An expert system is a computer program that uses the knowledge of an expert to solve problems in a specific domain. Expert systems are used in a wide variety of fields, such as medicine, financial diagnosis and engineering. The attributes of an expert system are the characteristics of the problems that the system can solve. In traditional expert systems, attributes typically have a finite number of possible values. However, in scenarios where an attribute can assume a value from an infinite (or significantly large finite) set, the expert system cannot be represented using propositional logic. Until now, no method had been identified to implement such a system on a Computer Algebra System. Here, we break new ground by presenting a model that not only addresses this gap but also provides a fresh perspective on previous results. In fact, these prior results can be viewed as specific instances within the broader framework of our proposed solution. In this paper, we put forth an algebraic approach for the development of expert systems capable of handling attributes with infinite values, thereby expanding the problem-solving capacity of these systems.
Citation: Antonio Hernando, José Luis Galán-García, Gabriel Aguilera-Venegas. A novel way to build expert systems with infinite-valued attributes[J]. AIMS Mathematics, 2024, 9(2): 2938-2963. doi: 10.3934/math.2024145
An expert system is a computer program that uses the knowledge of an expert to solve problems in a specific domain. Expert systems are used in a wide variety of fields, such as medicine, financial diagnosis and engineering. The attributes of an expert system are the characteristics of the problems that the system can solve. In traditional expert systems, attributes typically have a finite number of possible values. However, in scenarios where an attribute can assume a value from an infinite (or significantly large finite) set, the expert system cannot be represented using propositional logic. Until now, no method had been identified to implement such a system on a Computer Algebra System. Here, we break new ground by presenting a model that not only addresses this gap but also provides a fresh perspective on previous results. In fact, these prior results can be viewed as specific instances within the broader framework of our proposed solution. In this paper, we put forth an algebraic approach for the development of expert systems capable of handling attributes with infinite values, thereby expanding the problem-solving capacity of these systems.
[1] | A. Hernando, E. Roanes-Lozano, L. M. Laita, A polynomial model for logics with a prime power number of truth values, J. Autom. Reasoning, 46 (2011), 205–221. https://doi.org/10.1007/s10817-010-9191-0 doi: 10.1007/s10817-010-9191-0 |
[2] | J. Hsiang, Refutational Theorem Proving using Term-Rewriting Systems, Artif. Intell., 25 (1985), 255–300. |
[3] | D. Kapur, P. Narendran, An Equational Approach to Theorem Proving in First-Order Predicate Calculus, In: Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI-85), 2 (1985), 1146–1153. |
[4] | J. Chazarain, A. Riscos, J. A. Alonso, E. Briales, Multivalued logic and Gröbner Bases with applications to modal logic, J. Symb. Comput., 11 (1991), 181–194. https://doi.org/10.1016/S0747-7171(08)80043-0 doi: 10.1016/S0747-7171(08)80043-0 |
[5] | J. A. Alonso, E. Briales, Lógicas Polivalentes y Bases de Gröbner, In: C. Martin, ed., Actas del V Congreso de Lenguajes Naturales y Lenguajes Formales, University of Seville, Seville, 1995,307–315. |
[6] | E. Roanes-Lozano, L. M. Laita, E. Roanes-Macías, A polynomial model for multivalued logics with a touch of algebraic geometry and computer algebra, Math. Comput. Simul., 45 (1998), 83–99. |
[7] | B. Buchberger, Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elementals of the residue class ring of a zero dimensional polynomial ideal, J. Symbol. Comput., 41 (2006), 475–511. https://doi.org/10.1016/j.jsc.2005.09.007 doi: 10.1016/j.jsc.2005.09.007 |
[8] | B. Buchberger, Applications of Gröbner Bases in Non-Linear Computational Geometry, In: J. R. Rice, ed., Mathematical Aspects of Scientific Software. Springer-Verlag, IMA Vol. 14, New York, (1988), 60–88. |
[9] | J. Abbott, A. M. Bigatti, CoCoALib: a C++ library for doing Computations in Commutative Algebra, 2019. Available from: {http://cocoa.dima.unige.it/cocoalib} |
[10] | L. M. Laita, E. Roanes-Lozano, V. Maojo, L. de Ledesma, L. Laita, An Expert System for Managing Medical Appropriateness Criteria Based on Computer Algebra Techniques, Comput. Math. Appl., 51 (2000), 473–481. |
[11] | C. Pérez-Carretero, L. M. Laita, E. Roanes-Lozano, L. Lázaro, J. González-Cajal, L. Laita, A logic and computer algebra-based Expert System for diagnosis of anorexia, Math. Comput. Simul., 58 (2002), 183–202. |
[12] | C. Rodríguez-Solano, L. M. Laita, E. Roanes Lozano, L. López Corral, L. Laita, A computational system for diagnosis of depressive situations, expert system with applications, 31 (2006), 47–55. https://doi.org/10.1016/j.eswa.2005.09.011 |
[13] | M. Lourdes Jimenez, J. M. Santamaría, R. Barchino, L. Laita, L. M. Laita, L. A. González, et al., Knowledge representation for diagnosis of care problems through an expert system: Model of the auto-care deficit situations, Expert Syst. Appl., 34 (2008), 2847–2857. https://doi.org/10.1016/j.eswa.2007.05.039 doi: 10.1016/j.eswa.2007.05.039 |
[14] | E. Roanes-Lozano, J. L. Galán-García, G. Aguilera-Venegas, A prototype of a RBES for personalized menus generation, Appl. Math. Comput., 315 (2017), 615–624. https://doi.org/10.1016/j.amc.2016.12.023 doi: 10.1016/j.amc.2016.12.023 |
[15] | G. Aguilera-Venegas, E. Roanes-Lozano, E. Rojo-Martínez, J. L. Galán-García, A proposal of a mixed diagnostic system based on decision trees and probabilistic experts rules, J. Comput. Appl. Math., 427 (2023). https://doi.org/10.1016/j.cam.2023.115130 doi: 10.1016/j.cam.2023.115130 |
[16] | G. Aguilera-Venegas, A. López-Molina, G. Rojo-Martínez, J. L. Galán-García, Comparing and tuning machine learning algorithms to predict type 2 diabetes mellitus, J. Comput. Appl. Math., 427 (2023). https://doi.org/10.1016/j.cam.2023.115115 doi: 10.1016/j.cam.2023.115115 |
[17] | E. Roanes-Lozano, E. A. Casella, F. Sánchez, A. Hernando, Diagnosis in Tennis Serving Technique, Algorithms, 13 (2020). https://doi.org/10.3390/a13050106 doi: 10.3390/a13050106 |
[18] | A. Roanes-Lozano, J. L. Galán-García, G. Aguilera-Venegas, A prototype of a functional approach to personalized menus generation using set operations, Adv. Comput. Math., 13 (2019), 1881–1895. |
[19] | M. Villalba-Orero, E. Roanes-Lozano, A prototype of a decision support system for equine cardiovascular diseases diagnosis and management, Mathematics, 20 (2021). https://doi.org/10.3390/math9202580 doi: 10.3390/math9202580 |
[20] | A. Hernando, A new algebraic model for implementing expert systems represented under the 'Concept-Attribute-Value' paradigm, Math. Comput. Simul., 82 (2011), 29–43. https://doi.org/10.1016/j.matcom.2010.06.020 doi: 10.1016/j.matcom.2010.06.020 |
[21] | A. Hernando, R. Maestre-Martínez, E. Roanes-Lozano, A natural language for implementing algebracially expert systems, Math. Comput. Simul., 129 (2016), 31–49. https://doi.org/10.1016/j.matcom.2016.04.006 doi: 10.1016/j.matcom.2016.04.006 |
[22] | M. Brickenstein, A. DreyerPolyBoRi: Polybori: A framework for Gröbner-basis computations with Boolean polynomials, Journal of Symbolic Computation, 44 (2009), 1326–1345. https://doi.org/10.1016/j.jsc.2008.02.017 doi: 10.1016/j.jsc.2008.02.017 |
[23] | E. Roanes-Lozano, L. M. Laita, An applicable topology-independent model for railway interlocking systems, Math. Comput. Simul., 45 (1998), 175–183. https://doi.org/10.1016/S0378-4754(97)00093-1 doi: 10.1016/S0378-4754(97)00093-1 |
[24] | E. Roanes-Lozano, L. M. Laita, E. Roanes-Macías, An application of an AI methodology to railway interlocking systems using computer algebra, in Tasks and Methods in Applied Artificial Intelligence, (1998), 687–696. https://doi.org/10.1007/3-540-64574-8_455 |
[25] | E. Roanes-Lozano, E. Roanes-Macías, L. Laita, Railway interlocking systems and Gröbner bases, Math. Comput. Simul., 51 (2000), 473–481. https://doi.org/10.1016/S0378-4754(99)00137-8 doi: 10.1016/S0378-4754(99)00137-8 |
[26] | E. Roanes-Lozano, A. Hernando, J. A. Alonso, L. M. Laita, A logic approach to decision taking in a railway interlocking system using Maple, Math. Comput. Simul., 82 (2011), 15–28. https://doi.org/10.1016/j.matcom.2010.05.024 doi: 10.1016/j.matcom.2010.05.024 |
[27] | A. Hernando, E. Roanes-Lozano, R. Maestre-Martínez, J. Tejedor, A logic-algebraic approach to decision taking in a railway interlocking system, Ann. Math. Artif. Intell., 65 (2012), 317–328. https://doi.org/10.1007/s10472-012-9321-y doi: 10.1007/s10472-012-9321-y |
[28] | A. Hernando, R. Maestre, E. Roanes-Lozano, A new algebraic approach to decision making in a railway interlocking system based on preprocess, Math. Probl. Eng., 2018 (2018), 4982974. https://doi.org/10.1155/2018/4982974 doi: 10.1155/2018/4982974 |
[29] | A. Hernando, E. Roanes-Lozano, J. L. Galán-García, G. Aguilera-Venegas, Decision making in railway interlocking systems based on calculating the remainder of dividing a polynomial by a set of polynomials, Electron. Res. Arch., 31 (2023), 6160–6196. https://doi.org/10.3934/era.2023313 doi: 10.3934/era.2023313 |