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1. Introduction
The definition of convexity is well known in the literature.
Definition 1.1. A function G : I € R — R defined on an interval I # 0 is said to be convex if
GAx + (1 = Dy) < AG(x) + (1 — DHG(y)

is valid for all x,y € I and A € [0, 1].

Theorem 1.1. Let G : I C R — R be convex and x,y € I with x # y. Then

X+y 1 Y G(x) + G(y)
G( > )S y_xﬂ G(s)ds < — (1.1)

If G is concave, the above double inequality holds in the reverse way.

The double inequality (1.1) is called the Hermite—Hadamard integral inequality for convex
functions.
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In recent years, the Hermite—Hadamard integral inequality has been the subject of intensive
research. Various improvements, generalizations, and variants of this inequality can be found
in [1-13] and closely related references therein. In [14], Pachpatte established some integral
inequalities for the product of two convex functions.

Theorem 1.2 ( [14, Theorem 1]). Suppose that G, H : I — (0, 00) are convex, x,y € I with x <y, and
GH € L[x,y]. Then

ZG(x er y)H(x er y) _ Mx,y) ZZN(x,y) < : i . fy G(s)H(s)ds < 2M(x,y)6+ N(x,Y)’ (1.2)
where
M(x,y) = GWH) + GWHE) and  N(x,y) = GOH() + GOIH(). (4

Motivated by the inequality (1.2), several integral inequalities for the product of two convex
functions were also established in the papers [15-17]. In [18], the double inequality (1.2) was applied
to generalize and refine Young’s integral inequality in terms of higher order derivatives.

In [19], Tun¢ and Yildrim defined the MT-convexity and obtained some new integral inequalities
for MT-convex functions.

Definition 1.2 ([19]). Let / € R. Then a nonnegative function G : I — [0, c0) is said to be MT-convex,
denoted by G € MT (1), if

G(Ax + (1= Ay) < iG(x) f -4

2VI -2 2V

G(y)

validates for x,y € I and A € (0, 1).

Theorem 1.3 ([19]). Let G € MT(I), x,y €  with x <y, and G € L,[x,y]. Then

26(52) s6m+6m). 6(52) < y%x fxy F(s)ds,
and 2 Y G(x) + G(®y)
yTx £ v($)G(s)ds < —
where
v(s) = 2 (y;j)is —%) ,  SE[xyl

In this paper, we will introduce a new class of convex functions, GT-convex functions, establish
some new integral inequalities for GT-convex functions and for the product of two GT-convex
functions, and apply these to classical special means.

2. GT-convexity and lemmas

In this section, we introduce the concept of GT-convexity and list several lemmas.
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Definition 2.1. Suppose that I C (0,0). A real-valued function G : I — R is called GT-convex,
denoted by G € GT (1), if

G(x'y'™) < iG(x) + vi-4

2V1-2 2vVa

G() 2.1)

validates for all x,y € I and 4 € (0, 1).
Remark 2.1. When A = 3, the inequality (2.1) reduces to

G(\/x_y)SG(x);G(y).

Proposition 2.1. Let I C (0,00) and x,y € I with x < y. If H : [Inx,Iny] — R is MT-convex, then the
function G : [x,y] = R, G(¢t) = H(Int), is GT-convex.

Proof. If s,t € [x,y] and A € (0, 1), then

1
2’

G(s*'t"™") = H(In(s't'"™")) = H(AIns + (1 — A)In1)

A V-2 A V1i-2

< LH(ln s)+ ———H(Int) = LG(s) + G(),
2V1-2 2vVa 2V1-2 2vVa

which shows that G is GT-convex on [x, y]. O

Definition 2.2 ( [20-22]). A function G : I C [0, o0) — R is said to be GA-convex if
G(x'y'™) < AG(x) + (1 = HG()

validates for all x,y € I and A € [0, 1].

Proposition 2.2. All of GA-convex functions are GT-convex functions, but not conversely.

Proof. If G is GA-convex, since A < Vi and1 -1 < RUEY TN easy to see

2VI-1 2y’
_ Va Vi=-2
G(x'y'"™ < AG 1 -Gy < ——G G(y),
(xy ™) £ AG(x) + ( )(y)<2m (x) + Vi 6))

where x,y € I C (0,00) and A € (0, 1). This means that each GA-convex function is GT-convex.
The function G : (1,00) = R, G(x) = In” x, p € (0, ﬁ), is GT-convex, but it is not a GA-convex
function. o

In order to prove our main results, the following lemma and definition are needed.

Lemma 2.1 ( [23]). Suppose I C (0,00) and x,y € I with x < y. Let G : [x,y] = R be a Lebesgue
integrable function on [x,y]. Then, for any A € [0, 1],

1 1 1
f G(x°y"™)ds = (1 - /l)f G(xs(x’lyl_l)l_s)ds + /lf G((x”yl_’l)Syl_s)ds.
0 0 0
Definition 2.3 ( [24]). Two functions G, H : X — R are said to be similarly ordered if
[G(x) —GWI[H(x) - H(y)] = 0

for every x,y € X.
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3. Some integral inequalities for GT-convex functions

We are in a position to establish some integral inequalities for GT-convex functions.

Theorem 3.1. Suppose that I C (0,00), G € GT(I), x,y € [ with x <y, and G € L[x,y]. Then

1 Y G(s) T
ds < — . .1
CV®) < = 1nxfx —ds < Z[G() +GO)] 3.1)
Proof. Because G is GT-convex, for any x,y € [ with x < yand 4 € (0, 1), we have

Va Vi-2a
Gx'y'"H)< —2 G 7 GO).
(Y™ £ =G0+ ——==G0)

Integrating the above inequality over A € (0, 1) gives the right inequality of (3.1).
For 4 € (0, 1), we have

1
G(Vay) = G(Valy=lal=iyt) < S[G(xy! ™) + Gy, (3.2)
Integrating the above inequality on A € [0, 1] results in
1 1 1
G(+/xy) < E[f G(x'y'™")da +f G(xl_dyﬁ)d/l].
0 0
Using the fact that
1 1
f G(xYy'™)da = f G(x'"yHda
0 0
and replacing x'y!~! by s lead to the left inequality of (3.1). |
Corollary 3.1. Suppose that I C (0,00), G € GT(I), x,y € [ with x <y, and G € Li[x,y]. Then

G(+/xy) < f G(x*y'™ s)ds< [G(x) + G)]. (3.3)

Theorem 3.2. Suppose that I C (0,00), G € GT(I), x,y € [ with x <y, and G € Li[x,y]. Then

G(S) G(X) +G(O)
1 ( )
nx

—G( Vxy) < ; (3.4

where

2\/(1ny —Ins)(Ins —Inx)
Iny—1Inx '

T(s) = 3.5

Proof. For A € (0, 1), multiplying on both sides of (3.2) by the quantity 2 A(1 — 1) arrives at

2/A(1 = D) G(yxy) < A = D) [G(xY'™Y) + G(x'"YHY)]. (3.6)

Integrating the inequality (3.6) on A € (0, 1) yields the first inequality in (3.4).

AIMS Mathematics Volume 5, Issue 4, 3952-3965.



3956

By the GT-convexity of G, we have
2421 = ) G(xY'™) < AG(x) + (1 = DG(y)

and
221 = D G(x'YHY) < (1 = DG(x) + AG().

Adding these inequalities and integrating over A € [0, 1] reveal

I
f VAL = D) [G(xY'™) + G(x'™YyY)]dA < W) +GH) ; G(y).
0

Therefore, making use of the fact that

1 1
f \//1(1 - /l) G(_x’lyl—/l)d/l — f mG(xl—ﬂy/l)dﬂ
0 0

and replacing x'y'~ by s acquire the second inequality in (3.4). m|

Corollary 3.2. Suppose that I C (0,00), G € GT(I), x,y € I with x <y, and G € L[x,y]. Then

ZG(V) < G + GO).

Theorem 3.3. Suppose that I C (0,0), G € GT(I), x,y € [ with x <y, and G € L[x,y]. Then, for any
1€ (0,1),

1 G
2VAT= DGV < (1 = DGV 1-D2) 4 4G(xV2y20P) < f ) g

S

< ;—T[(l - DG(x) + AG() + G(x'y'™)] < [G(x) + GO)]. (3.7)

Proof. Using the inequality (3.3), for any 4 € (0, 1), we have

G(Vey) < [ 6y )ds < 51600 + Gy )

which is equivalent to

1
G(x(1+/l)/2y(1—/l)/2) < f G(XS(xﬁyl—ﬁ)l‘s) ;—T[G(x)+G(x’lyl Y. (3.8)
0

Similarly, we obtain

1
Gy < f Gy s < FIGEY) + Gl

which is equivalent to
G < [ Gty =as < Sl + 6ol (39)
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Multiplying on both sides of (3.8) and (3.9) by 1 -1 and A respectively, adding resulted inequalities,
and employing Lemma 2.1 produce

(1 _A)G(x(lm)/zy(l—ﬂ)/z)+/IG( /1/2 (2- /1)/2) f G(xs 1- S)ds
< 7= D[GE) + Gy ]+ ZAGEY' ™) + ] = Z[(1 - VG +AG0) + G(x'y' )],

which proves the second and third inequality in (3.7).
By the GT-convexity of G, we have

(1 _/l)G(x(l+/l)/2y(l—/1)/2)+/1G( /1/2 2-2)/2
_MG(X(HA)/zy(l—A)/z) 2D Vi

2Va 2VI-1

> 2‘//1(1 _ G(( (1+/1)/2 (1- /l)/Z) ( /2 - /l)/2) ) 2\//1(17—G(\/_)

which proves the first inequality in (3.7).
Similarly, we obtain

A1 =2) G( xﬁ/zy(z—@/z)

g[(l — DGX) + AGY) + G(x'y'™)]

g[(l /l)G(x)+/lG(y)+iG(x)+ i-4

2Vl-2 22
(NI T3 .
SZ(szr XV )[G(x)+G(y)] VA= W + GO

which proves the last inequality in (3.7). O

G®)

Corollary 3.3. Under assumptions of Theorem 3.3, if taking A = %, then

1 "G
G(V) < 316G+ Gy )] < e [ 20

< g[G(X) +G() +2G(Vxy)l < Z[G(x) +G(O)l.

S

Theorem 3.4. Suppose that I C (0,00), G € GT(I), x,y € [ with x <y, and G € L[x,y]. Then
(Iny — InI(x,y)]G(x) + [InI(x,y) — In x]G(y)

1 y
—f 7(5)G(s)ds <
y—=XJx

Iny—Inx

(3.10)
L(x,y) - x L(x,y)
R A o7 SR ALY TN
y—x y—x
where 1(s) is defined in (3.5) and the quantities

1/ \/0-» —
e =—(%)" ad Ly =2
e\x* Iny —1Inx

fory > x > 0 are the identric and logarithmic means.
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Proof. Because G is GT-convex, then G o exp is MT-convex. Thus, we have

G(s) =Goexp(Ins) =Goexp

((lny—lns)lnx+ (lns—lnx)lny)

lny In x
1 [Iny-1 1
SE hrlliTszoexp(lnx)+— o5 Goexp(lny)
1 [Iny—Ins Ins—1Inx
= -y ——G + —G
2 Vins—nz P 2\ Iy —ns OV

for any s € [x, y]. This can be rearranged as

2\/(lny—lns)(lns—lnx) Iny—Ins Ins—Inx

G(s) < —G(x) + ——G(). (3.11)
Iny—1Inx Iny—Inx

Iny—1Inx
Integrating (3.11) gives

s (Iny -5 [7Insds)G(x) + (G5 [ Insds - In x)G(y)
7(5)G(s)ds <
y=xJ, Iny —Inx

By virtue of the integral representation

'y
flnsds:lnl(x,y),
y—=XJx

we obtain the first inequality in (3.10).
Now we observe that

Iny—Ini(ry) My="="+1  y_yx_xiny—lnx)  L(xy) —x
Iny—Inx Iny—Inx  (y-x(ny-Inx)  y-x
Similarly,
Inl(x,y)—Inx y-L(x,y)
Iny—Inx  y—-x
Consequently, the last part of (3.10) is proved. O

Theorem 3.5. Suppose that I C (0,00), G,H € GT(I), x,y € I with x <y, and GH € L[x,y]. If G,H
are nonnegative, then

2
1 1 fy (S)G( VH(s)ds < 2M(x,y)+N(x,y),
ny—Inx J, 6

where 1(s) is defined in (3.5) and M(x,y) and N(x,y) are defined in (1.3).

Proof. Because G, H € GT(I), then, for any A € (0, 1), we have

G(xYy'"™) < iG(x) + i-4 G(y) and H(x'y'"™) < iH(x) + vi-4

2V1 -2 2V 2V1-2 2V
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Since G, H are nonnegative, we obtain

4 I-2a 1
G(x'y™H('Y™) £ a5 CWHE) + —==GOHO) + Z[GEHO) + GO)H@),

that is,

GOy H(xy' ™) < AGHX) + (1 - /l)2G(y)F€321+_/1% ~ DICWHE) + GOH®] (3.12)

Integrating on both sides yields

1 fy (Iny —Ins)(Ins — Inx) G(s)H(s)
Iny —Inx (Iny — In x)? 52

1
< 57[2GW0H(x) + 2G(H(y) + GIH(y) + GHIH ()]

which completes the proof. O
Corollary 3.4. If choosing A = % in the inequality (3.12), then
1
G(Vxy)H(Vxy) < 7[CWH) + GOHG) + GH() + GHH(X)).

Theorem 3.6. Suppose that I C (0,00), G,H € GT(I), x,y € I with x <y, and GH € L[x,y]. If G,H
are nonnegative and similarly ordered, then

1 Y T(s)
1 f G(s)H(s)ds < —[G(x)H(x) + GOHG)),
ny—-Inx J,

where 1(s) is defined in (3.5).

Proof. Because G, H are similarly ordered, nonnegative, and GT-convex, then, for any 4 € (0, 1), we
have

G(x'y"™H(x'y'™) < G(x)H(x) + :

- A 1
A1 =) T OMHG) + 7[GH() + GHIHX)],

that 1s,
42(1 = HG(xY'"™MHH(x'y'"™) < AG(x)H(x) + (1 — )G H(y).

Integrating on both sides leads to

f (Iny —Ins)(Ins — In x) G(s)H(s)
Iny - ln X (Iny — In x)? 52

1
s < SIGWH(X) + GOH)]

which completes the proof. O

Theorem 3.7. Suppose I C (0,00), G,H € GT(I), x,y € I with x <y, and GH € L[x,y]. If G,H are
nonnegative, then

H(x) fy Iny — In s 7(s)G(s) H(y) fy Ins —Inx7(s)G(s) ds

ds +
Iny—Inx J, Iny—Inx s > Iny—Inx J, Iny—Inx =

AIMS Mathematics Volume 5, Issue 4, 3952-3965.
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G(x) fy Iny - lnsr(s)H(s)d N G(y) f lns—lnxT(s)H(s)
Iny—Inx J, Iny—Inx s Iny—1Inx Iny—1Inx s
1 Y 2 2M(x, N(x,
< f (S)G( VH(s)ds + (x,y) + N(x y)’
Iny—-Inx J, 24

where 1(s) is defined in (3.5) and M(x,y) and N(x,y) are defined in (1.3).
Proof. Because G, H € GT(I), then, for any 4 € (0, 1), we have

Va Vi=-2 Va Vi-2a

G H< —G G d HxY'""YhY< ——H ———H®).
(') < SE== 6@ + —==60) and H(¥y!™) < = H() + ——==HO)
Since G, H are nonnegative, we obtain
_ Va Vi=2 _ Va VI=
G(xy! H H H(x'y'™ G G
(] S W + = =B+ B ] e G+ =260
iy [V V=3 Vi V=1
< GO NYH (A G H H(®y)|,
< G HHEY ) | s GO + 6| ) + )
that is,
H(x) VA L HOVI=2 Gx) V1 GO VI =2 .
Glxy!—1 A, 1-2 agi-ay  ZOINT T A e an1-a
2V1 -2 (Y 2\//_1 Gy ™)+ \/1— HY ™)+ 2V by )(3_13)
< Gy THHEY™) + g GWHG) + %G(y)H(y) + 7IGEOHE) + GOH X))

Multiplying on both sides of (3.13) by A(1 — 1) and integrating according to A € (0, 1) arrive at
H(x) fo | AVA VI = AG(x'y'™Y)dA + H(y) fo 1(1 — ) VA VI = 2G(xYy'"Hda
+G(x) fo | AVA VL = 1H(xYy'""HdA + G(y) fo 1(1 — ) VA V1 = 2H(xy' )da
< fo | 22(1 = HG(x'y"™HH(x'y'"MdA + %[G(x)H(x) fo | A%da
+G(y)H(y) j:(l - /l)zd/l] + %[G(x)H(y) + G(y)H(x)] j: A(1 = A)da
fo 1 2A(1 = DG(x'y'"™HH(x'y'")da + %{ZG(x)H(x) +2G()H(y) + G(0)H(y) + G()H(x)}.
By substitution of s = x*y'™*, we complete the proof of Theorem 3.7. i

Corollary 3.5. In Theorem 3.7, if G and H are similarly ordered, then

H(x) f” Iny—Ins 7'(s)G(s)d N H(y) fy Ins— lnxT(s)G(s)

Iny—Inx J, Iny—Inx s Iny—Inx Iny—Inx s
G(x) fy lny—lnST(S)H(s)d N G®) f lns—lnxr(s)H(s)d
s s

Iny—Inx J, Iny—Inx s Iny—Inx J, Iny—Inx s
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2
. 1 jw @%KMHXI+G@ﬂ%0+GwH@{
Iny—Inx J, 8

where 1(s) is defined in (3.5).

Theorem 3.8. Suppose that I C (0,00), G,H € GT(I), x,y € I with x <y, and GH € L[x,y]. If G,H
are nonnegative, then

3
G(Vay))H(Vxy) < g[M(x,y) + N(x. y)l,
where M(x,y) and N(x,y) are defined in (1.3).

Proof. Because G, H are nonnegative and GT-convex, then, for any 4 € (0, 1), we obtain

GV) = (N ) < 316Gy ) + Gy )

1/ Va Vi
<z (G G 3.14
e oY vy ORI
Similarly, it follows that
Va Vi
H < = Hx)+ H 3.15
(V) = 55 + S i + HO)L (3.15)
Multiplying (3.14) and (3.15) reaveals
1/ Va Vi-2y2
G H < — G GW)IH H
(VEH(V) £ 1o~ + = = 160 + GOIIH + HO) -
1 1
= 61— [G(x) + GOWI[H(x) + H(y)].
Integrating on both sides of (3.16) with 4 € (0, 1) completes the proof of Theorem 3.8. O

Corollary 3.6. In Theorem 3.8, if G and H are similarly ordered, then

G(Vxy)H(+xy )< [G)H(xX) + GH()].

Theorem 3.9. Suppose that I C (0,00), G,H € GT(I), x,y € I with x <y, and GH € L[x,y]. If G,H
are nonnegative, then

G(Vxy)[H(x) + HY)] + H(+/xy )IG(x) + GO)]
< ;—76TG( Vxy)H(yxy) + %[G(X) +GWIH(x) + H(y)].

Proof. For A € (0, 1), by virtue of inequalities (3.14) and (3.15), it follows that
OT) L, VI MO, Vi

)[H( )+ Hy) + )[G( )+ GOl

2 avi-a 2Va 2 \2vi-a  2Va
< GVBH(V) + \/1\; 7 Y1600 + Gl + HO)L
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that is,

%G(\/x_y)[H(x) +HO)IAVAIVI =1+ (1 =) VI =1V2)
+;LH(\/x_y)[G(x) +GMIAVAVI—A + (A -)VI-2aVa) (3.17)

1
< A = DG(Vxy)H(Vxy) + TelO) + GOIHCx) + H)).
Integrating the inequality (3.17) with 4 € (0, 1) gives

SIGE)HE) + HO) + HVE)IGE) + GO)l)
G H 1
< (\/@)6 (VD) + 1100 + GOIH) + H()l
which completes the proof. O

Corollary 3.7. In Theorem 3.9, if G and H are similarly ordered, then
CW+Gh) HX+HQY) _ 16 L AGWHX) + GOIHY)
G(Vxy) H(yxy) —3n m G(yxy)H(~xy)

4. Applications to some special means

For real numbers x,y > 0, the arithmetic mean and the p-logarithmic mean are respectively
defined [25,26] by

yp+] _ xp+l

A:A(x,y):x—;y and L, = L,(x,y) = [(p+1)(y—x)

X, X =y.

1/p
] , XFY;

Applying the GT-convex function G : (1,00) — R, G(x) = In” x for p € (0, 10]W) to Theorem 3.1,
Theorem 3.2, and Corollary 3.3 straightforwardly derives the following inequalities involving the
arithmetic mean A and the p-logarithmic mean L,,.

Theorem 4.1. Let 1 < x <y and p € (0, 1555)- Then

[A(n x,Iny)1” < [L,(Inx, Iny)]? < gA(lnf’ x1n”y),

3 1
F(=p.3.3.1- ) < A0 x, ),
2 Iny

nln?y

;—T[A(ln x,Iny)JP <

and

[A(In x,3Iny)]” + [AG3 In x, Iny)]?
2p+1

< %{A(lnp x10” y) + [A(n x, In )]} < gA(ln" X1’ y),

[A(In x,1Iny)]? <

< [L,(Inx,Iny)]?

where F(a,B,y, x) is the hypergeometric function which can be represented by
I LA !

F(a/,ﬁ, Y x) = r(ﬁ)r(,y _:8) 0 (1 — xp)e
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Remark 4.1. Although a list of published papers which deal with this subject is quite long, for the list
of references in this paper to be much complete, basing on opinions and suggestions of anonymous
referees, we would like to recommend recently published and closely related articles [27-31] to
interested readers.

5. Conclusions

In this paper, we introduce a new class of convex functions, GT-convex functions, in
Definition 2.1, establish some integral inequalities for GT-convex functions in Theorems 3.1 to 3.4
and in Corollaries 3.1 to 3.3, establish some integral inequalities for the product of two GT-convex
functions in Theorems 3.5 to 3.7 and in Corollary 3.5, derive some inequalities for the product of two
GT-convex functions in Theorems 3.8 and 3.9 and in Corollaries 3.4, 3.6, and 3.7, and give some
applications to classical special means in Theorem 4.1.
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