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Abstract: An expert system is a computer program that uses the knowledge of an expert to solve
problems in a specific domain. Expert systems are used in a wide variety of fields, such as medicine,
financial diagnosis and engineering. The attributes of an expert system are the characteristics of the
problems that the system can solve. In traditional expert systems, attributes typically have a finite
number of possible values. However, in scenarios where an attribute can assume a value from an
infinite (or significantly large finite) set, the expert system cannot be represented using propositional
logic. Until now, no method had been identified to implement such a system on a Computer Algebra
System. Here, we break new ground by presenting a model that not only addresses this gap but
also provides a fresh perspective on previous results. In fact, these prior results can be viewed as
specific instances within the broader framework of our proposed solution. In this paper, we put forth
an algebraic approach for the development of expert systems capable of handling attributes with infinite
values, thereby expanding the problem-solving capacity of these systems.
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1. Introduction

Expert systems are computational programs designed to emulate the decision-making process of
human experts within a specific field. One effective method for representing knowledge in such a
system is through propositional logic, where knowledge inference is intrinsically linked to the concept
of Tautological consequence. Utilizing a mathematical result [1] based on prior work [2–6], this issue
can be converted into an algebraic problem involving the calculation of certain Gröbner bases [7, 8].
Consequently, expert systems predicated on propositional logic can be readily implemented using a
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computer algebra system like CoCoA [9]. This approach has facilitated the development of various
expert systems in recent years [10–19].

The ‘Concept-Attribute-Value’ paradigm provides an alternative method for representing
knowledge in Expert Systems. This approach is often more natural and efficient, offering several
advantages over propositional logic. When the possible values of attributes can only take a limited set
of values, knowledge inference under this paradigm can be translated into algebraic terms [20]. This
translation facilitates the implementation of an Expert System based on the ‘Concept-Attribute-Value’
paradigm within Computer Algebra Systems. Despite the differences between the algebraic approach
based on Boolean propositional logic and the ‘Concept-Attribute-Value’ paradigm, they are in some
ways equivalent. Specifically, any Expert System that can be implemented in one model can also be
implemented in the other, provided that attributes can assume only a finite set of values [21].

However, there are instances where it is not feasible to impose this limitation, necessitating the
consideration of scenarios where an attribute, x, can assume one value from an infinite (or very large
finite) set. In such cases, we may encounter formulae like (x , 2 or x , 0 → y = 0). In these
circumstances, the expert system cannot be represented using propositional logic, as x can take on
an infinite number of possible values. Up until now, no method had been found to implement it on
a Computer Algebra System. However, we have made a breakthrough and will present our newly
discovered method in this paper.

In this paper, we address these specific constraints and introduce an innovative algebraic
methodology for the development of expert systems. This methodology takes into account variables
or attributes that are capable of assuming a value from an infinite set. As we will demonstrate, this
model offers a fresh perspective on previous results, to the point where they can be viewed as specific
instances of our proposed solution.

The structure of this paper is outlined as follows: In Section , we conduct a comparative analysis
of our models with related ones. Section 3 introduces the representation formalism used to implement
expert systems, wherein an attribute can take on a value from an infinite set. In Section 4, we provide
proofs related to the proposed algebraic model for implementing this type of expert system. Section
5 provides a deeper understanding of our proposed algebraic model. This model is illustrated using a
real-world example: A railway interlocking system that can identify hazardous situations in a railway
station (see Section 6 for details). Finally, in Section 7, we summarize our conclusions and discuss the
potential implications of our findings.

2. Comparison with related works

Our approach is centered on harnessing the capabilities of Computer Algebra Systems for the
swift and effective development of expert systems. These systems represent knowledge, input and
output through polynomials on multiple variables. By employing a representation paradigm based on
propositional logic or ‘Concept-Attribute-Value’, we can translate knowledge using these polynomials.
These algebraic models frame the problem of determining the system’s output as an algebraic problem,
typically the ideal membership problem, which can be resolved using Gröbner bases. In instances
where we utilize propositional logic that accommodates uncertainty, we can deploy expert systems
that handle these situations, making it particularly suitable in fields like medicine.

However, all these algebraic models are constrained by the assumption that the values of the
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variables, or attributes, necessary for knowledge representation must be confined to a potentially finite
set (in the case of propositional logic, all variables are Boolean, with possible values True, False).

The novelty of our paper lies in its provision of an algebraic model that accommodates variables not
restricted to a potentially finite set of values, allowing for an infinite range of potential variable values.
In such cases, our model, unlike its predecessors, can implement these systems with Computer Algebra
Systems using the proposed algebraic model. In essence, our approach extends previous models.

We believe our strategy can be applied to various expert systems where uncertainty is not a factor.
It proves especially effective for decision trees that culminate in a finite set of outputs rather than
intermediate steps and results with fluctuating levels of certainty.

However, our model does present some limitations:

• Our model does not account for uncertainty in knowledge. We plan to extend our algebraic model
to consider uncertainty in future work.
• Our strategy has some limitations when variables take on a value from an infinite set. We have

only considered relations between variables with equality (xi = x j) and inequality (xi , x j). The
ability to represent order relations such as xi > x j is currently beyond our scope.

Similar to preceding algebraic models, our model relies on the computation of Gröbner bases, thus
presenting the same degree of complexity, and the inference engine operates within comparable time
frames. However, in instances where all variables are Boolean, we can employ computer algebra
systems like Polybori [22], which are tailored for Boolean polynomials, leading to significantly more
efficient systems.

Despite these limitations, our strategy provides a framework that can be readily applied in scenarios
where systems do not incorporate uncertainty. In this paper, we have demonstrated a practical
application of our strategy in addressing interlocking problems (see Section 6).

Like previous algebraic models, our approach implements an expert system through a Computer
Algebra System. While our approach is of theoretical interest, it shares a practical limitation with
previous models. Since Computer Algebra Systems have not been certified for use in safety-critical
implementations, systems developed with our framework cannot be integrated with safety instrumented
system computers to achieve the targeted Safety Integrity Level (SIL). However, the results may prove
beneficial for simulations that do not require certification credit.

3. Expert Systems

In this section, we will explore the fundamental concepts and principles that underpin the algebraic
methodologies employed in the development of Expert Systems within Computer Algebra Systems.
Expert Systems are computational programs characterized by three core components:

Input. The input of the expert system is the collection of facts observed in the environment. The set
is denoted by the symbol F .

Knowledge-Base. The knowledge-base encapsulates the information stored within the system. This
information, used in conjunction with the input of the expert system, is used to inference the
output of the system. The knowledge, which mirrors that of an expert, is expressed as a finite set
of formulae K .
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Output. The output of the classification expert system constitutes the knowledge inferred from the
input and the knowledge base within the expert system.

Each of the three components within an expert system necessitates the representation of knowledge.
Analogous to Propositional Logic, we posit that knowledge in an expert system is depicted through
a finite set of variables x1 . . . xN . However, diverging from propositional logic, we do not confine
variables to Boolean values; in fact, variables may assume a value from an infinite set of values. In the
following definition, we will formally establish the conceptual framework of an expert system

Definition 3.1 (Conceptual Framework). A conceptual ground is (X,V,Ψ) where X is a finite set of
possible ‘variables’, V is a (non-necessary) finite set of possible ‘values’ and Ψ is a function X −→
P(V) where P(V) represents the power set ofV. Ψ(x) represents the possible values that the variable
x may take.

The aforementioned definition encapsulates the expert system predicated on Propositional Logic.
In the context of Propositional Logic, as per Definition 3.1, we have X = x1 . . . xN ,V = {True, False}
and each variable xi assumes the potential values {True, False}, that is to say, Ψ(xi) = {True, False}.

The information of the environment is represented by means of states. A state is an instantiation
of the conceptual framework: every variable xi takes a value from the set of its potential values Ψ(xi).
Formally:

Definition 3.2 (State). A state S is defined as a function S : X −→ V. We designate S as the set
encompassing all states.

Given a state, s ∈ S, we can state relations between the variables X by means of formulae (in the
same way, as formulae in propositional logic relates boolean variables).

Definition 3.3 (Formula). A formula is defined as follows:

• Positive Atomic Formula.

– x = v, where x ∈ X is a variable and v ∈ Ψ(x) is a possible value of x.
– x = y, where x, y ∈ X are variables.

• Negative Atomic Formula.

– x , v, where x ∈ X is a variable and v ∈ Ψ(x) is a possible value of x.
– x , y, where x, y ∈ X are variables.

• Disjunctive of atomic formulae:
A1 ∨ ... ∨ Ar

where A1, ..., Ar are positive or negative atomic formulae.

We designate C as the set encompassing all formulae.

Definition 3.4. Given an atomic formula A, we will denote the atomic formula ¬A as the following
formula:

Case A ≡ (x = v) where x is a variable and v ∈ Ψ(x).

¬A ≡ (x , v)
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Case A ≡ (x , v) where x is a variable and v ∈ Ψ(x).

¬A ≡ (x = v)

Case A ≡ (x = y) where x and y are variables.

¬A ≡ (x , y)

Case A ≡ (x , y) where x and y are variables.

¬A ≡ (x = y)

Notation 3.1. Rules serve as the conventional method for representing knowledge within an expert
system and are incorporated into the preceding definition. Similar to Propositional Logic, we employ
the notation of rules

(A1 ∧ ... ∧ Ar) −→ (B1 ∨ ... ∨ Bs)

(where A1, ..., Ar, B1, ...Bs are atomic formulae) to denote the formula:

¬A1 ∨ ... ∨ ¬Ar ∨ B1 ∨ ... ∨ Bs

We can now formally define the components of an expert system: Input, Knowledge-base and
Output:

Definition 3.5. We formally define the three components of an expert system as:

• Input. This is a finite set of positive atomic formulae, denoted as F ⊂ C
• Knowledge-base. This is a set of formulae denoted as K ⊂ C. The knowledge base comprises

two types of formulae:

Integrity Constraints. For each variable xi that can only assume a finite set of potential values,
i.e., Ψ(xi) = {v1 . . . vm} , the following formula represents the intrinsic integrity constraint:

(x1 = v1) ∨ (x1 = v2) ∨ . . . ∨ (x1 = vm)

Rules. These are formulae expressed via rules (provided by a human expert)

• Output. This is a finite set of atomic formulae.

Figure 1 depicts the components of the expert system. As may be seen, integrity constraints are
intuitively and implicitly derived from the inherent nature of variables and they are immediately
obtained by the function Ψ of the conceptual framework (see Definition 3.1). For instance, a
boolean variable, x, is associated with the integrity constraint x = False ∨ x = True because
Ψ(x) = {True, False}, which signifies that x must assume one of two possible values: True or False.
Similarly, if x denotes the current colour of a semaphore, we would have the integrity constraint
x = red ∨ x = orange ∨ x = green, indicating that the semaphore’s colour can be either red,
orange, or green, which involves that Ψ(x) = {red, orange, green}. In Figure 1, the variable x1, with
Ψ(x1) = {v1, v2, v3}, is associated with the integrity constraint A1 ≡ (x1 = v1) ∨ (x1 = v2) ∨ (x1 = v3).
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On the other hand, rules are formulas explicitly provided by a human expert. The acquisition of
these rules is not a straightforward task. It necessitates a process that involves multiple interviews
with experts, not only to elucidate these rules from them but also to validate the completeness and
accuracy of the system. Although we provide a theorem that can be used to verify if the system is at
least consistent (see Theorem 4.2), we do not delve into the process of elucidating these rules. Instead,
our focus will be on the design of an inference engine based on an algebraic representation through
polynomials, which allows for the automatic deduction of the system’s output (as we will demonstrate
in Section 4.2). In this way, the system’s output is correct, as we will demonstrate, in the sense that it
is deduced from the facts and rules.

Figure 1. Components of the Expert Systems.

Next, we will establish the semantics of formulae:

Definition 3.6 (Holds). Let A ∈ C be a formula. Let S ∈ S be a state
We say that the formula A holds in the state S if and only if:

Case A ≡ x = v where x ∈ X and v ∈ Ψ(x).
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A holds in S ⇔ S (x) = v.

Case A ≡ x , v where x ∈ X and v ∈ Ψ(x).
A holds in S ⇔ S (x) , v.

Case A ≡ x = y where x, y ∈ X.
A holds in S ⇔ S (x) = S (y).

Case A ≡ x , y where x, y ∈ X.
A holds in S ⇔ S (x) , S (y).

Case A ≡ B1 ∨ ... ∨ Br where B1, ..., Br are atomic formulae.
A holds in S ⇔ ∃i ∈ {1, ..., r} such that Bi holds in S .

Similar to Propositional logic, we need to establish the concepts of consistency and inference.

Definition 3.7 (Consistency). The set of formulae {A1, ..., An} is consistent if and only if ∃S ∈ S such
that ∀i ∈ {1, ..., n} Ai holds in S .

Definition 3.8 (Derivable Formula). The formula B ∈ C is derivable from the formulae A1, ..., An if and
only if ∀S ∈ S in which all the formulae A1,...,An hold, the formula B also holds in S .

Analogous to Propositional Logic, the subsequent proposition is valid:

Proposition 3.1. Let B = B1 ∨ ...∨ Br be a formula where B1, ..., Br are atomic formulae. The formula
B is derivable from A1, ..., An if and only if

∀i ∈ {1, ..., r} the set of formulae {A1, ..., An,¬Bi} is not consistent.

Let x be a variable which may take a finite set of values, represented as Ψ(x) = {v1, ..., vr}. The
potential values of this variable can be expressed by the formula: (xi = v1) ∨ (xi = v2) ∨ ... ∨ (xi = vr).
Such formulae are integral to the knowledge base of the expert system, K .

Example 3.1. To better illustrate the concepts we have discussed, let us consider a small example of
the expert system depicted in Figure 1. We will define the set of variables as X = {x1, x2, y1, y2}, and
the potential values asV = {vi|i ∈ N}.

• We will define the conceptual framework of the expert system (see Definition 3.1)

– The variable x1 can take any value of the set {v1, v2, v3}. That is to say, we have that Ψ(x1) =
{v1, v2, v3}.

– The variable x2 can take any value. That is to say, we have that Ψ(x2) = V.
– The variable y1 can take any value of the set {v4, v5, v6, v7}. That is to say, we have that
Ψ(y1) = {v4, v5, v6, v7}.

– The variable y2 can take any value. That is to say, we have that Ψ(y2) = V.

• Next, we will consider the knowledge-base in the system (see Definition 3.5).

Integrity Constrains. Here, we will examine formulae derived from the potential set of values.
We are dealing with only two variables, x1 and y1, each with a finite set of potential values.
As a result, we can establish that:
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– The variable x1 may take the values {v1, v2, v3}.
A1 ≡ (x1 = v1) ∨ (x1 = v2) ∨ (x1 = v3).

– The variable y1 may take the values {v4, v5, v6, v7}.
A2 ≡ (y1 = v4) ∨ (y1 = v5) ∨ (y1 = v6) ∨ (y1 = v7).

Rules. We will consider that the expert system in this example considers the following rules:
A3 ≡ (x1 = x2)→ (y1 = v4)
A4 ≡ (x1 , x2)→ (y1 = v6)
A5 ≡ (x1 = x2)→ (y2 = x1)
A6 ≡ ((x1 = v1) ∧ (x2 = v2))→ (y2 = v1)
A7 ≡ ((x1 = v1) ∧ (x2 , v1) ∧ (x2 , v2))→ (y2 = v5)

The knowledge-base of the expert system is K = {A1, ..., A7}.
• Let us consider that the input of our expert system is:

F = {(x1 = v1), (x2 = v3)}

• Consider a potential state S (refer to Definition 3.2) of the system where every formula in K ∪F
is satisfied:

S (x1) = v1; S (x2) = v3

S (y1) = v6; S (y2) = v5

It can be observed that all the formulas in K ∪ F hold (see Definition 3.6). For instance, the
formula (refer to Notation 3.1)

A7 ≡ ((x1 = v1) ∧ (x2 , v1) ∧ (x2 , v2))→ (y2 = v5)

is equivalently written as:

A7 ≡ (x1 , v1) ∨ (x2 = v1) ∨ (x2 = v2) ∨ (y2 = v5)

Given that S (y2) = v5, the formula A7 holds in the state S as per Definition 3.6.
Similarly, the remaining formulas in K ∪ F hold.
• As can be easily deduced, the expert system outputs the formulae:

y1 = v6

y2 = v5

We intuitively deduce them as follows:

– Given x1 , x2 (since x1 = v1 and x2 = v3), by applying rule A4, we conclude that y1 = v6.
– Given x1 = v1, and, since x2 = v3, x2 , v1 and x2 , v2, by applying rule A7, we conclude that

y2 = v5.

Formally, we deduce y1 = v6 and y2 = v5 because for every state where all formulae in K ∪ F
hold, the formulae y1 = v6 and y2 = v5 also hold (refer to Definition 3.8). In other words, for
every state S such that S (x1) = v1 and S (x2) = v2 and the formulae in knowledge-base hold, it
follows that S (y1) = v6 and S (y2) = v5.
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According to Proposition 3.1, the formula y1 = v6 is derived from input and knowledge-base as
evidenced by the inconsistency of K ∪ F ∪ {y1 , v6}. Similarly, y2 = v5 is inferred due to the
inconsistency of K ∪ F ∪ {y2 , v5}. In other words, there is no state S such that the formulae
K ∪ F hold and S (y1) , v6; and there is no state S such that the formulae K ∪ F hold and
S (y2) , v5 (refer to Definition 3.7).

4. The algebraic model

In this section, we will introduce an algebraic model that encapsulates the representation paradigm
delineated in the preceding section. Utilizing this model, the following issues will be transposed into
algebraic terms:

• The challenge of determining if there exists no possible state within a given knowledge base (refer
to Theorem 4.2).
• The challenge of determining if a formula can be derived from the input and the knowledge-base

(see Corollary 4.1).

4.1. Translation from the formulae into polynomials

Let us consider a set of variables X = {x1, ..., xm} and a set of formulae {A1, ..., An}. Initially, we
define a bijection, ϕ, that maps the possible valuesV to the field Q.

ϕ : V −→ Q

Each potential negative atomic formula (i.e., the formulae of the form xi , v j or xi , x j) is associated
with an auxiliary variable wi. We assume that there are w1, ...,wk auxiliary variables for representing
the set of formulae {A1, ..., An}.

Next, we define the polynomial ring:

A = Q [x1, ..., xm,w1, ...,wk, z]

Subsequently, we translate formulae into polynomials.

Definition 4.1 (Polynomial associated to a formula). For a formula A ∈ C, the polynomial pA ∈ A

associated to the formula A is defined as follows:

Case A ≡ (xi = v) where xi ∈ X and v ∈ Ψ(xi).
pA = xi − ϕ(v).

Case A ≡ (xi = x j) where xi, x j ∈ X.
pA = xi − x j.

Case A ≡ (xi , v) where xi ∈ X and v ∈ Ψ(xi).
pA = xi + w − ϕ(v) where wA is the variable associated to the formula xi , v.

Case A ≡ (xi , x j) where xi, x j ∈ X.
pA = xi − x j + wA where wA is the variable associated to the formula xi , x j.
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Case A ≡ B1 ∨ ... ∨ Br where B1, ..., Br are atomic formulae.
pA = qB1 · ... · qBr

As we will explore later, each polynomial pA represents an equation pA = 0, which describes the
semantics of the formula A. For instance, the formula A ≡ (xi = v) is associated with the polynomial
pA = xi − ϕ(v), because xi − ϕ(v) = 0 if and only if xi = ϕ(v). This corresponds to the semantics
of the formula A ≡ xi = v. It can be observed that a negative atomic formula involves the use of
an auxiliary variable wi. These variables wi must assume values different from 0. Consequently, the
formula A ≡ (xi = x j) is associated with the polynomial pA = xi − x j + wA, because for wA , 0, pA = 0
if and only if xi , x j.

Nevertheless, it is possible to circumvent the use of this auxiliary variable when the negative atomic
formula takes the form x , v1 where x is a variable that can only assume a finite set of values Ψ(x) =
{v1, ..., vr}. In this scenario, the formula is equivalent to (and therefore can be replaced by) the formula:

(x = v2) ∨ ... ∨ (x = vr)

This equivalence is particularly interesting when x assumes a small number of possible values.
Specifically, in the case where x can only assume two possible values {v1, v2} the negative atomic
formula x , v1 is equivalent to the atomic formula x = v2.

This becomes especially noteworthy when considering a rule of the form:

(A1 ∧ A2 ∧ ... ∧ Ar)→ (B1 ∨ ... ∨ Bs)

where A1, ...Ar, B1, ..., Bs are atomic formulae. As mentioned above, this rule is expressed as the
formula ¬A1 ∨ ... ∨ ¬Ar ∨ B1 ∨ ... ∨ Bs which corresponds to the polynomial:

p¬A1 · ... · p¬Ar · pB1 ... · pBs

Therefore, in the scenario where A1, ..., Ar are negative atomic formulae and B1, ..., Bs are positive
atomic formula, the rule does not necessitate any auxiliary variable to represent this polynomial. In
Example 3.1, we have that the rule A4 ≡ (x1 , x2) → (y1 = v6) is represented by pA4 = (x1 − x2)(y1 −

ϕ(v6)). In the same way, since x1 can only take a finite set of values (we have that Ψ(x1) = {v1, v2, v3}),
we can state that the rule A7 ≡ ((x1 = v1) ∧ (x2 , v1) ∧ (x2 , v2))→ (y2 = v5) is equivalent to the rule:

((x1 , v2) ∧ (x1 , v3) ∧ (x2 , v1) ∧ (x2 , v2))→ (y2 = v5)

whose polynomial associated is:

(x1 − ϕ(v2))(x1 − ϕ(v3))(x2 − ϕ(v1))(x2 − ϕ(v2))(y2 − ϕ(v5))

Example 4.1. Consider the expert system described in Example 3.1. We define the bijection ϕ : V → C
as follows:

ϕ(vi) = i

Next, we computes the polynomials associated with the formulae in K (see Definition 4.1):
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• A1 ≡ (x1 = v1) ∨ (x1 = v2) ∨ (x1 = v3)

pA1 = (x1 − 1)(x1 − 2)(x1 − 3)

• A2 ≡ (y1 = v4) ∨ (y1 = v5) ∨ (y3 = v6) ∨ (y3 = v7)

pA2 = (y1 − 4)(y1 − 5)(y1 − 6)(y1 − 7)

• A3 ≡ (x1 = x2)→ (y1 = v4)
pA3 = (x1 − x2 + w1)(y1 − 4)

• A4 ≡ (x1 , x2)→ (y1 = v6)
pA4 = (x1 − x2)(y1 − 6)

• A5 ≡ (x1 = x2)→ (y2 = x1)
pA5 = (x1 − x2 + w1)(y2 − x1)

• A6 ≡ ((x1 = v1) ∧ (x2 = v2))→ (y2 = v1)

pA6 = (x1 − 2)(x1 − 3)(x2 + w2 − 2)(y2 − 1)

• A7 ≡ ((x1 = v1) ∧ (x2 , v1) ∧ (x2 , v2))→ (y2 = v5)

pA7 = (x1 − 2)(x1 − 3)(x2 − 1)(x2 − 2)(y2 − 5)

where the auxiliary variables w1 and w2 are respectively associated to the formulae (x1 , x2) and
(x2 , v2).

4.2. Deduction and consistence in the algebraic model

In this section we will in we will present some findings that recast the problem of verifying
consistency and deduction in an expert system into algebraic terms (refer to Theorem 4.2 and Corollary
4.1). In the upcoming proposition, we will establish an initial relation between a formula and its
corresponding polynomial.

Proposition 4.1. Let A(x1, ..., xm) be a formula. Let S ∈ S be a state. Let pA(x1, ..., xm,w1, ...,wk) ∈ A
be the polynomial associated to the formula A. We have that A(x1, ..., xm) holds in S if and only if the
following holds:

∃w∗1, ...,w
∗
k ∈ Q − {0} such that pA(ϕ(S (x1)), ..., ϕ(S (xm)),w∗1, ...,w

∗
k) = 0

Proof. First, we will prove it when A is an atomic formula.

Case A ≡ (xi = v) where v ∈ V.
We have that pA(xi) = xi − ϕ(v).
A(xi) holds in S ⇔ S (xi) = v⇔ ϕ(S (xi)) = ϕ(v)⇔ ϕ(S (xi)) − ϕ(v) = 0⇔ pA(ϕ(S (xi))) = 0

Case A ≡ (xi , v) where v ∈ V.
We have that pA(xi,w j) = xi + w j − ϕ(v) where w j is the auxiliary variable associated to A.
A(xi) holds in S ⇔ S (xi) , v⇔ ϕ(S (xi)) , ϕ(v)⇔
⇔ ∃w∗j ∈ Q − {0} such that ϕ(S (xi)) − ϕ(v) + w∗j = 0⇔
⇔ ∃w∗j ∈ Q − {0} such that pA(ϕ(S (xi)),w∗j) = 0
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Case A ≡ (xi = x j).
We have that pA(xi, x j) = xi − x j.
A(xi, x j) holds in S ⇔ S (xi) = S (x j)⇔ ϕ(S (xi)) = ϕ(S (x j))⇔
⇔ pA(ϕ(S (xi)), ϕ(S (x j))) = 0

Case A ≡ (xi , x j).
We have that pA(xi, x j,ws) = xi − x j + ws where ws is the auxiliary variable associated to A.
A(xi, x j) holds in S ⇔ S (xi) , S (x j)⇔ ϕ(S (xi)) , ϕ(S (x j))⇔
⇔ ∃w∗s ∈ Q − {0} such that ϕ(S (xi)) − ϕ(S (x j)) + w∗s = 0⇔
⇔ ∃w∗s ∈ Q − {0} such that pA(ϕ(S (xi)), ϕ(S (x j)),w∗s) = 0

Now, we will prove for the case that A is a disjunction of atomic formulae. That is to say, A ≡ B1∨...∨Br

where B1, ..., Br are atomic formulae. Therefore, we have that:
pA(x1, ..., xm,w1, ...,wk) = pB1(x1, ..., xm,w1, ...,wk) · ... · pBr (x1, ..., xm,w1, ...,wk).

In this case, we have that:
A holds in S ⇔ ∃i ∈ {1, ..., r} such that Bi holds in S ⇔
∃i ∈ {1, ..., r} ∃w∗1, ..., x

∗
k ∈ Q − {0} pBi(ϕ(S (x1)), ..., ϕ(S (xm)),w∗1, . . .w

∗
k) = 0⇔ ∃w∗1, ..., x

∗
k ∈ Q − {0}

pB1(ϕ(S (x1)), ..., ϕ(S (xm)),w∗1, . . .w
∗
k) · ... · pBr (ϕ(S (x1)), ..., ϕ(S (xm)),w∗1, . . .w

∗
k) = 0⇔

pA(ϕ(S (x1)), ..., ϕ(S (x1))) = 0 □

Lemma 4.1. Let A1, ..., An ∈ C be formulae. {A1, ..., Ar} is a consistent set of formulae if and only if
∃x∗1, ..., x

∗
m,w

∗
1, ...,w

∗
k, z
∗ ∈ Q such that

∀i ∈ {1, ..., n} pAi(x∗1, ..., x
∗
m,w

∗
1, ...,w

∗
k) = 0

1 + z∗ · w∗1 · ... · w
∗
k = 0

Proof. ⇒) Let {A1, ..., An} be a consistent set of formulae.
Let S be a state in which all the formulae A1, ..., An hold.
Let x∗i = ϕ(S (xi)) ∈ Q where i ∈ {1, ...,m}.
According to Proposition 4.1, we have that ∃w∗1, ...,w

∗
k ∈ Q − {0} such that:

∀i ∈ {1, ..., r} pAi(x∗1, ..., x
∗
m,w

∗
1, ...,w

∗
k) = 0

Since ∀i ∈ {1, ..., k} w∗i , 0, we have that ∃z∗ ∈ Q such that

1 + z∗ · w∗1 · ... · w
∗
k = 0

⇐)Let x∗1, ..., x
∗
m,w

∗
1, ...,w

∗
k, z
∗ ∈ Q such that:

• 1 + z∗ · w∗1 · ... · w
∗
k = 0.

• ∀i ∈ {1, ..., n} pAi(x∗1, ..., x
∗
m,w

∗
1, ...,w

∗
k) = 0

Let S be the state such that ∀i ∈ {1, ...,m} S (xi) = ϕ−1(x∗i ).
Since 1 + z∗ · w∗1 · ... · w

∗
k = 0, we have that ∀i ∈ {1, ..., k} w∗i , 0. That is to say w∗1, ...,w

∗
k ∈ Q − {0}.

Since ∀i ∈ {1, ..., n} pAi(x∗1, ..., x
∗
m,w

∗
1, ...,w

∗
k) = 0, by Proposition 4.1, ∀i ∈ {1, ..., n} Ai holds in S .

Consequently, we have that {A1, ..., An} is consistent. □

Theorem 4.2. Let A1, ..., An ∈ C be formulae.

AIMS Mathematics Volume 9, Issue 2, 2938–2963.



2950

{A1, ..., An} is consistent⇔ 1 < ⟨pA1 , ..., pAn , 1 + z · w1 · ... · wk⟩

Proof.
Let I = ⟨pA1 , ..., pAn , 1 + z · w1 · ... · wk⟩

⇒) Suppose that {A1, ..., An} is consistent. By Lemma 4.1, we have that ∃x∗1, . . . x
∗
m,w

∗
1, . . .w

∗
k, z
∗ ∈ Q

such that
∀i pAi(ϕ(S (x1)) . . . ϕ(S (xm)),w∗1 . . .w

∗
k) = 0

1 + z∗ · w∗1 · w
∗
k = 0

We will establish this proof by employing a reductio ad absurdum argument. Let’s assume that 1 ∈ I.
Under this assumption, we would have

1 = α1 pA1 + ... + αn pAn + αn+1(1 + z · w1 · ... · wk)

Therefore, we have that
1 = 1(ϕ(S (x1)) . . . ϕ(S (xm)),w∗1 . . .w

∗
k) =

= α1 pA1 + ... + αn pAn + αn+1(1 + z · w1 · ... · wk)(ϕ(S (x1)) . . . ϕ(S (xm)),w∗1 . . .w
∗
k) = 0

This leads to a contradiction. Therefore, we must conclude that 1 < I.

⇐) We will consider that {A1, ..., An} is inconsistent. We will consider that all the polynomials
pA1 . . . pAn , 1 + z · w1 · ... · wk lie in C[x1 . . . xn,w1 . . .wk, z] ⊂ Q[x1 . . . xn,w1 . . .wk, z]. Since {A1, ..., An}

is inconsistent, we have that ∄x∗1, . . . x
∗
m,w

∗
1, . . .w

∗
k, z
∗ ∈ Q such that

∀i pAi(ϕ(S (x1)) . . . ϕ(S (xm)),w∗1 . . .w
∗
k) = 0

1 + z∗ · w∗1 · w
∗
k = 0

Since pAi is the product of simple factors, it is immediate to state that: ∄x∗1, . . . x
∗
m,w

∗
1, . . .w

∗
k, z
∗ ∈ C

such that
∀i pAi(ϕ(S (x1)) . . . ϕ(S (xm)),w∗1 . . .w

∗
k) = 0

1 + z∗ · w∗1 · w
∗
k = 0

Consequently, we ascertain that V(I) = ∅ and, by applying the weak Hilbert’s Nullstellensatz, we
infer that I = ⟨1⟩. This leads us to the conclusion that 1 ∈ I. □

Corollary 4.1. A formula B is derivable from {A1 . . . An} if and only if

1 ∈ ⟨p¬B, pA1 , . . . pAn , 1 + z · w1 · ... · wk⟩

Proof. This is an immediate consequence of Proposition 3.1 and Theorem 4.2. □
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4.3. Our algebraic model for Expert Systems

In Figure 2 we illustrate how we can implement the expert systems developed in Section 3 by means
of the mathematical results obtained previously.

Formulae in the input and the knowledge base are represented by means of polynomials according
to Definition 4.1, resulting in the ideal F and K:

Ideal F. This is the ideal generated by the polynomials representing the formulae in the input F .

Ideal K. This is the ideal generated by the polynomials representing the formulae in the knowledge-
base K .

Figure 2. Our algebraic approach for implementing Expert Systems.

In accordance with Corollary 4.1, the expert system infers the formula B if and only if

1 ∈ K + F + ⟨p¬B, 1 + z · w1 · ... · wk⟩

where w1 . . .wk are the auxiliary variables utilized to represent the formulae in K , F and the formula
¬B.

Consequently, we need to consider two additional polynomials (see Figure 2):

• The polynomial 1 + z · w1 · ... · wk associated to the auxiliary variables w’s needed to represent
negative atomic formulae.
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• The polynomial pB associated to the atomic formula B we wish to determine if the system outputs.

According to this corollary, we can determine if the system outputs B by calculating the reduced
Gröbner basis of the ideal generated by all previous polynomials (that is to say, the reduced Gröbner
basis of the ideal K + F + ⟨p¬B, 1 + z · w1 · ... · wk⟩) and examining whether it equals [1]. If it does,
expert system outputs B.

Example 4.2. Let us consider the expert system described in Example 3.1 and Example 4.1, and
depicted in Figure 2. By applying Theorem 4.2, we will verify that the output of the expert system is
(y1 = v6) and y2 = v5 when the input of the expert system is F = {(x1 = v1), (x2 = v3)}.

We will stop, as an example, at the polynomials associated with some formulae (see Definition 4.1)
in the input, F , and the knowledge-base, K:

• The atomic formula in the input x1 = v1 corresponds to the polynomial:

x1 − 1

• The integrity constraint A1 ≡ (x1 = v1) ∨ (x1 = v2) ∨ (x1 = v3) corresponds to the polynomial:

pA1 = (x1 − 1)(x1 − 2)(x1 − 3)

• The rule A4 ≡ (x1 , x2)→ (y1 = v6) corresponds to the polynomial:

pA4 = (x1 − x2)(y1 − 6)

Note that the formula A4 can be also written (see Notation 3.1) as A4 ≡ (x1 = x2) ∨ (y1 = v6)
• The formula A3 ≡ (x1 = x2)→ (y1 = v4) corresponds to the polynomial:

pA3 = (x1 − x2 + w1)(y1 − 4)

Note that the formula A3 can be also written (see Notation 3.1) as A3 ≡ (x1 , x2) → (y1 = v4)
and we need an auxiliary variable, w1, for the atomic formula x1 , x2.

In this way, we have that:

• The ideal associated to the input is

F = ⟨x1 − 1, x2 − 3⟩

• The ideal K associated with the knowledge-base of the expert system is:

K = ⟨pA1 , pA2 , pA3 , pA4 , pA5 , pA6 , pA7⟩

Besides, we need two additional polynomials:

• The polynomial associated to ¬B. If the output formula B is y1 = v6, we have that p¬B is:

y1 + w3 − 6

where w3 is an auxiliary variable used for the negative atomic formula ¬B ≡ y1 , v6

• The polynomial associated to all the auxiliary variables w’s used:

1 + z · w1 · w2 · w3

To verify whether the system can infer y1 = v6, we need to check if the reduced Gröbner basis of the
ideal generated by the previous polynomials equals [1]:

K + F + ⟨y1 + w3 − 6, 1 + z · w1 · w2 · w3⟩
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5. Intuition of our approach

In this section, we strive to clarify the underlying logic of our approach. The inference engine
is fundamentally based on an algebraic approach. Both rules and facts are interconnected through
algebraic equations that a state compatible with formulae must satisfy. Each polynomial p used to
infer the output of the system is associated with the algebraic equation p = 0. Finding a state S
compatible with all the formulae is equivalent to solve a this set of algebraic equations. In Figure 3 we
illustrate the set of equations generated by the expert system in Example 3.1, which are related to the
polynomials used in Example 4.2. For example:

• The formula A1 ≡ (x1 = v1) ∨ (x1 = v2) ∨ (x1 = v3) corresponds to the polynomial:

pA1 = (x1 − 1)(x1 − 2)(x1 − 3)

Note that pA1 = (x1 − 1)(x1 − 2)(x1 − 3) = 0 if and only if either x1 = 1 or x1 = 2 or x1 = 3, which
aligns with the semantics of the formula A1.
• The formula A4 ≡ (x1 , x2)→ (y1 = v6) corresponds to the polynomial:

pA4 = (x1 − x2)(y1 − 6)

Note that pA4 = (x1 − x2)(y1 − 6) = 0 if and only if either x1 = x2 or y1 = 6. In other words, if
(x1 , x2) then y1 must be 6, which aligns with the semantics of the formula A4 ≡ (x1 , x2) →
(y1 = v6).
• The formula A3 ≡ (x1 = x2)→ (y1 = v4) corresponds to the polynomial:

pA3 = (x1 − x2 + w1)(y1 − 4)

where w1 must be a value different from 0.
Given that w1 , 0, note that pA3 = (x1 − x2 + w1)(y1 − 4) = 0 if and only if either x1 , x2 (since
w1 , 0) or y1 = 4. In other words, if x1 = x2 then y1 must be 4, which aligns with the semantics
of the formula A3 ≡ (x1 = x2)→ (y1 = v4).

In Example 4.2, we have the input F = {x1 = v1, x2 = v3}, represented by the polynomials:

• The fact x1 = v1 corresponds to the polynomial:

x1 − 1

Note that x1 − 1 = 0 if and only if x1 = 1, which aligns with the semantics of the fact x1 = v1.
• The fact x2 = v3 corresponds to the polynomial:

x2 − 3

Note that x2 − 3 = 0 if and only if x2 = 3, which aligns with the semantics of the fact x2 = v3.

To verify if the system outputs y1 = v6, we need to represent the formula y1 , v6. This is represented
by the polynomial:

y1 + w3 − 6
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where w3 , 0. Note that y1 + w3 − 6 = 0 if and only if y1 , 6 (since w3 , 0), which aligns with the
semantics of the formula y1 = v6.

Additionally, we have another polynomial associated with the variables wi:

1 + z · w1 · w2 · w3

Note that 1 + z · w1 · w2 · w3 = 0 if and only if w1 , 0 and w2 , 0 and w3 , 0. Consequently, this
equation associated with this polynomial ensures that the variables w must be different from 0.

In this way, we have the following set of equations:

• The set of equations related to K :

(x1 − 1)(x1 − 2)(x1 − 3) = 0
(y1 − 4)(y1 − 5)(y1 − 6)(y1 − 7) = 0

(x1 − x2 + w1)(y1 − 4) = 0
(x1 − x2)(y1 − 6) = 0

(x1 − x2 + w1)(y2 − x1) = 0
(x1 − 2)(x1 − 3)(x2 + w2 − 2)(y2 − 1) = 0

(x1 − 2)(x1 − 3)(x2 − 1)(x2 − 2)(y2 − 5) = 0

• The set of equations related to F :

x1 − 1 = 0
x2 − 3 = 0

• The equation related to the polynomial associated with the set of variables w’s:

1 + z · w1 · w2 · w3 = 0

• The equation related to the output:

y1 + w3 − 6 = 0
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Figure 3. Our algebraic approach for implementing Expert Systems.

Through algebraic methods (by verifying that the reduced Gröbner basis is [1]), we conclude that it
is unfeasible to find values for the variables x1, x2, y1, y2 that would satisfy all the preceding equations.
Thus, if we discovered values for the variables x1, x2, y1, y2 that satisfied the equations ofK ∪F ∪ {1+
z · w1 · w2 · w3 = 0} (in other words, the formulae of the knowledge base and the input hold), then the
equation y1 + w3 − 6 = 0 would not be satisfied (in other words, the formula associated to the output
does not hold). Considering that w3 , 0 (as the equation 1 + z ·w1 ·w2 ·w3 = 0 is satisfied), y1 must be
6 for the equation y1 + w3 − 6 = 0 to not be satisfied. In other words, we infer that y1 must be equal to
v6. In summary, our analysis of the previous equations leads us to deduce that y1 = v6 is a consequence
of the input and the knowledge base.

6. Example: Trains

In this section, we will explore the potential of designing an interlocking problem for a railway
system using our algebraic approach. An interlocking system is a safety-critical mechanism engineered
to prevent train collisions. Various approaches have been proposed by researchers have to address
the problem of determining if two trains may collide [23–29]. In this section we will easily design
an interlocking system by means of the paradigm described here: An interlocking system as an
expert system whose variables assume an infinite set of potential values. This approach allows for
a straightforward design process.
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Given a railway station, our goal is to design an expert system that can determine whether a given
situation poses a danger. We will illustrate the concepts of our paper using the railway station depicted
in Figure 4. However, it is important to note that these principles can be generalized to any railway
station.

S1

S9

S2 S3 S4 S5

S10

S11

S6 S8S7

T1

T2

T3

Figure 4. Dangerous Situation in a Railway station.

6.1. Railway Interlocking Systems

We will be examining the railway station depicted in Figure 4. As can be observed, it comprises:

• 11 sections,
• Two turnouts: one turnout connecting S2 to sections S3 or S4 (since the switch is on direct track

position, trains move from S2 to S3), and another connecting S6 to sections S5 or S11 (in this
case, since the switch is on diverted track position, trains move from S6 to S11)
• 10 semaphores depicted by cycles (black representing red colour, white representing green colour)
• Three trains, T1, T2 and T3, placed respectively in sections S1, S10 and S8.

As may be seen, the situation depicted in Figure 4 is dangerous: the trains situated in sections S10
and S8 could collide in section S7: Train in S10 moves from S10 to S11, then to S6 and finally from
S6 to S7; train in S8 moves from S8 to S7.

6.2. The Expert System

6.2.1. Conceptual framework

We will consider a railway station that has N sections, denoted as S 1 . . . S N , and trains in the station
are identified by a natural number. We will consider thatV = N.

The set of variables, X consists of two types:

A variable ei, j for each two pair of connected sections S i and S j. For any two sections S i and S j

that are connected at the edge, we will define the variable ei, j ∈ {0, 1}, i.e. Ψ(ei, j{0, 1}. The
variable ei, j = 1 indicates that it is possible for a train to pass from section S i to section S j and
ei, j = 0 indicates that it is not possible to pass from section si to section s j.

In the railway station depicted in Figure 4, we would have the following variables:
e1,2, e2,9, e9,10, e10,11, e11,6, e2,3, e3,4, e4,5, e5,6, e6,7, e7,8,

e2,1, e9,2, e10,9, e11,10, e6,11, e3,2, e4,3, e5,4, e6,5, e7,6, e8,7

A variable xi for each section S i in the railway station . We define Ψ(xi) = V = N. The value
xi = t j signifies that train t j ∈ N can reach the section S i. In no trains can reach section S i, then
we set xi = 0. If a situation is dangerous, there would be two different trains t j and tk that could
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reach the same section S j. As a result, we would have the formulae xi = t j and xi = tk , t j,
which are inconsistent formulae. In the railway station depicted in Figure 4, we would have the
following variables:

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11

6.2.2. Knowledge-Base

We will consider the following formulae in the knowledge-base, K :

Integrity Constraints. These are formulae related to the possible values, {0, 1}, that variables ei, j may
assume. Specifically, for every pair of sections i and j we have that (ei, j = 0) ∨ (ei, j = 1).
Consequently, we have that: e1,2 = 0 ∨ e1,2 = 1
e2,9 = 0 ∨ e2,9 = 1
e9,10 = 0 ∨ e9,10 = 1
e10,11 = 0 ∨ e10,11 = 1
e11,6 = 0 ∨ e11,6 = 1
e2,3 = 0 ∨ e2,3 = 1
e3,4 = 0 ∨ e3,4 = 1
e4,5 = 0 ∨ e4,5 = 1
e5,6 = 0 ∨ e5,6 = 1
e6,7 = 0 ∨ e6,7 = 1
e7,8 = 0 ∨ e7,8 = 1
e2,1 = 0 ∨ e2,1 = 1
e9,2 = 0 ∨ e9,2 = 1
e10,9 = 0 ∨ e10,9 = 1
e11,10 = 0 ∨ e11,10 = 1
e6,11 = 0 ∨ e6,11 = 1
e3,2 = 0 ∨ e3,2 = 1
e4,3 = 0 ∨ e4,3 = 1
e5,4 = 0 ∨ e5,4 = 1
e6,5 = 0 ∨ e6,5 = 1
e7,6 = 0 ∨ e7,6 = 1
e8,7 = 0 ∨ e8,7 = 1

Rules. These are formulae related to the possible movements of trains. Given two sections S i and S j

which may be connected, we will consider the following rule*:
(ei, j = 1) ∧ (xi , 0)→ (x j = xi)

Consequently, we have the following rules:
(e1,2 = 1) ∧ (x1 , 0)→ (x2 = x1)
(e2,9 = 1) ∧ (x2 , 0)→ (x9 = x2)
(e9,10 = 1) ∧ (x9 , 0)→ (x10 = x9)
(e10,11 = 1) ∧ (x10 , 0)→ (x11 = x10)

*This rule implies that if the train Tk may reach section S i (i.e., xi = k , 0), and it is possible to pass from section S i to section S j,
then the same train Tk can reach section S j (i.e., x j = k = xi).
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(e11,6 = 1) ∧ (x11 , 0)→ (x6 = x11)
(e2,3 = 1) ∧ (x2 , 0)→ (x3 = x2)
(e3,4 = 1) ∧ (x3 , 0)→ (x4 = x3)
(e4,5 = 1) ∧ (x4 , 0)→ (x5 = x4)
(e5,6 = 1) ∧ (x5 , 0)→ (x6 = x5)
(e6,7 = 1) ∧ (x6 , 0)→ (x7 = x6)
(e7,8 = 1) ∧ (x7 , 0)→ (x8 = x7)
(e2,1 = 1) ∧ (x2 , 0)→ (x1 = x2)
(e9,2 = 1) ∧ (x9 , 0)→ (x2 = x9)
(e10,9 = 1) ∧ (x10 , 0)→ (x9 = x10)
(e11,10 = 1) ∧ (x11 , 0)→ (x10 = x11)
(e6,11 = 1) ∧ (x6 , 0)→ (x11 = x6)
(e3,2 = 1) ∧ (x3 , 0)→ (x2 = x3)
(e4,3 = 1) ∧ (x4 , 0)→ (x3 = x4)
(e5,4 = 1) ∧ (x5 , 0)→ (x4 = x5)
(e6,5 = 1) ∧ (x6 , 0)→ (x5 = x6)
(e7,6 = 1) ∧ (x7 , 0)→ (x6 = x7)
(e8,7 = 1) ∧ (x8 , 0)→ (x7 = x8)

6.2.3. Input

The input is intrinsically linked to the status of the turnouts and semaphores within the railway
station, as well as the positioning of the trains. As illustrated in Figure 4, the input is as follows:

Variables ei j. For each pair of connected sections S i, S j, we have either an atomic formula (ei, j = 1)
or (ei, j = 0) representing whether it is possible to transition from section S i to section S j. The
colour of the semaphores and the position of turnout switches. For example, e1,2 = 1 in Figure
4 because the semaphore between section S1 to S2 is green. The turnout switch connecting
sections S2, S3 and S9 being on direct results in e2,3 = 1 and e2,9 = 0: We have the following:
e1,2 = 1; e9,10 = 1; e10,11 = 1; e11,6 = 1; e2,3 = 1; e3,4 = 1; e5,6 = 1; e6,7 = 1; e7,8 = 1;
e2,1 = 1; e11,10 = 1; e6,11 = 1; e3,2 = 1; e5,4 = 1; e8,7 = 1;
e2,9 = 0; e4,5 = 0; e9,2 = 0; e10,9 = 0; e4,3 = 0; e6,5 = 0; e7,6 = 0;

Variables xi. For each train T j located in section S i, we consider the positive atomic formula xi = j.
Given that there are three trains positioned on S1, S10 and S8 in Figure 4, we have that:
x1 = 1
x10 = 2
x8 = 3

6.2.4. Output

The primary objective of the system is to ensure the safety of the railway. If the railway is deemed
unsafe, it two trains, represented as T j and Tk, could potentially arrive at the same section S i. In such
a case, we would have that xi = t j and xi = tk, and since t j , tk, it would lead to a contradiction in the
set of formulae derived from the input and the knowledge base (as we can infer that xi = k , j = xi).
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Therefore, the output mainly involves checking the consistency of the set of formulae generated by
the input and the knowledge base. A consistent set indicates a safe situation, while an inconsistent set
signifies danger.

6.3. Implementation in CoCoA

According to Section 4, we have that the polynomial ring is:

A = Q[e1,2, e2,9, e9,10, e10,11, e11,6, e2,3, e3,4, e4,5, e5,6, e6,7, e7,8, e2,1, e9,2, e10,9, e11,10, e6,11, e3,2, e4,3, e5,4,

e6,5, e7,6, e8,7x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11]

In CoCoA syntax, we would have:

use QQ[e1_2, e2_9, e9_10, e10_11, e11_6, e2_3, e3_4, e4_5, e5_6, e6_7, e7_8,

e2_1, e9_2, e10_9, e11_10, e6_11, e3_2, e4_3, e5_4, e6_5, e7_6, e8_7, x[1..11]];

We will convert the rules and the integrity constraints of the system’s knowledge base, denoted as
K , into polynomials. As per 4.1:

• The integrity constraint (ei, j = 0) ∨ (ei, j = 1) is represented by the polynomial

ei, j · (ei j − 1)

• The rule (ei, j = 1) ∧ (xi , 0)→ (x j = xi) is represented by the polynomial:

ei, j · xi · (x j − xi)

We define the ideal K as the ideal generated by the polynomials that represent these formulae in K .

K:=Ideal(

e1_2 * (e1_2 - 1), e2_9 * (e2_9 - 1),

e9_10 * (e9_10 - 1), e10_11 * (e10_11 - 1),

e11_6 * (e11_6 - 1), e2_3 * (e2_3 - 1),

e3_4 * (e3_4 - 1), e4_5 * (e4_5 - 1),

e5_6 * (e5_6 - 1), e6_7 * (e6_7 - 1),

e7_8 * (e7_8 - 1), e2_1 * (e2_1 - 1),

e9_2 * (e9_2 - 1), e10_9 * (e10_9 - 1),

e11_10 * (e11_10 - 1), e6_11 * (e6_11 - 1),

e3_2 * (e3_2 - 1), e4_3 * (e4_3 - 1),

e5_4 * (e5_4 - 1), e6_5 * (e6_5 - 1),

e7_6 * (e7_6 - 1), e8_7 * (e8_7- 1),

e1_2 * x[1] * (x[2] - x[1]), e2_9 * x[2] * (x[9] - x[2]),

e9_10 * x[9] * (x[10] - x[9]), e10_11 * x[10] * (x[11] - x[10]),

e11_6 * x[11] * (x[6] - x[11]), e2_3 * x[2] * (x[3] - x[2]),

e3_4 * x[3] * (x[4] - x[3]), e4_5 * x[4] * (x[5] - x[4]),

e5_6 * x[5] * (x[6] - x[5]), e6_7 * x[6] * (x[7] - x[6]),

e7_8 * x[7] * (x[8] - x[7]), e2_1 * x[2] * (x[1] - x[2]),
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e9_2 * x[9] * (x[2] - x[9]), e10_9 * x[10] * (x[9] - x[10]),

e11_10 * x[11] * (x[10] - x[11]), e6_11 * x[6] * (x[11] - x[6]),

e3_2 * x[3] * (x[2] - x[3]), e4_3 * x[4] * (x[3] - x[4]),

e5_4 * x[5] * (x[4] - x[5]), e6_5 * x[6] * (x[5] - x[6]),

e7_6 * x[7] * (x[6] - x[7]), e8_7 * x[8] * (x[7] - x[8])

);

For the situation depicted in Figure 4, the input is as follows:

F:=Ideal(e1_2 - 1, e9_10 - 1, e10_11 - 1, e11_6 - 1, e2_3 - 1, e3_4 - 1,

e5_6 - 1, e6_7 - 1, e7_8 - 1, e2_1 - 1, e11_10 - 1, e6_11 - 1, e3_2 - 1,

e5_4 - 1, e8_7 - 1, e2_9, e4_5, e9_2, e10_9, e4_3, e6_5, e7_6,

x[1]-1, x[10]-2, x[8]-3);

According to Theorem 4.2, we can determine if the set of formulaeK∪F is inconsistent (indicating
a dangerous situation), by checking if the reduced Gröbner basis of the ideal F + K is [1]. In CoCoA
syntax, this is represented as:

ReducedGBasis(F+K)=[1];

Since CoCoA outputs true. Consequently, the situation is dangerous.

7. Conclusions

In this paper, we introduce an innovative algebraic methodology for the development of expert
systems that can accommodate attributes capable of assuming a value from an infinite set. Prior
algebraic approaches were reliant on representation formalisms based on either Propositional Logic
or the Concept-Attribute-Value paradigm. Both of these formalisms necessitate that attributes assume
a finite set of values. Despite the differences between these two approaches, they exhibit a certain
degree of equivalence: Any expert system that can be algebraically implemented using one model can
also be implemented using the other.

However, in scenarios where an attribute can assume a value from an infinite (or very large finite)
set, the expert system cannot be represented using propositional logic. Until now, no method had been
identified to implement such a system on a Computer Algebra System. This paper breaks new ground
by presenting a model that not only addresses this gap but also provides a fresh perspective on previous
results. In fact, these prior results can be viewed as specific instances within the broader framework of
our proposed solution.

Our methodology can be employed in expert systems across various applications where uncertainty
is not a factor. It is particularly suited for decision trees that culminate in a finite number of outputs,
as opposed to intermediate steps and results with variable levels of certainty [12] (in fields such as
medical diagnostics, quality improvement and business decision-making, among others). Indeed, our
approach does present some limitations when variables assume a value from an infinite set since we
have only considered relations between variables with equality (xi = x j) and inequality (xi , x j). The
representation of order relations such as xi > x j is currently not supported. Despite these limitations,
our methodology offers a framework that can be applied in situations where systems do not utilize
uncertainty. In this paper, we have demonstrated a practical application of our approach in determining
interlocking problems.
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