of the unsteady elastic equation is to find uh∈H2(0,T;[Uh]2), such that
(uhtt,vh)+a(uh,vh)=(f,vh),∀vh∈[Uh0]2, | (3.10) |
where
(uhtt,vh)=∫Ωuhtt⋅vhdx1dx2,a(uh,vh)=∫Ωσ(uh):∇vhdx1dx2,(f,vh)=∫Ωf⋅vhdx1dx2. | (3.11) |
The dimension of finite element space Uh introduced in (3.8) and the number of global basis functions are Nb=(2N1+1)(2N2+1). Let Cj (j=1,⋯,Nb) denote the global finite element basis functions of finite element space Uh, so that Uh=span{Cj}Nbj=1 and the finite element numerical solution vector is
uh=(u1h,u2h)t, |
where
u1h=Nb∑j=1u1j(t)Cj , u2h=Nb∑j=1u2j(t)Cj. |
Then we set up a linear algebraic system for u1j(t) and u2j(t) (j=1,⋯,Nb), and solve it to obtain the finite element solution uh=(u1h,u2h)t. We choose vh=(Ci,0)t (i=1,⋯,Nb) and vh=(0,Ci)t (i=1,⋯,Nb) in the Galerkin formulation. That is, in the first set of test functions, we choose v1h=Ci (i=1,⋯,Nb) and v2h=0; in the second set of test functions, we choose v1h=0 and v2h=Ci (i=1,⋯,Nb). Then, we obtain two sets of equations:
Nb∑j=1u″1j(t)∫ΩCjCidx1dx2+Nb∑j=1u1j(∫Ωλ∂Cj∂x1∂Ci∂x1dx1dx2+2∫Ωμ∂Cj∂x1∂Ci∂x1dx1dx2+∫Ωμ∂Cj∂x2∂Ci∂x2dx1dx2)+Nb∑j=1u2j(∫Ωλ∂Cj∂x2∂Ci∂x1dx1dx2+∫Ωμ∂Cj∂x1∂Ci∂x2dx1dx2)=∫Ωf1Cidx1dx2,Nb∑j=1u″2j(t)∫ΩCjCidx1dx2+Nb∑j=1u1j(∫Ωλ∂Cj∂x1∂Ci∂x2dx1dx2+∫Ωμ∂Cj∂x2∂Ci∂x1dx1dx2)Nb∑j=1u2j(∫Ωλ∂Cj∂x2∂Ci∂x2dx1dx2+2∫Ωμ∂Cj∂x2∂Ci∂x2dx1dx2+∫Ωμ∂Cj∂x1∂Ci∂x1dx1dx2)=∫Ωf2Cidx1dx2. |
Define the stiffness matrix
A=(A1+2A2+A3A4+A5A6+A7A8+2A3+A2), |
where
A1=[∫Ωλ∂Cj∂x1∂Ci∂x1dx1dx2]Nbi,j=1,A2=[∫Ωμ∂Cj∂x1∂Ci∂x1dx1dx2]Nbi,j=1,A3=[∫Ωμ∂Cj∂x2∂Ci∂x2dx1dx2]Nbi,j=1,A4=[∫Ωλ∂Cj∂x2∂Ci∂x1dx1dx2]Nbi,j=1,A5=[∫Ωμ∂Cj∂x1∂Ci∂x2dx1dx2]Nbi,j=1,A6=[∫Ωλ∂Cj∂x1∂Ci∂x2dx1dx2]Nbi,j=1,A7=[∫Ωμ∂Cj∂x2∂Ci∂x1dx1dx2]Nbi,j=1,A8=[∫Ωλ∂Cj∂x2∂Ci∂x2dx1dx2]Nbi,j=1. |
Define the block mass matrix
M=(MeO4O4Me), |
where
Me=[mi,j]Nbi,j=1=[∫ΩCjCidx]Nbi,j=1,O4=[0i,j]Nbi,j=1. |
Define the load vector
→b=(→b1,→b2)t, |
where
→b1=[∫Ωf1Cidx1dx2]Nbi=1, →b2=[∫Ωf2Cidx1dx2]Nbi=1. |
Define the unknown vector
→X=(→X1,→X2)t, |
where
→X1=[u1j]Nbj=1 , →X2=[u2j]Nbj=1. |
Then, we get a system of ordinary differential equations for u1j(t) and u2j(t) (j=1,⋯,Nb)
M→X″(t)+A(t)→X(t)=→b(t). | (3.12) |
So far, we gain a semi-discretization Galerkin function (3.12).
If we further discretize the space-time domain [0,T], let 0=t0<t1<⋯<tMm=T, the time step is τ, tm=mτ,m=1,2,⋯,Mm and assume →Xm is the numerical solution of →X(tm), the corresponding θ-scheme finite difference is
M→Xm+1−2→Xm+→Xm−1τ2+A→Xm+θ=→bm, | (3.13) |
when using the notations →Xm+θ=θ→Xm+1+(1−2θ)→Xm+θ→Xm−1,→bm=→b(tm). Let ˜A=Mτ2+θA, ˜→b=→bm+[2Mτ2−(1−2θ)A]→Xm−[Mτ2+θA]→Xm−1 and then substituting (3.13) can obtain a fully discrete algebraic system related to time,
˜A→Xm+1=˜→b, | (3.14) |
so we can solve the system (3.14) and obtain the unknown vector group →Xm+1.
Here, θ is the parameter of the specific scheme of the time discrete layer, and different values correspond to different difference schemes. When θ=0, it is an explicit scheme with poor stability; when θ=0.25, it is an implicit format with better stability, and it is also a format with more practical applications.
For simplicity, we consider a uniform grid in [0,T], with step τ>0. Let →Xm=→X(x1,x2;tm), 0=t0<t1<⋯<tMm=T, tm=mτ,m=1,2,⋯,Mm. As a basic scheme for the numerical solution of the problem (2.1) we will use a three-level scheme with weight (θ=const):
M→Xm+1−2→Xm+→Xm−1τ2+A[θ→Xm+1+(1−2θ)→Xm+θ→Xm−1]=→bm,m=1,2,⋯,Mm. | (4.1) |
Give the initial conditions, we put →X0=→X(x1,x2;0),→X1=∂→X(x1,x2;0)∂t.
Let us derive a stability estimate with respect to the initial data and right-hand side, for the standard scheme with weights (4.1).
Theorem4.1. If θ≥0.25, the following a priori estimate for the solution of (4.1) holds:
‖→Xm+1‖∗≤‖→Xm‖∗+τ‖→bm‖, | (4.2) |
where now
‖→Xm+1‖2∗=‖→Xm+1−→Xmτ‖2ME+(θ−14)τ2A+‖→Xm+1+→Xm2‖2A | (4.3) |
is the discrete time analog of ‖→X‖2∗. Here, E denotes the identity operator.
Proof. Given the equality
θ→Xm+1+(1−2θ)→Xm+θ→Xm−1=14(→Xm+1+2→Xm+→Xm−1)+(θ−14)(→Xm+1−2→Xm+→Xm−1), |
we write (4.1) as
D→Xm+1−2→Xm+→Xm−1τ2+A→Xm+1+2→Xm+→Xm−14=→bm, | (4.4) |
where
D=ME+(θ−14)τ2A. |
Let us introduce two new grid functions:
→Vm=→Xm+→Xm−12,→Wm=→Xm−→Xm−1τ, |
and from (4.4) we arrive at the equation
D→Wm+1+→Wmτ+A→Vm+1+→Vm2=→bm. | (4.5) |
Scalarly multiplying both sides of (4.5) by τ(→Wm+1+→Wm)=2(→Vm+1−→Vm), we get the equality
‖→Wm+1‖2D−‖→Wm‖2D+‖→Vm+1‖2A−‖→Vm‖2A=τ(→bm,→Wm+1+→Wm). |
In the left-hand side of this equality, we have
‖→Wm+1‖2D−‖→Wm‖2D+‖→Vm+1‖2A−‖→Vm‖2A=‖→Xm+1‖2∗−‖→Xm‖2∗, |
and for the right-hand side, we use the estimate as follows:
(→bm,→Wm+1+→Wm)≤‖→bm‖‖→Wm+1+→Wm‖≤‖→bm‖(‖→Xm+1‖∗+‖→Xm‖∗), |
then, we obtain the prior estimate (4.2).
In this section, several examples are presented to verify the feasibility and effectiveness of our method. The approximate solutions are solved by MATLAB software, and the errors and convergence order between the exact solutions and the finite element solutions under the L∞ norm, L2 norm and H1 semi-norm are obtained by numerical experiments. We use biquadratic basis functions to construct the trial and test function spaces of the finite element method, and the finite element nodes and the grids are the same. In the finite difference scheme of time processing, θ-scheme is used to solve the fully discrete system (3.14), and finally the numerical solution uh is obtained. Compared with Lagrange finite element scheme, numerical accuracy is improved by 1–3 orders of magnitude and the method proposed possesses a rapid convergence rate when we use C-Bézier basis functions, which implies that the C-Bézier finite element scheme has a much better approximation in simulating unsteady elastic equations.
The errors for the finite element method shall be measured in three norms defined as follows:
L∞ norm error:
‖u−uh‖∞=max(‖u1−u1h‖∞,‖u2−u2h‖∞), |
where
‖u1−u1h‖∞=sup|u1−u1h|,‖u2−u2h‖∞=sup|u2−u2h|. |
L2 norm error:
‖u−uh‖0=√‖u1−u1h‖20+‖u2−u2h‖20, |
where
‖u1−u1h‖0=√∫Ω(u1−u1h)2dx1dx2,‖u2−u2h‖0=√∫Ω(u2−u2h)2dx1dx2. |
H1 semi-norm error:
|u−uh|1=√|u1−u1h|21+|u2−u2h|21, |
where
|u1−u1h|1=√∫Ω((∂(u1−u1h)∂x1)2+(∂(u1−u1h)∂x2)2)dx1dx2,|u2−u2h|1=√∫Ω((∂(u2−u2h)∂x1)2+(∂(u2−u2h)∂x2)2)dx1dx2. |
Then, the convergence order of the three norms is calculated by using the error norm values corresponding to the coarse grid EN and the fine grid E2N formed by the upper and lower spatial subdivisions,
r=ln(EN)−ln(E2N)ln(2). | (5.1) |
Then the stability and convergence speed of the numerical method are verified according to the convergence order.
Example 5.1. Consider following two-dimensional unsteady elastic equation in a rectangular domain with Dirichlet condition and the lamˊe parameter λ=2, μ=1, where Ω=[0,1]×[0,1],
{utt−∇⋅σ(u)=f(x,y;t),inΩ×[0,1],u=(0,0)t,on∂Ω×[0,1],u0=(0,0)t,u00=(0,0)t,att=0andinΩ. |
The displacement u=u(x,y;t)=(u1,u2)t is
u1=t2sin(πx)sin(πy),u2=t2sin(πx)sin(πy), |
and the body force f(x,y;t)=(f1,f2)t is
f1=[2+(λ+3μ)t2]sin(πx)sin(πy)−(λ+μ)t2π2cos(πx)cos(πy),f2=[2+(λ+3μ)t2]sin(πx)sin(πy)−(λ+μ)t2π2cos(πx)cos(πy). |
Here, we take the time step τ=(h1+h22)2, combine with θ=0.25 and θ=1, then we calculate the three error norms and the corresponding convergence order between the numerical solution and the true solution. The numerical errors of θ=0.25 and θ=1 at the Gauss points are shown in Tables 1 and 2, and the corresponding convergence orders are shown in Tables 3 and 4, respectively. The error comparison graphs under the two difference schemes of C-Bézier and Lagrange basis functions are shown in Figures 4 and 5.
Basis | (h1,h2) | (α,β) | ||u−uh||∞ | ||u−uh||0 | |u−uh|1 |
Lagrange | (12,12) | - | 2.7300e−02 | 1.9000e−02 | 2.9040e−01 |
(14,14) | - | 3.6000e−03 | 2.4000e−03 | 7.2900e−02 | |
(18,18) | - | 4.3043e−04 | 2.9490e−04 | 1.8100e−02 | |
(116,116) | - | 5.1902e−05 | 3.6546e−05 | 4.5000e−03 | |
C-Bézier | (12,12) | (π2,π2) | 1.1600e−03 | 1.1000e−03 | 1.0500e−02 |
(14,14) | (π4,π4) | 6.4629e−05 | 3.7382e−05 | 2.2604e−04 | |
(18,18) | (π8,π8) | 2.0840e−06 | 1.1235e−06 | 8.3533e−06 | |
(116,116) | (π16,π16) | 8.4527e−08 | 4.6837e−08 | 3.1371e−07 |
Basis | (h1,h2) | (α,β) | ||u−uh||∞ | ||u−uh||0 | |u−uh|1 |
Lagrange | (12,12) | - | 2.7200e−02 | 1.9000e−02 | 2.9000e−01 |
(14,14) | - | 3.6000e−03 | 2.4000e−03 | 7.2900e−02 | |
(18,18) | - | 4.3046e−04 | 2.9492e−04 | 1.8100e−02 | |
(116,116) | - | 5.1904e−05 | 3.6546e−05 | 4.5000e−03 | |
C-Bézier | (12,12) | (π2,π2) | 1.2000e−03 | 1.1003e−03 | 1.0007e−02 |
(14,14) | (π4,π4) | 6.7056e−05 | 3.7072e−05 | 2.6707e−04 | |
(18,18) | (π8,π8) | 3.9330e−06 | 2.2028e−06 | 1.2577e−05 | |
(116,116) | (π16,π16) | 2.5268e−07 | 1.3948e−07 | 8.3322e−07 |
Basis | (h1,h2) | (α,β) | L∞-order | L2-order | H1-order |
Lagrange | (12,12) | - | - | - | - |
(14,14) | - | 2.9228 | 2.9849 | 1.9941 | |
(18,18) | - | 3.0641 | 3.0247 | 2.0100 | |
(116,116) | - | 3.0519 | 3.0124 | 2.0080 | |
C-Bézier | (12,12) | (π2,π2) | - | - | - |
(14,14) | (π4,π4) | 4.1615 | 4.8914 | 5.2267 | |
(18,18) | (π8,π8) | 4.0917 | 4.0695 | 4.4107 | |
(116,116) | (π16,π16) | 3.9605 | 3.9846 | 3.9137 |
Basis | (h1,h2) | (α,β) | L∞-order | L2-order | H1-order |
Lagrange | (12,12) | - | - | - | - |
(14,14) | - | 2.9175 | 2.9849 | 1.9941 | |
(18,18) | - | 3.0640 | 3.0246 | 2.0100 | |
(116,116) | - | 3.0520 | 3.0124 | 2.0080 | |
C-Bézier | (12,12) | (π2,π2) | - | - | - |
(14,14) | (π4,π4) | 4.1658 | 4.8790 | 5.3346 | |
(18,18) | (π8,π8) | 4.9548 | 5.0562 | 4.7580 | |
(116,116) | (π16,π16) | 4.6238 | 4.5842 | 4.7348 |
It is observed that the numerical solutions derived by the C-Bézier basis is 1–3 orders of magnitude higher than that of Lagrange basis under the θ difference scheme, and the C-Bézier finite element method has 4-order convergence in the L∞ norm, L2 norm and H1 semi-norm. This indicates that the C-Bézier finite element method works well for unsteady elastic equations involving Dirichlet boundary conditions.
Example 5.2. Consider the following two-dimensional pure displacement problem of the unstady elastic equation under homogeneous boundary conditions and the lamˊe parameter λ=3, μ=5, where Ω=[0,1]×[0,1],
{utt−∇⋅σ(u)=f(x,y;t),inΩ×[0,1],u=(0,0)t,on∂Ω×[0,1],u0(x,y)=(0,0)t,u00(x,y)=(0,−y(y−1)sin(πx)sin(πy))t, |
where the exact solution u=u(x,y;t)=(u1,u2)t is
u1=t(t−1)y(y−1)sin(πx)sin(πy),u2=πt2x(x−1)sin(πx)sin(πy), |
and the body force f(x,y;t)=(f1,f2)t is
f1=2y(y−1)sin(πx)sin(πy)+(λ+2μ)π2t(t−1)y(y−1)sin(πx)sin(πy)−(λ+μ)π2t2cos(πy)[(2x−1)sin(πx)+πx(x−1)cos(πx)]−μt(t−1)sin(πx)[2sin(πy)+2π(2y−1)cos(πy)−π2y(y−1)sin(πy)];f2=2πx(x−1)sin(πx)sin(πy)−π(λ+μ)t(t−1)cos(πx)[(2y−1)sin(πy)+πy(y−1)cos(πy)]−πμt2sin(πy)[2sin(πx)+2π(2x−1)cos(πx)−π2x(x−1)sin(πx)]+π3(λ+2μ)t2x(x−1)sin(πx)sin(πy). |
We take the time step τ=(h1+h22)2, the numerical errors of θ=0.25 and θ=1 at the Gauss points are shown in Tables 5 and 6, and the corresponding convergence orders are shown in Tables 7 and 8, respectively. Figures 6 and 7 compare the errors of C-Bézier and Lagrange basis functions for the two difference schemes under ||u−uh||∞, ||u−uh||0 and |u−uh|1.
Basis | (h1,h2) | (α,β) | ||u−uh||∞ | ||u−uh||0 | |u−uh|1 |
Lagrange | (12,12) | - | 6.4900e−02 | 3.0800e−02 | 5.8300e−01 |
(14,14) | - | 8.9000e−03 | 3.9000e−03 | 1.2400e−01 | |
(18,18) | - | 1.2000e−03 | 4.9088e−04 | 3.0600e−02 | |
(116,116) | - | 1.4766e−04 | 6.1519e−05 | 7.6000e−03 | |
C-Bézier | (12,12) | (5π6,π2) | 8.7000e−03 | 4.3000e−03 | 4.5900e−02 |
(14,14) | (π2,π4) | 8.4000e−04 | 4.7055e−04 | 1.0200e−02 | |
(18,18) | (π4,π8) | 8.0392e−05 | 5.3915e−05 | 2.1000e−03 | |
(116,116) | (π8,π16) | 7.7466e−06 | 6.2311e−06 | 5.1000e−04 |
Basis | (h1,h2) | (α,β) | ||u−uh||∞ | ||u−uh||0 | |u−uh|1 |
Lagrange | (12,12) | - | 6.5300e−02 | 3.0700e−02 | 5.5750e−01 |
(14,14) | - | 8.9000e−03 | 3.9000e−03 | 1.2390e−01 | |
(18,18) | - | 1.2000e−03 | 4.9092e−04 | 3.0600e−02 | |
(116,116) | - | 1.4754e−04 | 6.1522e−05 | 7.6000e−03 | |
C-Bézier | (12,12) | (5π6,π2) | 8.9760e−03 | 6.6711e−03 | 6.2550e−02 |
(14,14) | (π2,π4) | 9.1761e−04 | 7.6076e−04 | 1.5600e−02 | |
(18,18) | (π4,π8) | 8.5430e−05 | 7.6793e−05 | 3.1000e−03 | |
(116,116) | (π8,π16) | 8.6433e−06 | 7.9016e−06 | 6.1891e−04 |
Basis | (h1,h2) | (α,β) | L∞-order | L2-order | H1-order |
Lagrange | (12,12) | - | - | - | - |
(14,14) | - | 2.87523 | 2.9767 | 2.1698 | |
(18,18) | - | 2.8908 | 2.9899 | 2.0176 | |
(116,116) | - | 3.0200 | 2.9963 | 2.0095 | |
C-Bézier | (12,12) | (5π6,π2) | - | - | - |
(14,14) | (π2,π4) | 3.2901 | 3.1324 | 2.0035 | |
(18,18) | (π4,π8) | 3.4251 | 3.3083 | 2.3312 | |
(116,116) | (π8,π16) | 3.3051 | 3.2808 | 2.3245 |
Basis | (h1,h2) | (α,β) | L∞-order | L2-order | H1-order |
Lagrange | (12,12) | - | - | - | - |
(14,14) | - | 2.8663 | 2.9813 | 2.1707 | |
(18,18) | - | 2.8908 | 2.9903 | 2.0187 | |
(116,116) | - | 3.0227 | 2.9963 | 2.0095 | |
C-Bézier | (12,12) | (5π6,π2) | - | - | - |
(14,14) | (π2,π4) | 3.3726 | 3.1919 | 2.1699 | |
(18,18) | (π4,π8) | 3.3853 | 3.1256 | 2.2801 | |
(116,116) | (π8,π16) | 3.3754 | 3.1134 | 2.0418 |
The C-Bézier finite element method has higher accuracy and faster convergence rate. The accuracy of numerical results obtained by C-Bézier basis function are improved by 1–3 orders of magnitude.
This article presents a detailed finite element algorithm description of how C-Bézier basis functions can be applied to give more accurate solutions for unsteady elastic equations. The error estimates and corresponding convergence order under the L∞ norm, L2 norm and H1 semi-norm are obtained by numerical experiments. It is verified that the C-Bézier basis functions have higher numerical accuracy when solving unsteady elastic equations.
The accuracy of the numerical solutions is closely related to the selection of shape parameters. The determination of shape parameters is always the focus of researchers in error estimation. In the future, we will continue to study how to select the optimal shape parameters so that the numerical solutions can more effectively approximate the exact solutions.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was partly supported by Program for Science Technology Innovation Talents in Universities of Henan Province (No. 22HASTIT021), the Science and Technology Project of Henan Province (No. 212102210394), the National Natural Science Foundation of China (No. 11801490).
All authors declare no conflicts of interest in this paper.
[1] |
S. Patnaik, S. Sidhardh, F. Semperlotti, A Ritz-based finite element method for a fractional-order boundary value problem of nonlocal elasticity, Int. J. Solids Struct., 202 (2020), 398–417. https://doi.org/10.1016/j.ijsolstr.2020.05.034 doi: 10.1016/j.ijsolstr.2020.05.034
![]() |
[2] |
O. A. González-Estrada, S. Natarajan, J. J. Ródenas, S. P. A. Bordas, Error estimation for the polygonal finite element method for smooth and singular linear elasticity, Comput. Math. Appl., 92 (2021), 109–119. https://doi.org/10.1016/j.camwa.2021.03.017 doi: 10.1016/j.camwa.2021.03.017
![]() |
[3] |
A. M. Vargas, Finite difference method for solving fractional differential equations at irregular meshes, Math. Comput. Simulat., 193 (2022), 204–216. https://doi.org/10.1016/j.matcom.2021.10.010 doi: 10.1016/j.matcom.2021.10.010
![]() |
[4] |
T. A. Bullo, G. A. Degla, G. F. Duressa, Parameter-uniform finite difference method for singularly perturbed parabolic problem with two small parameters, Int. J. Comput. Methods Eng. Sci. Mech., 23 (2022), 210–218. https://doi.org/10.1080/15502287.2021.1948148 doi: 10.1080/15502287.2021.1948148
![]() |
[5] |
J. Jeon, J. Lee, S. J. Kim, Finite volume method network for the acceleration of unsteady computational fluid dynamics: Non‐reacting and reacting flows, Int. J. Energy Res., 46 (2022), 10770–10795. https://doi.org/10.1002/er.7879 doi: 10.1002/er.7879
![]() |
[6] |
U. S. Fjordholm, M. Musch, N. H. Risebro, Well-posedness and convergence of a finite volume method for conservation laws on networks, SIAM J. Numer. Anal., 60 (2022), 606–630. https://doi.org/10.1137/21M145001X doi: 10.1137/21M145001X
![]() |
[7] |
S. Sengupta, N. A. Sreejith, P. Mohanamuraly, G. Staffelbach, L. Gicquel, Global spectral analysis of the Lax-Wendroff-central difference scheme applied to convection-diffusion equation, Comput. Fluids, 242 (2022), 105508. https://doi.org/10.1016/j.compfluid.2022.105508 doi: 10.1016/j.compfluid.2022.105508
![]() |
[8] | R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bull. Amer. Math. Soc., 49 (1943), 1–23. |
[9] |
R. W. Clough, Y. Rashid, Finite element analysis of axi-symmetric solids, J. Eng. Mech. Div., 91 (1965), 71–85. https://doi.org/10.1061/JMCEA3.0000585 doi: 10.1061/JMCEA3.0000585
![]() |
[10] | K. Feng, Difference scheme based on variational principle, Appl. Math. Comput., 2 (1965), 238–262. |
[11] |
M. I. Ivanov, I. A. Kremer, Y. M. Laevsky, Solving the pure Neumann problem by a mixed finite element method, Numer. Anal. Appl., 15 (2022), 316–330. https://doi.org/10.1134/S1995423922040048 doi: 10.1134/S1995423922040048
![]() |
[12] |
H. D. Gao, W. W. Sun, Optimal analysis of non-uniform Galerkin-mixed finite element approximations to the Ginzburg-Landau equations in superconductivity, SIAM J. Numer. Anal., 61 (2023), 929–951. https://doi.org/10.1137/22M1483670 doi: 10.1137/22M1483670
![]() |
[13] |
X. L. Wang, X. L. Meng, S. Y. Zhang, H. F. Zhou, A modified weak Galerkin finite element method for the linear elasticity problem in mixed form, J. Comput. Appl. Math., 420 (2023), 114743. https://doi.org/10.1016/j.cam.2022.114743 doi: 10.1016/j.cam.2022.114743
![]() |
[14] |
B. Deka, N. Kumar, A systematic study on weak Galerkin finite element method for second‐order parabolic problems, Numer. Methods Partial Differ. Equ., 39 (2023), 2444–2474. https://doi.org/10.1002/num.22973 doi: 10.1002/num.22973
![]() |
[15] |
E. Chung, Y. Efendiev, Y. B. Li, Q. Li, Generalized multiscale finite element method for the steady state linear Boltzmann equation, Multiscale Model. Simul., 18 (2020), 475–501. https://doi.org/10.1137/19M1256282 doi: 10.1137/19M1256282
![]() |
[16] |
J. H. Yue, G. R. Liu, M. Li, R. P. Niu, A cell-based smoothed finite element method for multi-body contact analysis using linear complementarity formulation, Int. J. Solids Struct., 141–142 (2018), 110–126. https://doi.org/10.1016/j.ijsolstr.2018.02.016 doi: 10.1016/j.ijsolstr.2018.02.016
![]() |
[17] |
Y. Cheng, Q. Zhang, Local analysis of the fully discrete local discontinuous Galerkin method for the time-dependent singularly perturbed problem, J. Comput. Math., 35 (2017), 265–288. https://doi.org/10.4208/jcm.1605-m2015-0398 doi: 10.4208/jcm.1605-m2015-0398
![]() |
[18] |
J. B. Lin, H. Li, Z. M. Dong, Z. H. Zhao, Error estimations of SUPC stabilized space-time finite element approximations for convection-diffusion-reaction equations (Chinese), Math. Appl., 33 (2020), 275–294. https://doi.org/10.13642/j.cnki.42-1184/o1.2020.02.002 doi: 10.13642/j.cnki.42-1184/o1.2020.02.002
![]() |
[19] |
V. D. Varma, S. K. Nadupuri, N. Chamakuri, A posteriori error estimates and an adaptive finite element solution for the system of unsteady convection-diffusion-reaction equations in fluidized beds, Appl. Numer. Math., 163 (2021), 108–125. https://doi.org/10.1016/j.apnum.2021.01.012 doi: 10.1016/j.apnum.2021.01.012
![]() |
[20] |
Z. C. Shi, On spline finite element method, Math. Numer. Sin., 1 (1979), 50–72. https://doi.org/10.12286/jssx.1979.1.50 doi: 10.12286/jssx.1979.1.50
![]() |
[21] |
T. J. R. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194 (2005), 4135–4195. https://doi.org/10.1016/j.cma.2004.10.008 doi: 10.1016/j.cma.2004.10.008
![]() |
[22] |
X. Li, F. Chen, On the instability in the dimension of splines spaces over T-meshes, Comput. Aided Geom. D., 28 (2011), 420–426. https://doi.org/10.1016/j.cagd.2011.08.001 doi: 10.1016/j.cagd.2011.08.001
![]() |
[23] |
X. Peng, H. J. Lian, Z. W. Ma, C. Zheng, Intrinsic extended isogeometric analysis with emphasis on capturing high gradients or singularities, Eng. Anal. Bound. Elem., 134 (2022), 231–240. https://doi.org/10.1016/j.enganabound.2021.09.022 doi: 10.1016/j.enganabound.2021.09.022
![]() |
[24] |
M. J. Peake, J. Trevelyan, G. Coates, Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems, Comput. Methods Appl. Mech. Eng., 284 (2015), 762–780. https://doi.org/10.1016/j.cma.2014.10.039 doi: 10.1016/j.cma.2014.10.039
![]() |
[25] |
Y. P. Zhu, X. L. Han, New cubic rational basis with tension shape parameters, Appl. Math. J. Chin. Univ., 30 (2015), 273–298. https://doi.org/10.1007/s11766-015-3232-8 doi: 10.1007/s11766-015-3232-8
![]() |
[26] |
Q. Y. Chen, G. Z. Wang, A class of Bézier-like curves, Comput. Aided Geom. D., 20 (2003), 29–39. https://doi.org/10.1016/S0167-8396(03)00003-7 doi: 10.1016/S0167-8396(03)00003-7
![]() |
[27] |
C. Y. Li, C. Zhu, Designing developable C-Bézier surface with shape parameters, Mathematics, 8 (2020), 1–21. https://doi.org/10.3390/math8030402 doi: 10.3390/math8030402
![]() |
[28] |
L. Y. Sun, F. M. Su, Application of C-Bézier and H-Bézier basis functions to numerical solution of convection-diffusion equations, Bound. Value. Probl., 2022 (2022), 66. https://doi.org/10.1186/s13661-022-01647-5 doi: 10.1186/s13661-022-01647-5
![]() |
1. | Lanyin Sun, Fangming Su, Kunkun Pang, Numerical Solutions of Second-Order Elliptic Equations with C-Bézier Basis, 2024, 13, 2075-1680, 84, 10.3390/axioms13020084 |
Basis | (h1,h2) | (α,β) | ||u−uh||∞ | ||u−uh||0 | |u−uh|1 |
Lagrange | (12,12) | - | 2.7300e−02 | 1.9000e−02 | 2.9040e−01 |
(14,14) | - | 3.6000e−03 | 2.4000e−03 | 7.2900e−02 | |
(18,18) | - | 4.3043e−04 | 2.9490e−04 | 1.8100e−02 | |
(116,116) | - | 5.1902e−05 | 3.6546e−05 | 4.5000e−03 | |
C-Bézier | (12,12) | (π2,π2) | 1.1600e−03 | 1.1000e−03 | 1.0500e−02 |
(14,14) | (π4,π4) | 6.4629e−05 | 3.7382e−05 | 2.2604e−04 | |
(18,18) | (π8,π8) | 2.0840e−06 | 1.1235e−06 | 8.3533e−06 | |
(116,116) | (π16,π16) | 8.4527e−08 | 4.6837e−08 | 3.1371e−07 |
Basis | (h1,h2) | (α,β) | ||u−uh||∞ | ||u−uh||0 | |u−uh|1 |
Lagrange | (12,12) | - | 2.7200e−02 | 1.9000e−02 | 2.9000e−01 |
(14,14) | - | 3.6000e−03 | 2.4000e−03 | 7.2900e−02 | |
(18,18) | - | 4.3046e−04 | 2.9492e−04 | 1.8100e−02 | |
(116,116) | - | 5.1904e−05 | 3.6546e−05 | 4.5000e−03 | |
C-Bézier | (12,12) | (π2,π2) | 1.2000e−03 | 1.1003e−03 | 1.0007e−02 |
(14,14) | (π4,π4) | 6.7056e−05 | 3.7072e−05 | 2.6707e−04 | |
(18,18) | (π8,π8) | 3.9330e−06 | 2.2028e−06 | 1.2577e−05 | |
(116,116) | (π16,π16) | 2.5268e−07 | 1.3948e−07 | 8.3322e−07 |
Basis | (h1,h2) | (α,β) | L∞-order | L2-order | H1-order |
Lagrange | (12,12) | - | - | - | - |
(14,14) | - | 2.9228 | 2.9849 | 1.9941 | |
(18,18) | - | 3.0641 | 3.0247 | 2.0100 | |
(116,116) | - | 3.0519 | 3.0124 | 2.0080 | |
C-Bézier | (12,12) | (π2,π2) | - | - | - |
(14,14) | (π4,π4) | 4.1615 | 4.8914 | 5.2267 | |
(18,18) | (π8,π8) | 4.0917 | 4.0695 | 4.4107 | |
(116,116) | (π16,π16) | 3.9605 | 3.9846 | 3.9137 |
Basis | (h1,h2) | (α,β) | L∞-order | L2-order | H1-order |
Lagrange | (12,12) | - | - | - | - |
(14,14) | - | 2.9175 | 2.9849 | 1.9941 | |
(18,18) | - | 3.0640 | 3.0246 | 2.0100 | |
(116,116) | - | 3.0520 | 3.0124 | 2.0080 | |
C-Bézier | (12,12) | (π2,π2) | - | - | - |
(14,14) | (π4,π4) | 4.1658 | 4.8790 | 5.3346 | |
(18,18) | (π8,π8) | 4.9548 | 5.0562 | 4.7580 | |
(116,116) | (π16,π16) | 4.6238 | 4.5842 | 4.7348 |
Basis | (h1,h2) | (α,β) | ||u−uh||∞ | ||u−uh||0 | |u−uh|1 |
Lagrange | (12,12) | - | 6.4900e−02 | 3.0800e−02 | 5.8300e−01 |
(14,14) | - | 8.9000e−03 | 3.9000e−03 | 1.2400e−01 | |
(18,18) | - | 1.2000e−03 | 4.9088e−04 | 3.0600e−02 | |
(116,116) | - | 1.4766e−04 | 6.1519e−05 | 7.6000e−03 | |
C-Bézier | (12,12) | (5π6,π2) | 8.7000e−03 | 4.3000e−03 | 4.5900e−02 |
(14,14) | (π2,π4) | 8.4000e−04 | 4.7055e−04 | 1.0200e−02 | |
(18,18) | (π4,π8) | 8.0392e−05 | 5.3915e−05 | 2.1000e−03 | |
(116,116) | (π8,π16) | 7.7466e−06 | 6.2311e−06 | 5.1000e−04 |
Basis | (h1,h2) | (α,β) | ||u−uh||∞ | ||u−uh||0 | |u−uh|1 |
Lagrange | (12,12) | - | 6.5300e−02 | 3.0700e−02 | 5.5750e−01 |
(14,14) | - | 8.9000e−03 | 3.9000e−03 | 1.2390e−01 | |
(18,18) | - | 1.2000e−03 | 4.9092e−04 | 3.0600e−02 | |
(116,116) | - | 1.4754e−04 | 6.1522e−05 | 7.6000e−03 | |
C-Bézier | (12,12) | (5π6,π2) | 8.9760e−03 | 6.6711e−03 | 6.2550e−02 |
(14,14) | (π2,π4) | 9.1761e−04 | 7.6076e−04 | 1.5600e−02 | |
(18,18) | (π4,π8) | 8.5430e−05 | 7.6793e−05 | 3.1000e−03 | |
(116,116) | (π8,π16) | 8.6433e−06 | 7.9016e−06 | 6.1891e−04 |
Basis | (h1,h2) | (α,β) | L∞-order | L2-order | H1-order |
Lagrange | (12,12) | - | - | - | - |
(14,14) | - | 2.87523 | 2.9767 | 2.1698 | |
(18,18) | - | 2.8908 | 2.9899 | 2.0176 | |
(116,116) | - | 3.0200 | 2.9963 | 2.0095 | |
C-Bézier | (12,12) | (5π6,π2) | - | - | - |
(14,14) | (π2,π4) | 3.2901 | 3.1324 | 2.0035 | |
(18,18) | (π4,π8) | 3.4251 | 3.3083 | 2.3312 | |
(116,116) | (π8,π16) | 3.3051 | 3.2808 | 2.3245 |
Basis | (h1,h2) | (α,β) | L∞-order | L2-order | H1-order |
Lagrange | (12,12) | - | - | - | - |
(14,14) | - | 2.8663 | 2.9813 | 2.1707 | |
(18,18) | - | 2.8908 | 2.9903 | 2.0187 | |
(116,116) | - | 3.0227 | 2.9963 | 2.0095 | |
C-Bézier | (12,12) | (5π6,π2) | - | - | - |
(14,14) | (π2,π4) | 3.3726 | 3.1919 | 2.1699 | |
(18,18) | (π4,π8) | 3.3853 | 3.1256 | 2.2801 | |
(116,116) | (π8,π16) | 3.3754 | 3.1134 | 2.0418 |
Basis | (h1,h2) | (α,β) | ||u−uh||∞ | ||u−uh||0 | |u−uh|1 |
Lagrange | (12,12) | - | 2.7300e−02 | 1.9000e−02 | 2.9040e−01 |
(14,14) | - | 3.6000e−03 | 2.4000e−03 | 7.2900e−02 | |
(18,18) | - | 4.3043e−04 | 2.9490e−04 | 1.8100e−02 | |
(116,116) | - | 5.1902e−05 | 3.6546e−05 | 4.5000e−03 | |
C-Bézier | (12,12) | (π2,π2) | 1.1600e−03 | 1.1000e−03 | 1.0500e−02 |
(14,14) | (π4,π4) | 6.4629e−05 | 3.7382e−05 | 2.2604e−04 | |
(18,18) | (π8,π8) | 2.0840e−06 | 1.1235e−06 | 8.3533e−06 | |
(116,116) | (π16,π16) | 8.4527e−08 | 4.6837e−08 | 3.1371e−07 |
Basis | (h1,h2) | (α,β) | ||u−uh||∞ | ||u−uh||0 | |u−uh|1 |
Lagrange | (12,12) | - | 2.7200e−02 | 1.9000e−02 | 2.9000e−01 |
(14,14) | - | 3.6000e−03 | 2.4000e−03 | 7.2900e−02 | |
(18,18) | - | 4.3046e−04 | 2.9492e−04 | 1.8100e−02 | |
(116,116) | - | 5.1904e−05 | 3.6546e−05 | 4.5000e−03 | |
C-Bézier | (12,12) | (π2,π2) | 1.2000e−03 | 1.1003e−03 | 1.0007e−02 |
(14,14) | (π4,π4) | 6.7056e−05 | 3.7072e−05 | 2.6707e−04 | |
(18,18) | (π8,π8) | 3.9330e−06 | 2.2028e−06 | 1.2577e−05 | |
(116,116) | (π16,π16) | 2.5268e−07 | 1.3948e−07 | 8.3322e−07 |
Basis | (h1,h2) | (α,β) | L∞-order | L2-order | H1-order |
Lagrange | (12,12) | - | - | - | - |
(14,14) | - | 2.9228 | 2.9849 | 1.9941 | |
(18,18) | - | 3.0641 | 3.0247 | 2.0100 | |
(116,116) | - | 3.0519 | 3.0124 | 2.0080 | |
C-Bézier | (12,12) | (π2,π2) | - | - | - |
(14,14) | (π4,π4) | 4.1615 | 4.8914 | 5.2267 | |
(18,18) | (π8,π8) | 4.0917 | 4.0695 | 4.4107 | |
(116,116) | (π16,π16) | 3.9605 | 3.9846 | 3.9137 |
Basis | (h1,h2) | (α,β) | L∞-order | L2-order | H1-order |
Lagrange | (12,12) | - | - | - | - |
(14,14) | - | 2.9175 | 2.9849 | 1.9941 | |
(18,18) | - | 3.0640 | 3.0246 | 2.0100 | |
(116,116) | - | 3.0520 | 3.0124 | 2.0080 | |
C-Bézier | (12,12) | (π2,π2) | - | - | - |
(14,14) | (π4,π4) | 4.1658 | 4.8790 | 5.3346 | |
(18,18) | (π8,π8) | 4.9548 | 5.0562 | 4.7580 | |
(116,116) | (π16,π16) | 4.6238 | 4.5842 | 4.7348 |
Basis | (h1,h2) | (α,β) | ||u−uh||∞ | ||u−uh||0 | |u−uh|1 |
Lagrange | (12,12) | - | 6.4900e−02 | 3.0800e−02 | 5.8300e−01 |
(14,14) | - | 8.9000e−03 | 3.9000e−03 | 1.2400e−01 | |
(18,18) | - | 1.2000e−03 | 4.9088e−04 | 3.0600e−02 | |
(116,116) | - | 1.4766e−04 | 6.1519e−05 | 7.6000e−03 | |
C-Bézier | (12,12) | (5π6,π2) | 8.7000e−03 | 4.3000e−03 | 4.5900e−02 |
(14,14) | (π2,π4) | 8.4000e−04 | 4.7055e−04 | 1.0200e−02 | |
(18,18) | (π4,π8) | 8.0392e−05 | 5.3915e−05 | 2.1000e−03 | |
(116,116) | (π8,π16) | 7.7466e−06 | 6.2311e−06 | 5.1000e−04 |
Basis | (h1,h2) | (α,β) | ||u−uh||∞ | ||u−uh||0 | |u−uh|1 |
Lagrange | (12,12) | - | 6.5300e−02 | 3.0700e−02 | 5.5750e−01 |
(14,14) | - | 8.9000e−03 | 3.9000e−03 | 1.2390e−01 | |
(18,18) | - | 1.2000e−03 | 4.9092e−04 | 3.0600e−02 | |
(116,116) | - | 1.4754e−04 | 6.1522e−05 | 7.6000e−03 | |
C-Bézier | (12,12) | (5π6,π2) | 8.9760e−03 | 6.6711e−03 | 6.2550e−02 |
(14,14) | (π2,π4) | 9.1761e−04 | 7.6076e−04 | 1.5600e−02 | |
(18,18) | (π4,π8) | 8.5430e−05 | 7.6793e−05 | 3.1000e−03 | |
(116,116) | (π8,π16) | 8.6433e−06 | 7.9016e−06 | 6.1891e−04 |
Basis | (h1,h2) | (α,β) | L∞-order | L2-order | H1-order |
Lagrange | (12,12) | - | - | - | - |
(14,14) | - | 2.87523 | 2.9767 | 2.1698 | |
(18,18) | - | 2.8908 | 2.9899 | 2.0176 | |
(116,116) | - | 3.0200 | 2.9963 | 2.0095 | |
C-Bézier | (12,12) | (5π6,π2) | - | - | - |
(14,14) | (π2,π4) | 3.2901 | 3.1324 | 2.0035 | |
(18,18) | (π4,π8) | 3.4251 | 3.3083 | 2.3312 | |
(116,116) | (π8,π16) | 3.3051 | 3.2808 | 2.3245 |
Basis | (h1,h2) | (α,β) | L∞-order | L2-order | H1-order |
Lagrange | (12,12) | - | - | - | - |
(14,14) | - | 2.8663 | 2.9813 | 2.1707 | |
(18,18) | - | 2.8908 | 2.9903 | 2.0187 | |
(116,116) | - | 3.0227 | 2.9963 | 2.0095 | |
C-Bézier | (12,12) | (5π6,π2) | - | - | - |
(14,14) | (π2,π4) | 3.3726 | 3.1919 | 2.1699 | |
(18,18) | (π4,π8) | 3.3853 | 3.1256 | 2.2801 | |
(116,116) | (π8,π16) | 3.3754 | 3.1134 | 2.0418 |