Citation: Shujie Jing, Jixiang Guan, Zhiyong Si. A modified characteristics projection finite element method for unsteady incompressible Magnetohydrodynamics equations[J]. AIMS Mathematics, 2020, 5(4): 3922-3951. doi: 10.3934/math.2020254
[1] | R. Moreau, Magnetohydrodynamics, Kluwer Academic Publishers, 1990. |
[2] | W. Hughes, F. Young, The Electromagnetodynamics of Fluids, Wiley: New York, 1966. |
[3] | M. D. Gunzburger, A. J. Meir, J. S. Peterson, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics, Math. Comput., 56 (199), 523-563. |
[4] | J. Gerbeau, C. Bris, T. Lelièvre, Mathematical methods for the Manetohydrodynamics of liquid metals, Oxford University Press, 2006. |
[5] | M. Sermange, R. Temam, Some mathematical questions related to the magnetohydrodynamic equations, Comput. Compacts, 1 (1983), 212. doi: 10.1016/0167-7136(83)90286-X |
[6] | U. Hasler, A. Schneebeli, D. Schötzau, Mixed finite element approximation of incompressible MHD problems based on weighted regularization, Appl. Numer. Math., 51 (2004), 19-45. doi: 10.1016/j.apnum.2004.02.005 |
[7] | J. L. Guermond, P. D. Minev, Mixed Finite Element approximation of an MHD problem involving conducting and insulating regions: The 2D case, ESAIM: Math. Modell. Numer. Analy., 36 (2002), 517-536. doi: 10.1051/m2an:2002024 |
[8] | J. L. Guermond, P. D. Minev, Mixed finite element approximation of an MHD problem involving conducting and insulating regions: The 3D case, Numer. Methods Partial Differential Equations, 19 (2002), 709-731. doi: 10.1002/num.10067 |
[9] | D. Schötzau, Mixed finite element methods for stationary incompressible magneto-hydrodynamics, Numer. Math., 96 (2004), 771-800. doi: 10.1007/s00211-003-0487-4 |
[10] | J. F. Gerbeau, A stabilized finite element method for the incompressible magnetohydrodynamic equations, Numerische Mathematik, 87 (2000), 83-111. doi: 10.1007/s002110000193 |
[11] | N. B. Salah, A. Soulaimani, W. G. Habashi, A finite element method for magnetohydrodynamics, Comput. Methods Appl. Mech. Eng., 190 (2001), 5867-5892. doi: 10.1016/S0045-7825(01)00196-7 |
[12] | A. I. Nesliturk, M. Tezer-Sezgin, Two-evel finite element method with a stabilizing subgrid for the incompressible MHD equations, Int. J. Numer. Methods Fluids, 62 (2010), 188-210. |
[13] | X. J. Dong, Y. N. He, Y. Zhang, Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics, Comput. Method. Appl. Math., 276 (2014), 287-311. |
[14] | Y. N. He, Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations, IMA. J. Numer. Anal., 35 (2015), 767-801. doi: 10.1093/imanum/dru015 |
[15] | X. J. Dong, Y. N. He, Two-level newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics, J. Sci. Comput., 63 (2015), 426-451. doi: 10.1007/s10915-014-9900-7 |
[16] | R. Ingram, Numerical analysis of a finite element Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers, Int. J. Numer. Analy. Model., 10 (2012), 74-98. |
[17] | Y. F. Lei, Y. Yang, Z. Y. Si, Error estimate of fully discrete dc-fem for unsteady incompressible magnetohydrodynamics equations, Appl. Anal., 97 (2018), 2355-2376. doi: 10.1080/00036811.2017.1366990 |
[18] | Z. Y. Si, S. J. Jing, Y. X. Wang, Defect correction finite element method for the stationary incompressible magnetohydrodynamics equation, Appl. Math. Comput., 285 (2016), 184-194. |
[19] | Z. Y. Si, C. Liu, Y. X. Wang, A semi-discrete defect correction finite element method for unsteady incompressible magnetohydrodynamics equations, Math. Method Appl. Sci., 40 (2017), 4179-4196. doi: 10.1002/mma.4296 |
[20] | J. E. Deng, Z. Y. Si, A decoupling penalty finite element method for the stationary incompressible magnetohydrodynamics equation, Int. J. Heat. Mass. Tran., 128 (2019), 601-612. doi: 10.1016/j.ijheatmasstransfer.2018.08.096 |
[21] | W. Layton, H. Tran, C. Trenchea, Numerical analysis of two parititioned methods for uncoupling evolutionary MHD flows, Numer. Methods Partial Differ. Equ., 30 (2014), 1083-1102. doi: 10.1002/num.21857 |
[22] | G. D. Zhang, Y. N. He, D. Yang, Analysis of coupling iterations based on the finite element method for stationary magnetohydrodynamics on a general domain, Comput. Math. Appl., 68 (2014), 770-788. doi: 10.1016/j.camwa.2014.07.025 |
[23] | G. D. Zhang, Y. N. He, Decoupled schemes for unsteady MHD equations. II: Finite element spatial discretization and numerical implementation, Comput. Math. Appl., 69 (2015), 1390-1406. doi: 10.1016/j.camwa.2015.03.019 |
[24] | R. A. Adams, Sobolev Space, In: Pure and Applied Mathematics, vol. 65, Academic Press, New York, 1975. |
[25] | V. Girault, P. Raviart, Finite element methods for Navier-Stokes equations, 1986. |
[26] | J. Heywood, G. John, The Navier-Stokes equations: On the existence, regularity and decay of solutions, Indiana University Math. J., 29 (1980), 639-681. doi: 10.1512/iumj.1980.29.29048 |
[27] | Y. N. He, Two-level method based on finite element and Crank-Nicolson extrapolation for the timedependent Navier-Stokes equations, SIAM J. Numer. Anal., 41 (2004), 1263-1285. |
[28] | G. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations: Steady-state problems, Springer, New Yourk, 2011. |
[29] | Y. Achdou, J. L. Guermond, Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 37 (2000), 799-826. doi: 10.1137/S0036142996313580 |
[30] | R. Bermejo, P. Galán del Sastre, L. Saavedra, A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 50 (2012), 3084-3109. doi: 10.1137/11085548X |
[31] | Z. Y. Si, J. L. Wang, W. W. Sun, Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations, Numer. Math., 134 (2016), 139-161. doi: 10.1007/s00211-015-0767-9 |
[32] | F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265. |