Citation: Shu-Hong Wang, Xiao-Wei Sun, Bai-Ni Guo. On GT-convexity and related integral inequalities[J]. AIMS Mathematics, 2020, 5(4): 3952-3965. doi: 10.3934/math.2020255
[1] | G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294-1308. doi: 10.1016/j.jmaa.2007.02.016 |
[2] | Y. M. Chu, M. A. Khan, T. U. Khan, et al. Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 4305-4316. doi: 10.22436/jnsa.009.06.72 |
[3] | W. Liu, Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes, 16 (2015), 249-256. doi: 10.18514/MMN.2015.1131 |
[4] | W. Liu, W. Wen, J. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 766-777. doi: 10.22436/jnsa.009.03.05 |
[5] | M. A. Noor, K. I. Noor, M. U. Awan, Some inequalities for geometrically-arithmetically h-convex functions, Creat. Math. Inform., 23 (2014), 91-98. doi: 10.37193/CMI.2014.01.14 |
[6] | J. Park, Hermite-Hadamard-like type inequalities for twice differentiable MT-convex functions, Appl. Math. Sci., 9 (2015), 5235-5250. |
[7] | M. Tunç, Y. Subas, I. Karabayir, On some Hadamard type inequalities for MT-convex functions, Int. J. Open Problems Compt. Math., 6 (2013), 101-113. |
[8] | S. H. Wang, Hermite-Hadamard type inequalities for operator convex functions on the coordinates, J. Nonlinear Sci. Appl., 10 (2017), 1116-1125. doi: 10.22436/jnsa.010.03.22 |
[9] | S. H. Wang, F. Qi, Inequalities of Hermite-Hadamard type for convex functions which are n-times differentiable, Math. Inequal. Appl., 16 (2013), 1269-1278. |
[10] | B. Y. Xi, F. Qi, Hermite-Hadamard type inequalities for geometrically r-convex functions, Studia Sci. Math. Hungar., 51 (2014), 530-546. |
[11] | B. Y. Xi, F. Qi, Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means, J. Nonlinear Convex Anal., 16 (2015), 873-890. |
[12] | X. M. Zhang, Y. M. Chu, X. H. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its application, J. Inequal. Appl., 2010, Art. ID 507560, 11 pages, Available from: https://doi.org/10.1155/2010/507560. |
[13] | T. H. Zhao, Y. M. Chu, Y. P. Jiang, Monotonic and logarithmically convex properties of a function involving gamma functions, J. Inequal. Appl., 2009, Art. ID 728612, 13 pages, Available from: http://dx.doi.org/10.1155/2009/728612. |
[14] | B. G. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6 (2003), Suppl., Art. 1, Available from: http://rgmia.org/v6(E).php. |
[15] | Y. Wu, F. Qi, D. W. Niu, Integral inequalities of Hermite-Hadamard type for the product of strongly logarithmically convex and other convex functions, Maejo Int. J. Sci. Technol., 9 (2015), 394-402. |
[16] | H. P. Yin, F. Qi, Hermite-Hadamard type inequalities for the product of (α, m)-convex functions, J. Nonlinear Sci. Appl., 8 (2015), 231-236. doi: 10.22436/jnsa.008.03.07 |
[17] | H. P. Yin, F. Qi, Hermite-Hadamard type inequalities for the product of (α, m)-convex functions, Missouri J. Math. Sci., 27 (2015), 71-79. doi: 10.35834/mjms/1449161369 |
[18] | J. Q. Wang, B. N. Guo, F. Qi, Generalizations and applications of Young's integral inequality by higher order derivatives, J. Inequal. Appl., 2019, Paper No. 243, 18 pages, Available from: https://doi.org/10.1186/s13660-019-2196-2. |
[19] | M. Tunç, H. Yildirim, On MT-convexity, arXiv preprint (2012), Available from: https://arxiv.org/abs/1205.5453. |
[20] | C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl., 3 (2000), 155-167. |
[21] | C. P. Niculescu, Convexity according to means, Math. Inequal. Appl., 6 (2003), 571-579. |
[22] | T. Y. Zhang, A. P. Ji, F. Qi, Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means, Matematiche (Catania), 68 (2013), 229-239. |
[23] | S. S. Dragomir., Inequalities of Hermite-Hadamard type for GA-convex functions, Ann. Math. Sil., 32 (2018), 145-168. |
[24] | H. J. Skala, On the characterization of certain similarly ordered super-additive functionals, Proc. Amer. Math. Soc., 126 (1998), 1349-1353. doi: 10.1090/S0002-9939-98-04702-9 |
[25] | B. Y. Xi, D. D. Gao, T. Zhang, et al. Shannon type inequalities for Kapur's entropy, Mathematics, 7 (2019), no. 1, Article 22, 8 pages, Available from: https://doi.org/10.3390/math7010022. |
[26] | B. Y. Xi, Y. Wu, H. N. Shi, et al. Generalizations of several inequalities related to multivariate geometric means, Mathematics, 7 (2019), no. 6, Article 552, 15 pages, Available from: https://doi.org/10.3390/math7060552. |
[27] | I. A. Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Spaces, 2020, Art. ID 3075390, 7 pages; Available from: https://doi.org/10.1155/2020/3075390. |
[28] | M. A. Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Difference Equ., 2020, Paper No. 99, 20 pages, Available from: https://doi.org/10.1186/s13662-020-02559-3. |
[29] | A. Iqbal, M. A. Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020, Art. ID 9845407, 18 pages, Available from: https://doi.org/10.1155/2020/9845407. |
[30] | M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for coordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019, Paper No. 317, 33 pages, Available from: https://doi.org/10.1186/s13660-019-2272-7. |
[31] | T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), no. 2, Article ID 96, 14 pages, Available from: https://doi.org/10.1007/s13398-020-00825-3. |