Research article Special Issues

Efficient picture fuzzy soft CRITIC-CoCoSo framework for supplier selection under uncertainties in Industry 4.0

  • Received: 01 September 2023 Revised: 29 October 2023 Accepted: 07 November 2023 Published: 01 December 2023
  • MSC : 03E72, 90B50, 94D05

  • The picture fuzzy soft set (PiFSS) is a new hybrid model to address complex and uncertain information in Industry 4.0. Topological structure on PiFSS develops an innovative approach for topological data analysis to seek an optimal and unanimous decision in decision-making processes. This conception combines the advantages of a picture fuzzy set (PiFS) and a soft set (SS), allowing for a more comprehensive representation of the ambiguity in the supplier selection. Moreover, the criteria importance through intercriteria correlation (CRITIC) and the combined compromise solution (CoCoSo) technique is applied to the proposed framework to determine the relative importance of the evaluation parameter and to select the most suitable supplier in the context of sustainable development. The suggested technique was implemented and evaluated by applying it to a manufacturing company as a case study. The outcomes reveal that the approach is practical, efficient and produces favorable results when used for decision-making purposes. Evaluating and ranking of efficient suppliers based on their sustainability performance can be effectively accomplished through the use of PiFS-topology, thus facilitating the decision-making process in the CE and Industry 4.0 era.

    Citation: Ayesha Razzaq, Muhammad Riaz, Muhammad Aslam. Efficient picture fuzzy soft CRITIC-CoCoSo framework for supplier selection under uncertainties in Industry 4.0[J]. AIMS Mathematics, 2024, 9(1): 665-701. doi: 10.3934/math.2024035

    Related Papers:

  • The picture fuzzy soft set (PiFSS) is a new hybrid model to address complex and uncertain information in Industry 4.0. Topological structure on PiFSS develops an innovative approach for topological data analysis to seek an optimal and unanimous decision in decision-making processes. This conception combines the advantages of a picture fuzzy set (PiFS) and a soft set (SS), allowing for a more comprehensive representation of the ambiguity in the supplier selection. Moreover, the criteria importance through intercriteria correlation (CRITIC) and the combined compromise solution (CoCoSo) technique is applied to the proposed framework to determine the relative importance of the evaluation parameter and to select the most suitable supplier in the context of sustainable development. The suggested technique was implemented and evaluated by applying it to a manufacturing company as a case study. The outcomes reveal that the approach is practical, efficient and produces favorable results when used for decision-making purposes. Evaluating and ranking of efficient suppliers based on their sustainability performance can be effectively accomplished through the use of PiFS-topology, thus facilitating the decision-making process in the CE and Industry 4.0 era.



    加载中


    [1] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inf. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [3] R. R. Yager, Pythagorean fuzzy subsets, 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [4] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [5] I. Deli, N. Cagman, Intuitionistic fuzzy parameterized soft set theory and its decision making, Appl. Soft Comput., 28 (2015), 109–113. https://doi.org/10.1016/j.asoc.2014.11.053 doi: 10.1016/j.asoc.2014.11.053
    [6] T. M. Al-shami, A. Mhemdi, Generalized frame for orthopair fuzzy sets: (m, n)-Fuzzy sets and their applications to multi-criteria decision-making methods, Information, 14 (2023), 56. https://doi.org/10.3390/info14010056 doi: 10.3390/info14010056
    [7] T. M. Al-shami, J. C. R. Alcantud, A. Mhemdi, New generalization of fuzzy soft sets: (a, b)-Fuzzy soft sets, AIMS Mathematics, 8 (2023), 2995–3025. https://doi.org/10.3934/math.2023155 doi: 10.3934/math.2023155
    [8] B. C. Cuong, V. Kreinovich, Picture fuzzy sets, J. Comput. Sci. Cybern., 30 (2014), 409–420. https://doi.org/10.15625/1813-9663/30/4/5032 doi: 10.15625/1813-9663/30/4/5032
    [9] Y. Yang, C. Liang, S. Ji, T. Liu, Adjustable soft discernibility matrix based on picture fuzzy soft sets and its applications in decision making, J. Intell. Fuzzy Syst., 29 (2015), 1711–1722. https://doi.org/10.3233/IFS-151648 doi: 10.3233/IFS-151648
    [10] B. C. Cuong, V. H. Pham, Some fuzzy logic operators for picture fuzzy sets, 2015 seventh international conference on knowledge and systems engineering (KSE), 2015,132–137. https://doi.org/10.1109/KSE.2015.20
    [11] P. H. Thong, S. L. Hoang, A novel automatic picture fuzzy clustering method based on particle swarm optimization and picture composite cardinality, Knowl.-Based Syst., 109 (2016), 48–60. https://doi.org/10.1016/j.knosys.2016.06.023 doi: 10.1016/j.knosys.2016.06.023
    [12] F. Smarandache, Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis, American Research Press: Champaign, 1998.
    [13] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An Approach towards decision making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Comput. Appl., 31 (2019), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
    [14] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision making problems, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844. https://doi.org/10.3233/JIFS-172009 doi: 10.3233/JIFS-172009
    [15] F. K. Gündogdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Intell. Fuzzy Syst, 36 (2018), 337–352. https://doi.org/10.3233/JIFS-181401 doi: 10.3233/JIFS-181401
    [16] M. Akram, U. Ahmad, Rukhsar, Threshold graphs under picture Dombi fuzzy information, Granular Comput., 7 (2022), 691–707. https://doi.org/10.1007/s41066-021-00291-1 doi: 10.1007/s41066-021-00291-1
    [17] M. Akram, A. Khan, U. Ahmad, Extended MULTIMOORA method based on 2-tuple linguistic Pythagorean fuzzy sets for multi-attribute group decision-making, Granular Comput., 8 (2023), 311–332. https://doi.org/10.1007/s41066-022-00330-5 doi: 10.1007/s41066-022-00330-5
    [18] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–190. https://doi.org/10.1016/0022-247X(68)90057-7 doi: 10.1016/0022-247X(68)90057-7
    [19] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets Syst., 88 (1997), 81–89. https://doi.org/10.1016/S0165-0114(96)00076-0 doi: 10.1016/S0165-0114(96)00076-0
    [20] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006
    [21] B. Tanay, M. B. Kandemir, Topological structure of fuzzy soft sets, Comput. Math. Appl., 61 (2011), 2952–2957. https://doi.org/10.1016/j.camwa.2011.03.056 doi: 10.1016/j.camwa.2011.03.056
    [22] A. Razzaq, M. Riaz, M-parameterized N-soft set-based aggregation operators for multi-attribute decision making, Soft Comput., 27 (2023), 13701–13717. https://doi.org/10.1007/s00500-023-08853-y doi: 10.1007/s00500-023-08853-y
    [23] M. Riaz, A. Razzaq, M. Aslam, D. Pamucar, M-parameterized N-soft topology-based TOPSIS approach for multi-attribute decision making, Symmetry, 13 (2021), 748. https://doi.org/10.3390/sym13050748 doi: 10.3390/sym13050748
    [24] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1976), 621–633. https://doi.org/10.1016/0022-247X(76)90029-9 doi: 10.1016/0022-247X(76)90029-9
    [25] R. Lowen, Convergence in fuzzy topological spaces, General Topol. Appl., 10 (1979), 147–160. https://doi.org/10.1016/0016-660X(79)90004-7 doi: 10.1016/0016-660X(79)90004-7
    [26] A. K. Chaudhuri, P. Das, Fuzzy connected sets in fuzzy topological spaces, Fuzzy Sets Syst., 49 (1992), 223–229. https://doi.org/10.1016/0165-0114(92)90327-Z doi: 10.1016/0165-0114(92)90327-Z
    [27] S. Ozçag, D. Coker, On connectedness in intuitionistic fuzzy special topological spaces, Int. J. Math. Math. Sci., 21 (1998), 33–40. https://doi.org/10.1155/S0161171298000040 doi: 10.1155/S0161171298000040
    [28] N. Çagman, S. Karatas, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358. https://doi.org/10.1016/j.camwa.2011.05.016 doi: 10.1016/j.camwa.2011.05.016
    [29] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006
    [30] M. Riaz, N. Çağman, I. Zareef, M. Aslam, N-soft topology and its applications to multi-criteria group decision making, J. Intell. Fuzzy Syst., 36 (2019), 6521–6536. https://doi.org/10.3233/JIFS-182919 doi: 10.3233/JIFS-182919
    [31] M. Riaz, M. R. Hashmi, Fuzzy parameterized fuzzy soft topology with applications, Ann. Fuzzy Math. Inf., 13 (2017), 593–613. https://doi.org/10.30948/afmi.2017.13.5.593 doi: 10.30948/afmi.2017.13.5.593
    [32] M. Riaz, B. Davvaz, A. Fakhar, A. Firdous, Hesitant fuzzy soft topology and its applications to multi-attribute group decision-making, Soft Comput., 24 (2020), 16269–16289. https://doi.org/10.1007/s00500-020-04938-0 doi: 10.1007/s00500-020-04938-0
    [33] A. H. Es, Connectedness in Pythagorean fuzzy topological spaces, Int. J. Math. Trends Tech., 65 (2019), 110–116. https://doi.org/10.14445/22315373/IJMTT-V65I7P517 doi: 10.14445/22315373/IJMTT-V65I7P517
    [34] A. Razaq, I. Masmali, H. Garg, U. Shuaib, Picture fuzzy topological spaces and associated continuous functions, AIMS Mathematics, 7 (2022), 14840–14861. https://doi.org/10.3934/math.2022814 doi: 10.3934/math.2022814
    [35] S. Kolla, M. Minufekr, P. Plapper, Deriving essential components of lean and Industry 4.0 assessment model for manufacturing SMEs, Proc. CIRP, 81 (2019), 753–758. https://doi.org/10.1016/j.procir.2019.03.189 doi: 10.1016/j.procir.2019.03.189
    [36] P. Soderholm, A. K. Bergquist, K. Soderholm, Environmental regulation in the pulp and paper industry: Impacts and challenges, Curr. For. Rep., 5 (2019), 185–198. https://doi.org/10.1007/s40725-019-00097-0 doi: 10.1007/s40725-019-00097-0
    [37] L. S. Dalenogare, G. B. Benitez, N. F. Ayala, A. G. Frank, The expected contribution of Industry 4.0 technologies for industrial performance, Int. J. Prod. Econ., 204 (2018), 383–394. https://doi.org/10.1016/j.ijpe.2018.08.019 doi: 10.1016/j.ijpe.2018.08.019
    [38] M. Lezoche, J. E. Hernandez, M. D. M. E. A. Díaz, H. Panetto, J. Kacprzyk, Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture, Comput. Ind., 117 (2020), 103187. https://doi.org/10.1016/j.compind.2020.103187 doi: 10.1016/j.compind.2020.103187
    [39] U. Ullah, F. A. Bhatti, A. R. Maud, M. I. Asim, K. Khurshid, M. Maqsood, IoT-enabled computer vision-based parts inspection system for SME 4.0, Microprocessors MicroSyst., 87 (2021), 104354. https://doi.org/10.1016/j.micpro.2021.104354 doi: 10.1016/j.micpro.2021.104354
    [40] T. Stock, M. Obenaus, S. Kunz, H. Kohl, Industry 4.0 as enabler for a sustainable development: A qualitative assessment of its ecological and social potential, Process Saf. Environ. Prot., 118 (2018), 254–267. https://doi.org/10.1016/j.psep.2018.06.026 doi: 10.1016/j.psep.2018.06.026
    [41] A. Belhadi, S. S. Kamble, C. J. C. Jabbour, V. Mani, S. A. R. Khan, F. E. Touriki, A self-assessment tool for evaluating the integration of circular economy and Industry 4.0 principles in closed-loop supply chains, Int. J. Prod. Econ., 245 (2022), 108372. https://doi.org/10.1016/j.ijpe.2021.108372 doi: 10.1016/j.ijpe.2021.108372
    [42] P. Schmitt, J. Schmitt, B. Engelmann, Evaluation of proceedings for SMEs to conduct I4.0 projects, Proc. CIRP, 86 (2019), 257–263. https://doi.org/10.1016/j.procir.2020.01.007 doi: 10.1016/j.procir.2020.01.007
    [43] S. Kumar, R. D. Raut, K. Nayal, S. Kraus, V. S. Yadav, B. E. Narkhede, To identify Industry 4.0 and circular economy adoption barriers in the agriculture supply chain by using ISM-ANP, J. Cleaner Prod., 293 (2021), 126023. https://doi.org/10.1016/j.jclepro.2021.126023 doi: 10.1016/j.jclepro.2021.126023
    [44] P. Centobelli, R. Cerchione, E. Esposito, Pursuing supply chain sustainable development goals through the adoption of green practices and enabling technologies: A cross-country analysis of LSPs, Technol. Forecast. Soc. Change, 153 (2020), 119920. https://doi.org/10.1016/j.techfore.2020.119920 doi: 10.1016/j.techfore.2020.119920
    [45] M. Pagell, A. Shevchenko, Why research in sustainable supply chain management should have no future, J. Supply Chain Manag., 50 (2014), 44–55. https://doi.org/10.1111/jscm.12037 doi: 10.1111/jscm.12037
    [46] Z. Wu, F. Jia, Toward a theory of supply chain fields–understanding the institutional process of supply chain localization, J. Oper. Manag., 58 (2018), 27–41. https://doi.org/10.1016/j.jom.2018.03.002 doi: 10.1016/j.jom.2018.03.002
    [47] S. Seuring, M. Müller, From a literature review to a conceptual framework for sustainable supply chain management, J. Cleaner Prod., 16 (2008), 1699–1710. https://doi.org/10.1016/j.jclepro.2008.04.020 doi: 10.1016/j.jclepro.2008.04.020
    [48] E. Koberg, A. Longoni, A systematic review of sustainable supply chain management in global supply chains, J. Cleaner Prod., 207 (2019), 1084–1098. https://doi.org/10.1016/j.jclepro.2018.10.033 doi: 10.1016/j.jclepro.2018.10.033
    [49] S. Das, R. Das, B. C. Tripathy, Multi-criteria group decision making model using single-valued neutrosophic set, Infinite Stud., 16 (2020), 421–429. https://doi.org/10.17270/J.LOG.2020.446 doi: 10.17270/J.LOG.2020.446
    [50] M. Gul, M. F. Ak, A comparative outline for quantifying risk ratings in occupational health and safety risk assessment, J. Cleaner Prod., 196 (2018), 653–664. https://doi.org/10.1016/j.jclepro.2018.06.106 doi: 10.1016/j.jclepro.2018.06.106
    [51] M. Gul, Application of Pythagorean fuzzy AHP and VIKOR methods in occupational health and safety risk assessment: The case of a gun and rifle barrel external surface oxidation and colouring unit, JOSE, 26 (2018), 705–718. https://doi.org/10.1080/10803548.2018.1492251 doi: 10.1080/10803548.2018.1492251
    [52] H. Gupta, A. Kumar, P. Wasan, Industry 4.0, cleaner production and circular economy: An integrative framework for evaluating ethical and sustainable business performance of manufacturing organizations, J. Cleaner Prod., 295 (2021), 126253. https://doi.org/10.1016/j.jclepro.2021.126253 doi: 10.1016/j.jclepro.2021.126253
    [53] P. Ghadimi, C. Wang, M. K. Lim, C. Heavey, Intelligent sustainable supplier selection using multi-agent technology: Theory and application for Industry 4.0 supply chains, Comput. Ind. Eng., 127 (2019), 588–600. https://doi.org/10.1016/j.cie.2018.10.050 doi: 10.1016/j.cie.2018.10.050
    [54] N. Banaeian, H. Mobli, B. Fahimnia, I. E. Nielsen, M. Omid, Green supplier selection using fuzzy group decision making methods: A case study from the agri-food industry, Comput. Oper. Res., 89 (2018), 337–347. https://doi.org/10.1016/j.cor.2016.02.015 doi: 10.1016/j.cor.2016.02.015
    [55] Z. Chen, X. Ming, T. Zhou, Y. Chang, Sustainable supplier selection for smart supply chain considering internal and external uncertainty: An integrated rough-fuzzy approach, Appl. Soft Comput., 87 (2020), 106004. https://doi.org/10.1016/j.asoc.2019.106004 doi: 10.1016/j.asoc.2019.106004
    [56] M. Riaz, S. Tanveer, D. Pamucar, D. S. Qin, Topological data analysis with spherical fuzzy soft AHP-TOPSIS for environmental mitigation system, Mathematics, 10 (2022), 1826. https://doi.org/10.3390/math10111826 doi: 10.3390/math10111826
    [57] H. Garg, Some picture fuzzy aggregation operators and their applications to multicriteria decision-making, Arab. J. Sci. Eng., 42 (2017), 5275–5290. https://doi.org/10.1007/s13369-017-2625-9 doi: 10.1007/s13369-017-2625-9
    [58] G. Wei, Picture fuzzy aggregation operators and their application to multiple attribute decision making, J. Intell. Fuzzy Syst., 33 (2017), 713–724. https://doi.org/10.3233/JIFS-161798 doi: 10.3233/JIFS-161798
    [59] G. Wei, Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision making, Fund. Inform., 157 (2018), 271–320. https://doi.org/10.3233/FI-2018-1628 doi: 10.3233/FI-2018-1628
    [60] M. Riaz, M. R. Hashmi, D. Pamucar, Y. M. Chu, Spherical linear Diophantine fuzzy sets with modeling uncertainties in MCDM, CMES, 126 (2021), 1125–1164. https://doi.org/10.32604/cmes.2021.013699 doi: 10.32604/cmes.2021.013699
    [61] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [62] D. Diakoulaki, G. Mavrotas, L. Papayannakis, Determining objective weights in multiple criteria problems: The critic method, Comput. Oper. Res., 22 (1995), 763–770. https://doi.org/10.1016/0305-0548(94)00059-H doi: 10.1016/0305-0548(94)00059-H
    [63] I. M. Cavalcante, E. M. Frazzon, F. A. Forcellini, D. Ivanov, A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing, Int. J. Inf. Manag., 49 (2019), 86–97. https://doi.org/10.1016/j.ijinfomgt.2019.03.004 doi: 10.1016/j.ijinfomgt.2019.03.004
    [64] S. V. Parkouhi, A. S. Ghadikolaei, A resilience approach for supplier selection: Using Fuzzy Analytic Network Process and grey VIKOR techniques, J. Cleaner Prod., 161 (2017), 431–451. https://doi.org/10.1016/j.jclepro.2017.04.175 doi: 10.1016/j.jclepro.2017.04.175
    [65] J. Feng, Z. Gong, Integrated linguistic entropy weight method and multi-objective programming model for supplier selection and order allocation in a circular economy: A case study, J. Cleaner Prod., 277 (2020), 122597. https://doi.org/10.1016/j.jclepro.2020.122597 doi: 10.1016/j.jclepro.2020.122597
    [66] Q. Hou, L. Xie, Research on supplier evaluation in a green supply chain, Discrete Dyn. Nature Soc., 2019 (2019), 2601301. https://doi.org/10.1155/2019/2601301 doi: 10.1155/2019/2601301
    [67] H. Mina, D. Kannan, S. M. Gholami-Zanjani, M. Biuki, Transition towards circular supplier selection in petrochemical industry: A hybrid approach to achieve sustainable development goals, J. Cleaner Prod., 286 (2021), 125273. https://doi.org/10.1016/j.jclepro.2020.125273 doi: 10.1016/j.jclepro.2020.125273
    [68] K. Govindan, S. Rajendran, J. Sarkis, P. Murugesan, Multi criteria decision making approaches for green supplier evaluation and selection: A literature review, J. Cleaner Prod., 98 (2015), 66–83. https://doi.org/10.1016/j.jclepro.2013.06.046 doi: 10.1016/j.jclepro.2013.06.046
    [69] A. H. Lee, H. Y. Kang, C. F. Hsu, H. C. Hung, A green supplier selection model for high-tech industry, Expert Syst. Appl., 36 (2009), 7917–7927. https://doi.org/10.1016/j.eswa.2008.11.052 doi: 10.1016/j.eswa.2008.11.052
    [70] D. Kannan, Role of multiple stakeholders and the critical success factor theory for the sustainable supplier selection process, Int. J. Prod. Econ., 195 (2018), 391–418. https://doi.org/10.1016/j.ijpe.2017.02.020 doi: 10.1016/j.ijpe.2017.02.020
    [71] S. A. S. Haeri, J. Rezaei, A grey-based green supplier selection model for uncertain environments, J. Cleaner Prod., 221 (2019), 768–784. https://doi.org/10.1016/j.jclepro.2019.02.193 doi: 10.1016/j.jclepro.2019.02.193
    [72] M. Yazdani, P. Chatterjee, E. K. Zavadskas, S. H. Zolfani, Integrated QFD-MCDM framework for green supplier selection, J. Cleaner Prod., 142 (2017), 3728–3740. https://doi.org/10.1016/j.jclepro.2016.10.095 doi: 10.1016/j.jclepro.2016.10.095
    [73] H. G. Goren, A decision framework for sustainable supplier selection and order allocation with lost sales, J. Cleaner Prod., 183 (2018), 1156–1169. https://doi.org/10.1016/j.jclepro.2018.02.211 doi: 10.1016/j.jclepro.2018.02.211
    [74] J. Feng, Z. Gong, Integrated linguistic entropy weight method and multi-objective programming model for supplier selection and order allocation in a circular economy: A case study, J. Cleaner Prod., 277 (2020), 122597. https://doi.org/10.1016/j.jclepro.2020.122597 doi: 10.1016/j.jclepro.2020.122597
    [75] E. Haktanir, C. Kahraman, A novel picture fuzzy CRITIC & REGIME methodology: Wearable health technology application, Eng. Appl. Artif. Intell., 113 (2022), 104942. https://doi.org/10.1016/j.engappai.2022.104942 doi: 10.1016/j.engappai.2022.104942
    [76] H. Zhang, G. Wei, Location selection of electric vehicles charging stations by using the spherical fuzzy CPT–CoCoSo and D-CRITIC method, Comput. Appl. Math., 42 (2023), 60. https://doi.org/10.1007/s40314-022-02183-9 doi: 10.1007/s40314-022-02183-9
    [77] X. Peng, Z. Luo, Decision-making model for China's stock market bubble warning: The CoCoSo with picture fuzzy information, Artif. Intell. Rev., 54 (2021), 5675–5697. https://doi.org/10.1007/s10462-021-09954-6 doi: 10.1007/s10462-021-09954-6
    [78] S. Korucuk, A. Aytekin, F. Ecer, D. S. S. Pamucar, Ç. Karamasa, Assessment of ideal smart network strategies for logistics companies using an integrated picture fuzzy LBWA–CoCoSo framework, Manag. Decis., 61 (2023), 1434–1462. https://doi.org/10.1108/MD-12-2021-1621 doi: 10.1108/MD-12-2021-1621
    [79] M. Qiyas, M. Naeem, S. Khan, S. Abdullah, T. Botmart, T. Shah, Decision support system based on CoCoSo method with the picture fuzzy information, J. Math., 2022 (2022), 1476233. https://doi.org/10.1155/2022/1476233 doi: 10.1155/2022/1476233
    [80] A. Mohata, N. Mukhopadhyay, V. Kumar, CRITIC-COPRAS-Based Selection of Commercially Viable Alternative Fuel Passenger Vehicle, In: Advances in Modelling and Optimization of Manufacturing and Industrial Systems, Singapore: Springer, 2023, 51–69. https://doi.org/10.1007/978-981-19-6107-6_5
    [81] M. Kamali Saraji, D. Streimikiene, G. L. Kyriakopoulos, Fermatean fuzzy CRITIC-COPRAS method for evaluating the challenges to Industry 4.0 adoption for a sustainable digital transformation, Sustainability, 13 (2021), 9577. https://doi.org/10.3390/su13179577 doi: 10.3390/su13179577
    [82] M. K. Saraji, D. Streimikiene, A. Lauzadyte-Tutliene, A novel pythogorean fuzzy-SWARA-CRITIC-COPRAS method for evaluating the barriers to developing business model innovation for sustainability, In: Handbook of research on novel practices and current successes in achieving the sustainable development goals, Hershey, PA: IGI Global, 2021, 1–31. https://doi.org/10.4018/978-1-7998-8426-2.ch001
    [83] N. YILMAZ, Economic and financial performance of the balkans: Integrated BWM based CoCoSo Method, In: International Academic Research and Reviews in Social, Human and Administrative Sciences, ANKARA: Serüven Publishing, 2023,121–140.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1211) PDF downloads(83) Cited by(4)

Article outline

Figures and Tables

Figures(2)  /  Tables(18)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog