This paper is devoted to the study of the well-posedness of a singular nonlinear fractional pseudo-hyperbolic system with frictional damping terms. The fractional derivative is described in Caputo sense. The equations are supplemented by classical and nonlocal boundary conditions. Upon some a priori estimates and density arguments, we establish the existence and uniqueness of the strongly generalized solution for the associated linear fractional system in some Sobolev fractional spaces. On the basis of the obtained results for the linear fractional system, we apply an iterative process in order to establish the well-posedness of the nonlinear fractional system. This mathematical model of pseudo-hyperbolic systems arises mainly in the theory of longitudinal and lateral vibrations of elastic bars (beams), and in some special case it is propounded in unsteady helical flows between two infinite coaxial circular cylinders for some specific boundary conditions.
Citation: Said Mesloub, Hassan Altayeb Gadain, Lotfi Kasmi. On the well posedness of a mathematical model for a singular nonlinear fractional pseudo-hyperbolic system with nonlocal boundary conditions and frictional damping terms[J]. AIMS Mathematics, 2024, 9(2): 2964-2992. doi: 10.3934/math.2024146
This paper is devoted to the study of the well-posedness of a singular nonlinear fractional pseudo-hyperbolic system with frictional damping terms. The fractional derivative is described in Caputo sense. The equations are supplemented by classical and nonlocal boundary conditions. Upon some a priori estimates and density arguments, we establish the existence and uniqueness of the strongly generalized solution for the associated linear fractional system in some Sobolev fractional spaces. On the basis of the obtained results for the linear fractional system, we apply an iterative process in order to establish the well-posedness of the nonlinear fractional system. This mathematical model of pseudo-hyperbolic systems arises mainly in the theory of longitudinal and lateral vibrations of elastic bars (beams), and in some special case it is propounded in unsteady helical flows between two infinite coaxial circular cylinders for some specific boundary conditions.
[1] | A. A. Alikhanov, A priori estimates for solutions of boundary value problems for fractional-order equations, Differ. Equ., 46 (2010), 660–666. https://doi.org/10.1134/S0012266110050058 doi: 10.1134/S0012266110050058 |
[2] | O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dyn., 29 (2002), 145–155. https://doi.org/10.1023/A:1016539022492 doi: 10.1023/A:1016539022492 |
[3] | S. P. Ansari, S. K. Agrawal, S. Das, Stability analysis of fractional-order generalized chaotic susceptible-infected-recovered epidemic model and its synchronization using active control method, Pramana, 84 (2015), 23–32. https://doi.org/ 10.1007/s12043-014-0830-6 doi: 10.1007/s12043-014-0830-6 |
[4] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[5] | I. Ameen, D. Baleanu, H. M. Ali, An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment, Chaos Solitons Fract., 137 (2020), 109892. https://doi.org/10.1016/j.chaos.2020.109892 doi: 10.1016/j.chaos.2020.109892 |
[6] | I. Area, H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh, A. Torres, On a fractional order Ebola epidemic model, Adv. Differ. Equ., 2015 (2015), 1–12. |
[7] | R. Almeida, A. M. C. B. da Cruz, N. Martins, M. T. T. Monteiro, An epidemiological MSEIR model described by the Caputo fractional derivative, Int. J. Dyn. Control, 7 (2019), 776–784. https://doi.org/10.1007/s40435-018-0492-1 doi: 10.1007/s40435-018-0492-1 |
[8] | K. Agnihotri, N. Juneja, An eco-epidemic model with disease in both prey and predator, IJAEEE, 4 (2015), 50–54. |
[9] | Y. Batmani, Chaos control and chaos synchronization using the state-dependent Riccati equation techniques, Trans. Inst. Meas. Control, 41 (2019), 311–320. https://doi.org/10.1177/0142331218762273 doi: 10.1177/0142331218762273 |
[10] | L. Bolton, A. H. J. J. Cloot, S. W. Schoombie, J. P. Slabbert, A proposed fractional-order Gompertz model and its application to tumour growth data, Math. Med. Biol., 32 (2015), 187–209. https://doi.org/10.1093/imammb/dqt024 doi: 10.1093/imammb/dqt024 |
[11] | D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705 |
[12] | D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional dynamics and control, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-0457-6 |
[13] | R. L. Bagley, P. J. Torvik, On the fractional calculus model of viscoelastic behavior, J. Rheol., 30 (1986), 133–155. https://doi.org/10.1122/1.549887 doi: 10.1122/1.549887 |
[14] | L. C. Cardoso, R. F. Camargo, F. L. P. Dos Santos, J. P. C. Dos Santos, Global stability analysis of a fractional differential system in hepatitis B, Chaos Solitons Fract., 143 (2021), 110619. https://doi.org/10.1016/j.chaos.2020.110619 doi: 10.1016/j.chaos.2020.110619 |
[15] | Z. H. Chen, X. H. Yuan, Y. B. Yuan, H. H. C. Iu, T. Fernando, Parameter identification of chaotic and hyper-chaotic systems using synchronization-based parameter observer, IEEE Trans. Circuits Syst. I Regul. Pap., 63 (2016), 1464–1475. https://doi.org/10.1109/TCSI.2016.2573283 doi: 10.1109/TCSI.2016.2573283 |
[16] | G. V. Demidenko, S. V. Upsenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Boca Raton: CRC Press, 2003. https://doi.org/10.1201/9780203911433 |
[17] | E. D. Dongmo, K. S. Ojo, P. Woafo, A. N. Njah, Difference synchronization of identical and nonidentical chaotic and hyperchaotic systems of different orders using active backstepping design, J. Comput. Nonlinear Dynam., 13 (2018), 1–9. https://doi.org/10.1115/1.4039626 doi: 10.1115/1.4039626 |
[18] | C. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheol. Acta, 30 (1991), 151–158. https://doi.org/10.1007/BF01134604 doi: 10.1007/BF01134604 |
[19] | I. Fedotov, J. Marais, M. Shatalov, H. M. Tenkam, Hyperbolic models arising in the theory of longitudinal vibration of elastic bars, Aust. J. Math. Anal. Appl., 7 (2011), 1–18. |
[20] | I. A. Fedotov, A. D. Polyanin, M. Shatalov, H. M. Tenkam, Longitudinal vibration of a Rayleigh-Bishop rod, Dokl. Phys., 55 (2010), 609–614. https://doi.org/10.1134/S1028335810120062 doi: 10.1134/S1028335810120062 |
[21] | I. Fedotov, M. Shatalov, J. Marais, Hyperbolic and pseudo-hyperbolic equations in the theory of vibration, Acta Mech., 227 (2016), 3315–3324. https://doi.org/10.1007/s00707-015-1537-6 doi: 10.1007/s00707-015-1537-6 |
[22] | R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Time fractional diffusion: a discrete random walk approach, Nonlinear Dyn., 29 (2002), 129–143. https://doi.org/10.1023/A:1016547232119 doi: 10.1023/A:1016547232119 |
[23] | R. Gorenflo, A. Vivoli, Fully discrete random walks for space-time fractional diffusion equations, Signal Process., 83 (2003), 2411–2420. https://doi.org/10.1016/S0165-1684(03)00193-2 doi: 10.1016/S0165-1684(03)00193-2 |
[24] | F. Hamza, M. Abdou, A. M. Abd El-Latief, Generalized fractional thermoelasticity associated with two relaxation times, J. Thermal Stresses, 37 (2014), 1080–1098. https://doi.org/10.1080/01495739.2014.936196 doi: 10.1080/01495739.2014.936196 |
[25] | M. Higazy, F. M. Allehiany, E. E. Mahmoud, Numerical study of fractional order COVID-19 pandemic transmission model in context of ABO blood group, Results Phys., 22 (2021), 103852. https://doi.org/10.1016/j.rinp.2021.103852 doi: 10.1016/j.rinp.2021.103852 |
[26] | D. W. Hahn, M. N. Özişik, Heat conduction, John Wiley & Sons, 2012. https://doi.org/10.1002/9781118411285 |
[27] | A. Jajarmi, D. Baleanu, A new fractional analysis on the interaction of HIV with CD4$^+$ T-cells, Chaos Solitons Fract., 113 (2018), 221–229. https://doi.org/10.1016/j.chaos.2018.06.009 doi: 10.1016/j.chaos.2018.06.009 |
[28] | A. E. H. Love, A treatise on the mathematical theory of elasticity, Cambridge University Press, 2013. https://doi.org/978-1-107-61809-1 |
[29] | O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, New York: Springer Science & Business Media, 1985. https://doi.org/10.1007/978-1-4757-4317-3 |
[30] | C. L. Li, T. H. He, X. G. Tian, Transient responses of nanosandwich structure based on size-dependent generalized thermoelastic diffusion theory, J. Thermal Stresses, 42 (2019), 1171–1191. https://doi.org/10.1080/01495739.2019.1623140 doi: 10.1080/01495739.2019.1623140 |
[31] | Y. Luchko, F. Mainardi, Y. Povstenko, Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation, Comput. Math. Appl., 66 (2013), 774–784. https://doi.org/10.1016/j.camwa.2013.01.005 doi: 10.1016/j.camwa.2013.01.005 |
[32] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity, World Scientific, 2022. https://doi.org/10.1142/p614 |
[33] | S. Mesloub, A nonlinear nonlocal mixed problem for a second order pseudoparabolic equation, J. Math. Anal. Appl., 316 (2006), 189–209. https://doi.org/10.1016/j.jmaa.2005.04.072 doi: 10.1016/j.jmaa.2005.04.072 |
[34] | S. Mesloub, A. Bouziani, On a class of singular hyperbolic equation with a weighted integral condition, Int. J. Math. Math. Sci., 22 (1999), 511–519. https://doi.org/10.1155/S0161171299225112 doi: 10.1155/S0161171299225112 |
[35] | J. A. T. Machado, A. M. Lopes, Relative fractional dynamics of stock markets, Nonlinear Dyn., 86 (2016), 1613–1619. https://doi.org/10.1007/s11071-016-2980-1 doi: 10.1007/s11071-016-2980-1 |
[36] | J. A. T. Machado, M. E. Mata, A. M. Lopes, Fractional dynamics and pseudo-phase space of country economic processes, Mathematics, 8 (2020), 1–17. https://doi.org/10.3390/math8010081 doi: 10.3390/math8010081 |
[37] | M. Moustafa, M. H. Mohd, A. I. Ismail, F. A. Abdullah, Global stability of a fractional order eco-epidemiological system with infected prey, Int. J. Math. Model. Numer. Optim., 11 (2021), 53–70. https://doi.org/10.1504/IJMMNO.2021.111722 doi: 10.1504/IJMMNO.2021.111722 |
[38] | H. Ming, J. R. Wang, M. Fečkan, The application of fractional calculus in Chinese economic growth models, Mathematics, 7 (2019), 1–6. https://doi.org/10.3390/math7080665 doi: 10.3390/math7080665 |
[39] | D. S. Mashat, A. M. Zenkour, A. E. Abouelregal, Fractional order thermoelasticity theory for a half-space subjected to an axisymmetric heat distribution, Mech. Adv. Mater. Struct., 22 (2015), 925–932. https://doi.org/10.1080/15376494.2014.882461 doi: 10.1080/15376494.2014.882461 |
[40] | S. Z. Mirrezapour, A. Zare, M. Hallaji, A new fractional sliding mode controller based on nonlinear fractional-order proportional integral derivative controller structure to synchronize fractional-order chaotic systems with uncertainty and disturbances, J. Vib. Control, 28 (2022), 773–785. https://doi.org/10.1177/1077546320982453 doi: 10.1177/1077546320982453 |
[41] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
[42] | Y. Povstenko, Fractional heat conduction and related theories of thermoelasticity, In: Fractional thermoelasticity, Cham: Springer, 2015, 13–33. https://doi.org/10.1007/978-3-319-15335-3_2 |
[43] | Y. Z. Povstenko, Thermoelasticity that uses fractional heat conduction equation, J. Math. Sci., 162 (2009), 296–305. https://doi.org/10.1007/s10958-009-9636-3 doi: 10.1007/s10958-009-9636-3 |
[44] | Y. Z. Povstenko, Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses, Mech. Res. Commun., 37 (2010), 436–440. https://doi.org/10.1016/j.mechrescom.2010.04.006 doi: 10.1016/j.mechrescom.2010.04.006 |
[45] | H. Sherief, A. M. Abd El-Latief, Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity, Int. J. Mech. Sci., 74 (2013), 185–189. https://doi.org/10.1016/j.ijmecsci.2013.05.016 doi: 10.1016/j.ijmecsci.2013.05.016 |
[46] | D. Sierociuk, A. Dzieliński, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Modelling heat transfer in heterogeneous media using fractional calculus, Phil. Trans. R. Soc. A, 371 (1990), 20120146. https://doi.org/10.1098/rsta.2012.0146 doi: 10.1098/rsta.2012.0146 |
[47] | E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance, Phys. A, 284 (2000), 376–384. https://doi.org/10.1016/S0378-4371(00)00255-7 doi: 10.1016/S0378-4371(00)00255-7 |
[48] | V. E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, Berlin, Heidelberg: Springer, 2010. |
[49] | V. E. Tarasov, On history of mathematical economics: application of fractional calculus, Mathematics, 7 (2019), 1–28. https://doi.org/10.3390/math7060509 doi: 10.3390/math7060509 |
[50] | I. Tejado, E. Pérez, D. Valério, Fractional derivatives for economic growth modelling of the group of twenty: application to prediction, Mathematics, 8 (2020), 1–21. https://doi.org/10.3390/math8010050 doi: 10.3390/math8010050 |
[51] | D. K. Tong, X. M. Zhang, X. H. Zhang, Unsteady helical flows of a generalized Oldroyd-B fluid, J. Non Newton. Fluid Mech., 156 (2009), 75–83. https://doi.org/10.1016/j.jnnfm.2008.07.004 doi: 10.1016/j.jnnfm.2008.07.004 |
[52] | P. Veeresha, H. M. Baskonus, D. G. Prakasha, W. Gao, G. Yel, Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena, Chaos Solitons Fract., 133 (2020), 109661. https://doi.org/10.1016/j.chaos.2020.109661 doi: 10.1016/j.chaos.2020.109661 |
[53] | H. Wang, J. M. Ye, Z. H. Miao, E. A. Jonckheere, Robust finite-time chaos synchronization of time-delay chaotic systems and its application in secure communication, Trans. Inst. Meas. Control, 40 (2018), 1177–1187. https://doi.org/10.1177/0142331216678311 doi: 10.1177/0142331216678311 |
[54] | Y. Z. Wang, D. Liu, Q. Wang, Effect of fractional order parameter on thermoelastic behaviors in infinite elastic medium with a cylindrical cavity, Acta Mech. Solida Sin., 28 (2015), 285–293. https://doi.org/10.1016/S0894-9166(15)30015-X doi: 10.1016/S0894-9166(15)30015-X |
[55] | M. Žecová, J. Terpák, Heat conduction modeling by using fractional-order derivatives, Appl. Math. Comput., 257 (2015), 365–373. https://doi.org/10.1016/j.amc.2014.12.136 doi: 10.1016/j.amc.2014.12.136 |