The finite element (FE) method is a widely used numerical technique for approximating solutions to various problems in different fields such as thermal diffusion, mechanics of continuous media, electromagnetism and multi-physics problems. Recently, there has been growing interest among researchers in the application of fractional derivatives. In this paper, we present a generalization of the FE method known as the conformable finite element method, which is specifically designed to solve conformable fractional partial differential equations (CF-PDE). We introduce the basis functions that are used to approximate the solution of CF-PDE and provide error estimation techniques. Furthermore, we provide an illustrative example to demonstrate the effectiveness of the proposed method. This work serves as a starting point for tackling more complex problems involving fractional derivatives.
Citation: Lakhlifa Sadek, Tania A Lazǎr, Ishak Hashim. Conformable finite element method for conformable fractional partial differential equations[J]. AIMS Mathematics, 2023, 8(12): 28858-28877. doi: 10.3934/math.20231479
The finite element (FE) method is a widely used numerical technique for approximating solutions to various problems in different fields such as thermal diffusion, mechanics of continuous media, electromagnetism and multi-physics problems. Recently, there has been growing interest among researchers in the application of fractional derivatives. In this paper, we present a generalization of the FE method known as the conformable finite element method, which is specifically designed to solve conformable fractional partial differential equations (CF-PDE). We introduce the basis functions that are used to approximate the solution of CF-PDE and provide error estimation techniques. Furthermore, we provide an illustrative example to demonstrate the effectiveness of the proposed method. This work serves as a starting point for tackling more complex problems involving fractional derivatives.
[1] | A. Ouardghi, M. El-Amrani, M. Seaid, An enriched Galerkin-characteristics finite element method for convection-dominated and transport problems, Appl. Numer. Math., 167 (2021), 119–142. https://doi.org/10.1016/j.apnum.2021.04.018 doi: 10.1016/j.apnum.2021.04.018 |
[2] | D. Broersen, R. Stevenson, A robust Petrov-Galerkin discretization of convection–diffusion equations, Comput. Math. Appl., 68 (2014), 1605–1618. https://doi.org/10.1016/j.camwa.2014.06.019 doi: 10.1016/j.camwa.2014.06.019 |
[3] | A. Cangiani, E. H. Georgoulis, S. Giani, S. Metcalfe, hp-adaptive discontinuous Galerkin methods for non-stationary convection–diffusion problems, Comput. Math. Appl., 78 (2019), 3090–3104. https://doi.org/10.1016/j.camwa.2019.04.002 doi: 10.1016/j.camwa.2019.04.002 |
[4] | A. El Kacimi, O. Laghrouche, Numerical modelling of elastic wave scattering in frequency domain by the partition of unity finite element method, Int. J. Numer. Methods Eng., 77 (2009), 1646–1669. https://doi.org/10.1002/nme.2471 doi: 10.1002/nme.2471 |
[5] | X. Xiao, X. Feng, Z. Li, A gradient recovery-based adaptive finite element method for convection-diffusion-reaction equations on surfaces, Int. J. Numer. Methods Eng., 120 (2019), 901–917. https://doi.org/10.1002/nme.6163 doi: 10.1002/nme.6163 |
[6] | K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Amsterdam: Elsevier, 1974. |
[7] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[8] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and applications to heat transfer model, Therm. Sci., 20 (2016), 763–769. |
[9] | J. Hadamard, Essai sur l'etude des fonctions donnes par leur developpment de Taylor, J. Pure Appl. Math., 4 (1892), 101–186. |
[10] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus, Dordrecht: Springer, 2007. |
[11] | A. D. Freed, K. Diethelm, Fractional calculus in biomechanics: a 3D viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad, Biomech. Model. Mechanobiol., 5 (2006), 203–215. https://doi.org/10.1007/s10237-005-0011-0 doi: 10.1007/s10237-005-0011-0 |
[12] | M. M. Meerschaert, E. Scalas, Coupled continuous time random walks in finance, Phys. A Stat. Mech. Appl., 370 (2006), 114–118. https://doi.org/10.1016/j.physa.2006.04.034 doi: 10.1016/j.physa.2006.04.034 |
[13] | O. Sadek, L. Sadek, S. Touhtouh, A. Hajjaji, The mathematical fractional modeling of TiO-2 nanopowder synthesis by sol-gel method at low temperature, Math. Model. Comput., 9 (2022), 616–626. https://doi.org/10.23939/mmc2022.03.616 doi: 10.23939/mmc2022.03.616 |
[14] | W. M. Ahmad, R. El-Khazali, Fractional-order dynamical models of love, Chaos Solitons Fract., 33 (2007), 1367–1375. https://doi.org/10.1016/j.chaos.2006.01.098 doi: 10.1016/j.chaos.2006.01.098 |
[15] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 757–763. |
[16] | F. Gao, X. J. Yang, Fractional Maxwell fluid with fractional derivative without singular kernel, Therm. Sci., 20 (2016), 871–877. |
[17] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. http://dx.doi.org/10.12785/pfda/010202 doi: 10.12785/pfda/010202 |
[18] | X. J. Yang, F. Gao, J. A. Tenreiro Machado, D. Baleanu, A new fractional derivative involving the normalized sinc function without singular kernel, Eur. Phys. J. Spec. Top., 226 (2017), 3567–3575. https://doi.org/10.1140/epjst/e2018-00020-2 doi: 10.1140/epjst/e2018-00020-2 |
[19] | T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. |
[20] | T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 2017 (2017), 78. https://doi.org/10.1186/s13662-017-1126-1 doi: 10.1186/s13662-017-1126-1 |
[21] | T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. https://doi.org/10.1016/S0034-4877(17)30059-9 doi: 10.1016/S0034-4877(17)30059-9 |
[22] | L. Sadek, A cotangent fractional derivative with the application, Fractal Fract., 7 (2023), 444. https://doi.org/10.3390/fractalfract7060444 doi: 10.3390/fractalfract7060444 |
[23] | L. Sadek, A. S. Bataineh, H. Talibi Alaoui, I. Hashim, The novel Mittag-Leffler–Galerkin method: application to a riccati differential equation of fractional order, Fractal Fract., 7 (2023), 302. https://doi.org/10.3390/fractalfract7040302 doi: 10.3390/fractalfract7040302 |
[24] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[25] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016 |
[26] | A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889–898. https://doi.org/10.1515/math-2015-0081 doi: 10.1515/math-2015-0081 |
[27] | O. Naifar, G. Rebiai, A. B. Makhlouf, M. A. Hammami, A. Guezane-Lakoud, Stability analysis of conformable fractional-order nonlinear systems depending on a parameter, J. Appl. Anal., 26 (2020), 287–296. https://doi.org/10.1515/jaa-2020-2025 doi: 10.1515/jaa-2020-2025 |
[28] | A. Kütahyalioglu, F. Karakoç, Exponential stability of Hopfield neural networks with conformable fractional derivative, Neurocomputing, 456 (2021), 263–267. https://doi.org/10.1016/j.neucom.2021.05.076 doi: 10.1016/j.neucom.2021.05.076 |
[29] | Z. Hammouch, R. R. Rasul, A. Ouakka, A. Elazzouzi, Mathematical analysis and numerical simulation of the Ebola epidemic disease in the sense of conformable derivative, Chaos Solitons Fract., 158 (2022), 112006. https://doi.org/10.1016/j.chaos.2022.112006 doi: 10.1016/j.chaos.2022.112006 |
[30] | H. Zhao, T. Li, P. Cui, On stability for conformable fractional linear system, In: 2020 39th Chinese Control Conference, 2020,899–903. https://doi.org/10.23919/CCC50068.2020.9189052 |
[31] | G. Rebiai, Stability analysis of nonlinear differential equations depending on a parameter with conformable derivative, New Trends Math. Sci., 1 (2021), 44–49. http://dx.doi.org/10.20852/ntmsci.2021.427 doi: 10.20852/ntmsci.2021.427 |
[32] | L. Sadek, B. Abouzaid, E. M. Sadek, H. T. Alaoui, Controllability, observability and fractional linear-quadratic problem for fractional linear systems with conformable fractional derivatives and some applications, Int. J. Dynam. Control, 11 (2023), 214–228. https://doi.org/10.1007/s40435-022-00977-7 doi: 10.1007/s40435-022-00977-7 |
[33] | Z. Al-Zhour, Controllability and observability behaviors of a non-homogeneous conformable fractional dynamical system compatible with some electrical applications, Alex. Eng. J., 61 (2022), 1055–1067. https://doi.org/10.1016/j.aej.2021.07.018 doi: 10.1016/j.aej.2021.07.018 |
[34] | X. Wang, J. Wang, M. Feckan, Controllability of conformable differential systems, Nonlinear Anal. Model. Control, 25 (2020), 658–674. https://doi.org/10.15388/namc.2020.25.18135 doi: 10.15388/namc.2020.25.18135 |
[35] | J. C. Mayo-Maldonado, G. Fernandez-Anaya, O. F. Ruiz-Martinez, Stability of conformable linear differential systems: a behavioural framework with applications in fractional-order control, IET Control Theory Appl., 14 (2020), 2900–2913. https://doi.org/10.1049/iet-cta.2019.0930 doi: 10.1049/iet-cta.2019.0930 |
[36] | A. Ben Makhlouf, L. Mchiri, M. Rhaima, M. A. Hammami, Stability of conformable stochastic systems depending on a parameter, Asian J. Control, 25 (2023), 594–603. https://doi.org/10.1002/asjc.2804 doi: 10.1002/asjc.2804 |
[37] | H. Rezazadeh, H Aminikhah, S. A. Refahi, Stability analysis of conformable fractional systems, Iran. J. Numer. Anal. Optimiz., 7 (2017), 13–32. https://doi.org/10.22067/ijnao.v7i1.46917 doi: 10.22067/ijnao.v7i1.46917 |
[38] | A. Souahi, A. B. Makhlouf, M. A. Hammami, Stability analysis of conformable fractional-order nonlinear systems, Indagat. Math., 28 (2017), 1265–1274. https://doi.org/10.1016/j.indag.2017.09.009 doi: 10.1016/j.indag.2017.09.009 |
[39] | Y. Qi, X. Wang, Asymptotical stability analysis of conformable fractional systems, J. Taibah Uni. Sci., 14 (2020), 44–49. https://doi.org/10.1080/16583655.2019.1701390 doi: 10.1080/16583655.2019.1701390 |
[40] | A. Younus, T. Abdeljawad, T. Gul, On stability criteria of fractal differential systems of conformable type, Fractals, 28 (2020), 2040009. https://doi.org/10.1142/S0218348X20400095 doi: 10.1142/S0218348X20400095 |
[41] | L. Sadek, Stability of conformable linear infinite-dimensional systems, Int. J. Dynam. Control, 11 (2022), 1276–1284. https://doi.org/10.1007/s40435-022-01061-w doi: 10.1007/s40435-022-01061-w |
[42] | M. Yavari, A. Nazemi, On fractional infinite-horizon optimal control problems with a combination of conformable and Caputo–Fabrizio fractional derivatives, ISA Trans., 101 (2020), 78–90. https://doi.org/10.1016/j.isatra.2020.02.011 doi: 10.1016/j.isatra.2020.02.011 |
[43] | L. Pedram, D. Rostamy, Numerical solutions of the initial boundary value problem for the perturbed conformable time Korteweg-de Vries equation by using the finite element method, Numer. Methods Partial Differ. Equ., 37 (2021), 1449–1463. https://doi.org/10.1002/num.22590 doi: 10.1002/num.22590 |
[44] | Y. Wang, J. Zhou, Y. Li, Fractional Sobolev's spaces on time scales via conformable fractional calculus and their application to a fractional differential equation on time scales, Adv. Math. Phys., 2016 (2016), 9636491. https://doi.org/10.1155/2016/9636491 doi: 10.1155/2016/9636491 |
[45] | B. P. Allahverdiev, H. Tuna, Y. Yalçinkaya, Spectral expansion for singular conformable fractional sturm-liouville problem, Math. Commun., 25 (2020), 237–252. |
[46] | B. Lucquin, Équations aux dérivées partielles et leurs approximations: niveau M1, Ellipses Éd. Marketing, 2004. |
[47] | X. Li, A stabilized element-free Galerkin method for the advection–diffusion–reaction problem, Appl. Math. Lett., 146 (2023), 108831. https://doi.org/10.1016/j.aml.2023.108831 doi: 10.1016/j.aml.2023.108831 |
[48] | X. Li, Element-free Galerkin analysis of Stokes problems using the reproducing kernel gradient smoothing integration, J. Sci. Comput., 96 (2023), 43. https://doi.org/10.1007/s10915-023-02273-8 doi: 10.1007/s10915-023-02273-8 |
[49] | X. Li, S. Li, Effect of an efficient numerical integration technique on the element-free Galerkin method, Appl. Numer. Math., 193 (2023), 204–225. https://doi.org/10.1016/j.apnum.2023.07.026 doi: 10.1016/j.apnum.2023.07.026 |