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Abstract: In this paper, the finite element method is applied to solve the unsteady elastic equations, C-
Bézier basis functions are used to construct the shape function spaces, the semi-discrete scheme of the
unsteady elastic equations is obtained by Galerkin finite element method and then the fully discretized
Galerkin method is obtained by further discretizing the time variable with 6-scheme finite difference.
Furthermore, for several numerical examples, the accuracy of approximate solutions are improved
by 1-3 order-of magnitudes compared with the Lagrange basis function in L* norm, L? norm and H'
semi-norm, and the numerical examples show that the method proposed possesses a faster convergence
rate. It is fully demonstrated that the C-Bézier basis functions have a better approximation effect in
simulating unsteady elastic equations.
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1. Introduction

Unsteady elastic equations are widely used to describe many engineering and physical problems.
Since it is usually difficult to get analytic solutions, numerical analysis plays a vital role in
solving unsteady elastic equations. There are several numerical methods, such as finite element
method (FEM) [1, 2], finite difference method (FDM) [3, 4], finite volume method (FVM) [5, 6]
and spectral method (SM) [7], etc. Among them, the FEM has attracted much attention because it
has strong problem-solving ability, a standardized form of discrete equations and easy preparation of
general computer programs.

FEM is an important tool to solve partial differential equations (PDEs) in the field of scientific and
engineering computing. In 1943, Courant [8] first proposed FEM and used piecewise linear functions
to construct the Galerkin projection space. In 1960, Clough [9] formally presented the name of “finite
element method” when dealing with plane elastic problems. In the 1960s, Feng [10] combined with
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the stress problems of dam construction, carried out the research on the numerical solutions of elliptic
boundary value problems and put forward the difference scheme based on variational principle. Based
on the traditional FEM, scholars have also put forward many new numerical methods, such as mixed
finite element method [11, 12], weak Galerkin finite element method [13, 14], multi scale method [15]
and so on. Liu et al. [16] proposed the smoothed finite element method based on the finite element
method and the meshless method. Cheng et al. [17] used the local discontinuous finite element method
to deal with singular perturbation unsteady problems. Lin et al. [18] presented a streamline upwind
Petrov-Galerkin (SUPGQG) stabilized space time finite element method for convection-diffusion-reaction
equations. Varma et al. [19] analyzed the posteriori error of the adaptive finite element method for the
unsteady convection-diffusion reaction equations.

An important topic in the research of FEM is how to increase the accuracy of numerical solutions
and reduce the complexity of computation. The selection of finite element basis functions will affect
the accuracy of numerical solutions. In recent years, many scholars applied FEM based on spline
functions to PDEs. For instance, Shi [20] combined the B-spline functions with FEM and proposed
the spline finite element method to solve the equilibrium problems of the plate-beam composite
elastic structures in regular regions and derived a unified computation scheme for various boundary
conditions. Hughes et al. [21] put forward a new spline finite element method which applies NURBS
basis functions in finite element analysis for isometric analysis. Chen et al. [22] presented spline curved
surfaces based on T-meshes which can better deal with adaptive surface modeling. Peng et al. [23]
developed the intrinsic extended isogeometric analysis using B-splines, in which the control points
served as support points for least-squares fitting directly. Peake et al. [24] used the boundary element
method based on non-uniform rational B-spline to solve the three-dimensional wave scattering problem
controlled by the Helmholtz equation. Zhu et al. [25] constructed four new cubic rational Bernstein-like
basis functions with two parameters by using the blossom method. These basis functions can form a
normalized B-basis. Wang et al. [26] applied an integral approach to construct C-Bézier basis functions
for the space I'y = span {1, t,-, (2, sin(?), cos(t)} that extended the spaces of mixed algebra and
trigonometric polynomial.

C-Bézier basis functions are one kind of spline functions that have a nonrational form and are
capable of expressing circular arc and polynomial curves of high order exactly. C-Bézier basis
functions also introduce the shape parameters, which increases the degree of freedom of curve
construction [27]. In previous work, scholars obtained good approximate solutions by combining
spline functions with the finite element. Sun et al. [28] showed that the C-Bézier and H-Bézier
basis functions have a much better approximation in simulating convection-diffusion problems. In
this paper, we combine the Galerkin finite element method with C-Bézier basis functions to solve
unsteady elastic equations. C-Bézier basis functions are selected to construct trial and test function
spaces. The numerical examples are given, and the numerical results indicate that our method has
much better precision in solving unsteady elastic equations. The numerical solutions in this paper are
generated in MATLAB 2018a.

The structure of this paper is as follows: In Section 2, we introduce the two-dimensional unsteady
elastic equation and recall the definitions and properties of C-Bézier basis functions. In Section 3, the
Galerkin finite element method is combined with C-Bézier basis functions to solve the unsteady elastic
equations. In Section 4, a prior estimate for the unsteady elastic equations of the 6-difference FEM
scheme is proved. In Section 5, the error estimates and corresponding convergence order under the L™
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norm, L? norm and H' semi-norm are obtained through numerical examples, and the feasibility and
effectiveness of the method is verified. In the final section, we not only summarize some comments on
the overall work, but also touch upon some avenues of future research.

2. Mathematical model and C-Bézier basis

In this section, we introduce the two-dimensional unsteady elastic equation and recall the definitions
and properties of C-Bézier basis functions.

2.1. Mathematical model

The initial-boundary value problem for the unsteady elastic equation is as follows, where Q is a
polygonal domain in R:
u,—V-o)=f, inQx|[0,T],
u=g, onoQx|0,T],
ou

u = uy, E:uoo, att =0 and in Q.

Letu = u(xy, x2;1) = (uy, up)" be the displacement and f = f(x;, x2;1) = (f1, f>)" be the body force.
The stress tensor o () is defined as

2.1)

o) op)
oa1(u) oxn(u)

o(u) = ( ) oij) = AV -u)d;; + 2uei(w) (0, j = 1,2),

where A and u are lamé parameters, A € (0, +00), u € (U, (12), 0 < py < wo.
The strain tensor is defined as

€11 €1 1 aui (9l/£j
= L= (o + o).
& ( &1 EM ) &ij 2(6)6]- 8xl~

2.2. C-Bézier basis functions

Definition 2.1. The C-Bézier basis functions for the space I'y = span{l,t, oo 1572 sint, cost} of
degrees k is defined by

t
Ck)=1- f 5 'Cy ! (s)ds,
0

t t
Cit) = f S ICH(s)ds — f S1CH (s)ds, i=1,2,--- k-1, (2.2)
0 0

!
Cir) = f S1C (s)ds,
0

where k > 2, t € [0, a], C(l)(t) = %’:) C{(t) = :1‘:1‘(’1 55? = (foa Cf“(t)dt)_1 and the shape parameter
a € (0,n].
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While k = 2, C-Bézier basis functions are expressed as follows:

1 —cos(a—1)

Cy =
0 1 —cosa
1 —cost+cosa —cos(a —t
C=- -1 23)
1 —cosa
o2 = 1 —cost
2" 1—-cosa’
where ¢ € [0, o] and the shape parameter « € (0, r].
In the images below, Figure 1(a) shows the quadratic C-Bézier basis function at @ = £ and
Figure 1(b) presents the quadratic C-Bézier basis function at @ = %”.
1 1
0.8 0.8
o : , /
_ 0.6 - 061 0 2
& 2 = ¢
0.4 0.4F
0.2 0.2r
0 0
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
t t
(@ a=1% b a=%

Figure 1. C-Bézier basis functions.

We display the main properties of the C-Bézier basis here—all of these properties can be found
in [26].
Property 2.1. Properties at the endpoints:

At the endpoints, the C-Bézier basis has the same properties as the Bézier basis. That is, for k > 2,

C(0) = Cy(@) = 1,
[CHO)Y = [CH@)I™ =0, s=0,--,i=1; m=0,--- ,n—i—1.
[CHOW =816+ 65", s= 1,2, ,n.

Property 2.2. Linear independence:
The C-Bézier basis {C3(1)]
2

k
0 is linearly independent, and it is a basis for the space [, =
1=

span {1, t, - , sint, costi.
Property 2.3. Positivity:
The C-Bézier basis is positive on [0, ] and normalized, that is,

Ck®)>0,t€[0,a],i=0,-,k;
k
dickn=1.
i=0
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Property 2.4. Symmetry:

Cit)=C;_ (a-1,tel0,a],i=0,,k

Definition 2.2. A C-Bézier surface S(u,v) of s X m degrees with control points P;j(x,y,z) € R? (i =
0,1,---,s8, j=0,1,--- ,m) is defined as

N

S@v)= Y > PyCIwv), (u,v) € [0,a] x [0,5], (2.4)

i=0 j=0
where Cf’}"(u, v)=C! (u)C;f’(v) is the tensor-product C-Bézier basis. a and B are the shape parameters.

As shown in the following figure, Figure 2(a) is a biquadratic C-Bézier surface with the shape
parameters @ = 7, 8 = % and the control points Py = (0,0,0), Po; = (1,0,-1), Pop =(2,0,0), P =
0,2,-1), Py = (1,2,-2), Py = (2.2,-1), Py = (0,4,0), Poy = (L,4,=1), P,y = (2,4,0);
Figure 2(b) is a 2 X 3 degrees C-Bézier surface with the shape parameters @ = £, 8 = £ and the control
points are PO,O = (0, 0, 1), Po,] = (4, 0, —2), Po,z = (8, 0, 2), P0’3 = (10, 0, %), Pl,() = (O, 2, 2), P]’l =
4,2,-1), Py = (8,2,3), P13 = (10,2,3), Pyg = (0,4,1), Py = (4,4,-2), Py = (8,4,2), Py3 =
(10,4, ).

(a) 2 x 2 degrees C-Bézier surface (b) 2 x 3 degrees C-Bézier surface

Figure 2. C-Bézier surfaces.

3. C-Bézier finite element scheme

In this section, we consider combining the Galerkin finite element method with C-Bézier basis to
solve the unsteady elastic equations.

As a preparation for the finite element algorithm, we briefly present the definitions of Sobolev
space H™(€2) and corresponding norms.

Let Q € R? be a bounded domain. The Sobolev space H™(Q) is defined by

H"(Q) = {ve L(Q) : D'v € LX(Q), if y| < m},

with norm

2 1
Mm@y = O 1DV, )7,

lyl<m
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and semi-norm
2 1
iy = (O 1D Vaq)?.
lyl=m

In the above formulas,
M

871 a)’z '
x1Yx
For m = 1, H}(Q) is the subspace of H'(Q) with vanishing boundary values on Q.

Based on the above definition of Sobolev space, the functional space H> (O,T; [Hl(Q)]z) is
defined as

Y=y, W=W+vy), D=

2 1 2 [ v 1 2
H?(0,T; [H'(Q)P) = V(1) (1), = € [HU(Q)P, Ve € [0,T] . 3.1)

3.1. Weak formulation

Now we give the weak formulation of the unsteady elastic equation in (2.1) and separate the weak
formulation with Galerkin method.
Assume that u € H? (O, T;[H 1(Q)]z), then multiplying the first equation of (2.1) by test function

ve [H)@) yields

fu,, -vdx;dx, — f (V-o)) - -vdxidx, = ff v dx;dx,,
Q Q Q

then using Green formula, it’s obtained as follows:

2

f u, - vdx,dx; + f o (u) : Vvdxydx, = f fvdxidxy, v € [H)(Q)]
Q Q Q

In detail, the inner product of the second-order tensor o(u) : Vv is given by

o(u) : Vv
:( on@) o) ) :( % ?37; )
o) o) ol
0\) av av av
=) - 6_xi +op) - (9_x; +oo(u) - (9_); +on)- a—xz

Therefore, the weak formulation for the unsteady elastic equation can be obtained, finding u €
H2(0,T: [H'(Q)?) and

(W, v) + a(u,v) = (f,v), Vv e [Hé(Q)]z, (3.2)
where
(w,v) = futl v dxidx,,
Q
a(u,v) = La(u) : Vv dxidxs, 3.3)

(f,v) = ff-vdxldxz.
Q
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3.2. Discrete model

Taking into account the unsteady elastic equation in a rectangular domain Q = [0, 1] x [0, 1].
Let Q, be a quasi-homogeneous rectangular mesh. The mesh size is h = [hy, h,] = [ N 1\} ] Ny
and N, represent the number of subintervals of the x-axis and y-axis of the quasi-uniform subdivision,
respectively. The number of elements is N = N|N,.

The n; X n, tensor-product C-Bézier basis functions on [0, ] X [0, 5] are defined as follows:

C;”J_.’"z(u, V) = C;”(u)C;-fz(v), i=0,1,---,n; j=0,1,--- ,ny, (3.4)

letting it = %, vV = g where it € [0,1], v € [0, 1]. The tensor-product C-Bézier basis defined on the

a
reference elements can be obtained:

ClL(@,7) = CJ (@@)CY (BY), 1= 0, ,ngs =0, ma, (35)

X=Xi =

Performing an affine transformation for them, let iz = V= y;—Zy’ Therefore, the shape function on

the local element can be obtained as follows:

y - yl)‘ 0,---,n1; j=0,---ns. (3.6)

CIE" (5.3 = € (= =)CT (B
Taking into account the biquadratic C-Bézier basis on the reference rectangular element, £ =
oA, A,A3A,. The four vertices of the rectangle are A, =1(0,0), A, = (1,0), A5 = (1,1), Ay = (0, 1). The
midpoints of the four sides A,A,, A,A;, A}A} and AA4AAl are As = (%, 0), A¢ = (1, %), A; = (%, 1) and
Ag = (0, 2) The center of the rectangle is Ay = (2, 3
From (3.5), we derive the biquadratic tensor-product type C-Bézier basis functions on the reference
element [0, 1] x [0, 1] as follows:

(1 — cos(a — ain))(1 — cos(B — V)

Cé:é(u, V)= (1 —cosa)(1 —cosp) ’

Cz’z(ﬁ 5) = _(1 — cos(ita) + cos @ — cos(a — ua))(1 — cos(B — BV))
1LO%™ (1 —cosa)(1 — cosB) ’

o (1 = cos(ua))(1 — cos(B — Bv))

G ) = cos i = C(f ﬁ)ﬁ

Cz’z(ﬁ 5) = _(1 — cos(ua))(1 — cos(VB) + cos B — cos(B — VPB))
21 (1 = cosa)(1 —cosp) ’

o (1 = cos(ra))(1 — cos(¥B))

Cié(“’ V)= (1 -cosa)(1 - cos,B;B

o2 (@7) = _(1 — cos(ita) + cos @ — cos(a — ua))(1 — cos(VB))

1.2 (1 = cosa)(1 — cosB) ’
o (1 = cos(a — air))(1 — cos(VB))

Coa@?) = T —cos ) 2.

C“(ﬁ 5) = (1 — cos(a — ait))(1 — cos(¥B) + cos B — cos(B — V)
0.1 (1 = cosa)(1 —cosf) ’
20 (1 — cos(ita) + cos @ — cos(a — ua))(1 — cos(vB) + cos B — cos(B — VB3))

Cri(a,v) =

(1 = cosa)(1 — cosp) ’
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where i1 € [0,1], v € [0, 1], @ € (0, n], B € (0, x].
As shown in the following figure, Figure 3 is the C-Bézier basis of the biquadratic tensor-product

type on the reference element when o = 4, 8 = £.

Figure 3. Biquadrate C-Bézier basis ata = 7 , 8 =

[e ]

Then we construct the finite element function spaces. We use the affine mapping between the
general element £ = 0A;A,A3A, and the reference element E = oA,A,A;A, to construct the shape
functions on the local element E, = 0OA,,A,,A3,A4,. For E, € €, the local finite element space is
represented by S ,(E,), that is,

SW(E,) = {c, C € span{C5"(x. )} ; M(x,y) € E} . (3.7)

n,

i, j=
We concatenate the local finite element spaces on all elements to construct a finite dimensional
subspace. The finite element space is

Un(ni,ny) ={C, C € S)(E,),VE, € Qp}. (3.8)
Uy denotes a compactly supported function space with zero on the boundary of U, as follows:

Un@ni,ny) ={C € Uy, Cloga =0, Y E, € Q}. (3.9)
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Subsequently, the Galerkin formulation of the unsteady elastic equation is to find u, €
H? (0, T: [Uh]z), such that

Wh,» Vi) + a(up,vi) = (f,vi), vy € [Upol®, (3.10)

where
(up,,vn) = fuh,, Vi dxidxs,
Q

a(uh,vh) = fa(uh) . Vvhdxldxz, (311)
Q

(f.vn) = ff'vhdxldxz-
Q

The dimension of finite element space U, introduced in (3.8) and the number of global basis functions
are N, = 2N, + 1)(2N, +1). LetC; (j = 1,- -+, N;) denote the global finite element basis functions of

. N . . . .
finite element space U}, so that U, = span {C j} _hl and the finite element numerical solution vector is
j:

uy = (U, MZh)t,

where
Np Np
Uy, = Z uj(0C; , uy, = Z uz;(1)C;.
=1 =1
Then we set up a linear algebraic system for u;;(¢) and u,;(t) (j = 1,---,N;), and solve it to obtain
the finite element solution u;, = (uy,, us,)'. We choose v, = (C;,0) (i = 1,--- ,N,) and v, = (0,C))’
(i = 1,---,N,) in the Galerkin formulation. That is, in the first set of test functions, we choose
vir=C;(i=1,---,N,) and v, = 0; in the second set of test functions, we choose vy, = 0 and v,;, = C;
(i=1,---,Np). Then, we obtain two sets of equations:
Np
Z u/llj(t)ijC,-dxldxz
j=1 Q
Np
0C; 0C; 0C; 0C; 0C; 0C;
+ | | A== —dxidx, +2 —’—ldd+f—’—’dd
; ul}( o) 0X1 8)61 e L'uaxl (')x1 a0 Qluaxz (9)(2 *1ax;
Np
0C; dC; JdC; dC;
+ ; A——dx;dx; + ———dxd
; MZJ (L ﬁxz (9)61 1165 jg;'uaxl 6)62 1 Xz)
:fflcidxldxz,
Q

Np Np

” 0C; 6C; 0C; oC;

u,(t) | CiCidxidx, + ) uy; f/l—]—ldx dx +f —J—ldxdx)
; 21()15; J o ]Z:; 1]( o Ox; 0x o Q'uaxzaxl B

Np
Zuzj(f/l—Jﬁdxldxz+2f,u—J£a’x1dx2+fy—fﬁdxldxz)
Q Q Q

= 0xy 0x> 0xy 0x; 0x; 0x;
=ff2C,~dx1dx2.
Q
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Define the stiffness matrix

A= A1+2A2+A3 Ay + As
h Ag + A7 Ag +2A3 + Ay ’

where N N
[ JaC; d 1™ [ aC; d 1™
Al = f/l—ﬁdxld)Q , A2 = f,u—ﬁdxldxz ,
8)(,'1 6x1 lij=1 6x1 axl lij=1
[ dC; 0 ™ [ .0C; 0 ™
A3 = f —ﬁdxld)q , A4 = f/l—ﬁdxld)@ s
sz ox X2 ij=1 8)62 8)61 lij=1
[ [ 8C; 0 ™ [ dC; 0 ™
A5 = —£dX1dXQ . A6 = /l—£dx1dx2 .
6x1 6x2 ij=1 c')xl 6xz lij=1
[ dC; 0 ™ [ dC; o ™
A7 = f —£dx1dxz , Ag = f/l—ﬁdxld)h
8)62 ox X1 i j=1 8)62 6)62 lij=1
Define the block mass matrix
(M, Oy
(50 )
where
M, = [ml,],]1 [fCCdx] , [01,],]1
Define the load vector
b=(b.b),

where
Np

Np
51 = [f flcidxldxz] N E [f fZC dxldXZ] .
Q i=1 i=1

Define the unknown vector

= ()_()l’ )_()2)17
where
[ulj]] 1 Xy = [sz]évﬁ]
Then, we get a system of ordinary differential equations for u; () and u,;(¢) (j = 1,--- ,Np)
MX' (1) + AOX () = b(). (3.12)

So far, we gain a semi-discretization Galerkin function (3.12).

If we further discretize the space-time domain [0, 7], let0 = <t <--- <ty, = T, the time step
ist,t, =mt, m=1,2,---, M, and assume X™ is the numerical solution of X (t,,), the corresponding
6-scheme finite difference is

X’m-%—l _ 2X)m + X’m 1
M

. +AX"0 =, (3.13)
-
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when using the notations X™*? = X! + (1 — 20)X™ + 6X"', b" = b(t,). Let A = M+ 06A, b=
b + (2 -1 - 20)A1X™ — % + 0A1X" and then substituting (3.13) can obtain a fully discrete
algebraic system related to time, 5

AXm! = p, (3.14)
so we can solve the system (3.14) and obtain the unknown vector group Xmtl,

Here, 6 is the parameter of the specific scheme of the time discrete layer, and different values
correspond to different difference schemes. When 6 = 0, it is an explicit scheme with poor stability;
when 6 = (.25, it is an implicit format with better stability, and it is also a format with more practical
applications.

4. A prior estimate

For simplicity, we consider a uniform grid in [0, T'], with step 7 > 0. Let Xm = )?(xl,xz;tm),
O=ty<ti<---<ty =T,t,=mr,m=1,2,--- ,M,,. As a basic scheme for the numerical solution

m

of the problem (2.1) we will use a three-level scheme with weight (6 = const):

X’m+1 _ zX)m + }Z)m—l
M
2

+ A[OX™ + (1 -20X" + X" 1 =b", m=1,2,--- , M,. &1
Give the initial conditions, we put X° = X(x|, x»;0), X' = %.

Let us derive a stability estimate with respect to the initial data and right-hand side, for the standard
scheme with weights (4.1).
Theorem 4.1. If 8 > 0.25, the following a priori estimate for the solution of (4.1) holds:

||| < [|%| + < 5. 4.2)
where now
TS Xm+l _ m 2 1 4 Xm 2
HX’"“ =||—— +||————— 4.3)
: T ME+(0-1)r2A 2 A
L2
is the discrete time analog of “X . Here, E denotes the identity operator.
Proof. Given the equality
— — — 1 — — — 1 — — —
OX™! + (1 - 20)X™ + X! = Z(X’"” +2X" + X" 4+ (0 - Z)(X’"” —2X™ 4+ XN,
we write (4.1) as
)_()m+1 _ 2X’m + X’m—l X’m+l + 2X)m + X’m—l S
D + A =b", 4.4)

T2 4
where |
D = ME + (6 - Z)TZA.

Let us introduce two new grid functions:

yn=-__- S
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and from (4.4) we arrive at the equation

Wm+1 + Wm ‘_}m+l + ‘_}m 5
D + A 5 =b". 4.5)
T

Scalarly multiplying both sides of (4.5) by (W™ + W™) = 2(V™*! — V), we get the equality

HWm+1 2 _ HWmHz + H‘_/)erl 2 _ “V’m“z — T([;m’ Werl + Wm)
D D A A
In the left-hand side of this equality, we have
”Wm+l 2 _ ”Wm”z + ‘ ‘_/’m+l 2 _ H‘_/’muz — HX’m+l 2 _ 'X’m 2 ,
D D A A . .
and for the right-hand side, we use the estimate as follows:
(B)m, Wm+l + Wm) < ‘B)mH |'Wm+l + Wm” < Hl;mH (Hfmﬂ + H)_()m )’

then, we obtain the prior estimate (4.2).
5. Numerical examples

In this section, several examples are presented to verify the feasibility and effectiveness of our
method. The approximate solutions are solved by MATLAB software, and the errors and convergence
order between the exact solutions and the finite element solutions under the L* norm, L?> norm and H'
semi-norm are obtained by numerical experiments. We use biquadratic basis functions to construct the
trial and test function spaces of the finite element method, and the finite element nodes and the grids
are the same. In the finite difference scheme of time processing, 6-scheme is used to solve the fully
discrete system (3.14), and finally the numerical solution u;, is obtained. Compared with Lagrange
finite element scheme, numerical accuracy is improved by 1-3 orders of magnitude and the method
proposed possesses a rapid convergence rate when we use C-Bézier basis functions, which implies that
the C-Bézier finite element scheme has a much better approximation in simulating unsteady elastic
equations.

The errors for the finite element method shall be measured in three norms defined as follows:

L norm error:

e — upllee = max (|luy — uiplleo » lluz — uznlleo) »
where
ety — wiplle = sup luy — uyl,
llttz — wanllee = sup luz — upl .

L? norm error:

2 2
e = ally = ey = wsall + iz — sl

\/f (u) — Mlh)2 dxdx,,

Q

2 — uzplly = \/f (uy — u)* dx,dx;,.
Q
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H ! semi-norm error:

2 2
lu —upyl, = \/|M1 — uipli + luz — usly,

2 2
wy =y, = \/f [(a(ula_ Mlh)) N (3@!1 - Mlh)) ) dxids,
Q X 0xy
2 2
s — ], = \/f ((a(uza— M2h)) N (5(142 - Mzh)) ] dxid.
Q X1 (9x2

Then, the convergence order of the three norms is calculated by using the error norm values
corresponding to the coarse grid Ey and the fine grid E,y formed by the upper and lower spatial
subdivisions,

where

_ In(Ey) — In(Esy)

B In(2)
Then the stability and convergence speed of the numerical method are verified according to the
convergence order.

(5.1)

Example 5.1. Consider following two-dimensional unsteady elastic equation in a rectangular domain
with Dirichlet condition and the lamé parameter A = 2, u = 1, where Q = [0, 1] X [0, 1],

u,—V-o@)=f(x,yt), in Qx|[0,1],
u = (0,0), on 0Q x [0, 1],
uo = (0,0, ugy = (0,0, att = 0 and in Q.

The displacement u = u(x, y; 1) = (uy, up)" is
Uy = tzsin(ﬂx)sin(ﬂy), Uy = tzsin(ﬂx)sin(ny),
and the body force f(x,y;1) = (fi1, f»)" is

fi = [2 + (A + 3] sin(nx)sin(ry) — (A + p)n*cos(nx)cos(ny),
L=R2+A1+ 3/1)t2]sin(7rx)sin(7ry) -1+ ,u)tznzcos(ﬂx)cos(ﬂy).

Here, we take the time step 7 = (@)2, combine with 8 = 0.25 and 6 = 1, then we calculate the
three error norms and the corresponding convergence order between the numerical solution and the
true solution. The numerical errors of § = 0.25 and 8 = 1 at the Gauss points are shown in Tables 1
and 2, and the corresponding convergence orders are shown in Tables 3 and 4, respectively. The error
comparison graphs under the two difference schemes of C-Bézier and Lagrange basis functions are
shown in Figures 4 and 5.
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Table 1. The numerical errors with 6 = 0.25 at r = 1 on Gauss points.

Basis (h1, ho) (a,B) llee — tpllco et — upllo |l — uply
4.4 : - 2.7300e — 02 1.9000e — 02  2.9040e — 01
Lagrance (3.3 ; - 3.6000e — 03 2.4000e — 03  7.2900¢ — 02
SHne (3% - 43043¢ —04  2.9490e — 04  1.8100e — 02
(£, 1) - 5.1902¢ — 05  3.6546e —05  4.5000e — 03
;,% &,z 1.1600e — 03 1.1000e — 03  1.0500e — 02
: I 6.4629¢ — 05  3.7382¢ —05  2.2604e — 04
C-Bezier (? i E4 : 2 08406 -06 1 12358 ~-06 8 3533e - 06
33 8 . e . e . e
16 16 = 8.4527¢ —08  4.6837¢—-08  3.1371le — 07
Table 2. The numerical errors with 6 = 1 at # = 1 on Gauss points.
Basis (h1, hy) (a,B) llu — uplloo llu — unllo lu = uply
4.4 2 - 2.7200e — 02 1.9000e — 02  2.9000e — 01
Lacrance (3% " - 3.6000e — 03 2.4000e — 03  7.2900¢ — 02
SHng (3% - 43046e — 04  2.9492¢ — 04  1.8100e — 02
= - 5.1904¢ — 05  3.6546e —05  4.5000¢ — 03
(3.3 (2,E 1.2000e —03  1.1003e —03  1.0007¢ — 02
C_Bézier (3, i (&, 6.7056e — 05  3.7072¢ — 05  2.6707¢ — 04
(3.3 5 (8, I 3.9330e — 06 2.2028¢ — 06  1.2577¢ — 05
(%, 12 zz 2.5268¢ — 07  1.3948¢—07  8.3322¢ — 07
Table 3. Convergence order under the three norms with = 0.25 at ¢t = 1.
Basis (hy, hy) (o, B) L*®-order L?-order H'-order
= - - : -
(33 - 2.9228 2.9849 1.9941
Lagrange 1 4 3.0641 3.0247 2.0100
g’ g = . . .
) - 3.0519 3.0124 2.0080
%’ % (2’ 2 - - -
C.Bézier (53 (5,2 4.1615 4.8914 5.2267
53 (’1 z 4.0917 4.0695 4.4107
e 1 Z, 16) 3.9605 3.9846 3.9137
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Table 4. Convergence order under the three norms with 8 = 1 at ¢ = 1.

Basis (hy, hy) (o, B) L®-order L*-order H'-order

(%7 %) - - - -

(5:7) - 2.9175 2.9849 1.9941

Lagrange .
b . 3.0640 3.0246 2.0100
(1) - 3.0520 3.0124 2.0080
(%7 %) (%3 % - - -
07 L 4.1 4, 334

. z m 4.9548 5.0562 47580
(. %) (%, % 4.6238 4.5842 47348
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Figure 4. The error comparison with § = 0.25 at¢ = 1.
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Figure 5. The error comparison with§ = 1 at¢ = 1.

It is observed that the numerical solutions derived by the C-Bézier basis is 1-3 orders of magnitude
higher than that of Lagrange basis under the 6 difference scheme, and the C-Bézier finite element
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method has 4-order convergence in the L™ norm, L? norm and H' semi-norm. This indicates that the
C-Bézier finite element method works well for unsteady elastic equations involving Dirichlet boundary
conditions.

Example 5.2. Consider the following two-dimensional pure displacement problem of the unstady
elastic equation under homogeneous boundary conditions and the lamé parameter A = 3, u = 5,
where Q = [0, 1] x [0, 1],

u,—V-o@)=f(x,y;t), in Qx[0,1],
u = (0,0), on 6Q x [0, 1],
uy(x,y) = (0,0), upo(x,y) = (0, =y(y — Dsin(nx)sin(ry))’,

where the exact solution u = u(x,y;t) = (uy, up)" is
u; = t(t — Dy(y — Dsin(nx)sin(ny), u, = P x(x — 1)sin(rx)sin(ry),
and the body force f(x,y;t) = (fi, f»)" is

fi =2y(y — 1)sin(nx)sin(ry) + (1 + 2,u)7r2t(t — Dy(y — 1)sin(rx)sin(my)
-1+ u)ﬂztzcos(ﬂy)[@x — Dsin(rx) + mx(x — 1)cos(mx)]
— ut(t — Dsin(nx)[2sin(ny) + 212y — Deos(ny) — m°y(y — Dsin(zy)];
o =2nx(x — 1)sin(rx)sin(rmy) — n(A + p)t(t — 1)cos(nx)[(2y — 1)sin(my)
+ y(y — 1)cos(ny)] — ﬂutzsin(ﬂy)[2sin(7rx) +21(2x — 1)cos(nx)
—°x(x = Dsin(zx)] + 72 (A + 2u)t2x(x — D)sin(mx)sin(my).
We take the time step 7 = (@)2, the numerical errors of 6 = 0.25 and 8 = 1 at the Gauss points
are shown in Tables 5 and 6, and the corresponding convergence orders are shown in Tables 7 and 8,

respectively. Figures 6 and 7 compare the errors of C-Bézier and Lagrange basis functions for the two
difference schemes under ||u — up||oo, [l — unllo and |u — uy);.

Table 5. The numerical errors with 6 = 0.25 at # = 1 on Gauss points.

Basis (h1, ho) (@, ) llee — tplloo et — upllo lu — uply

33 - 6.4900e — 02  3.0800e —02  5.8300e — 01

Lagrange 3 - 8.9000e —03  3.9000e — 03  1.2400¢ — 01
%3 - 1.2000e — 03  4.9088¢ —04  3.0600e — 02

= - 1.4766e — 04  6.1519¢—05  7.6000e — 03

53 (%2 8.7000e —03  4.3000e — 03 4.5900e — 02

C_Bézier }} }1‘ 5 i 8.4000e —04  4.7055¢ —04  1.0200e — 02
T (3,2 8.0392¢ —05  5.3915¢-05  2.1000e — 03

(%, e Z,Z) 7.7466e — 06 6.2311e =06  5.1000e — 04
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Table 6. The numerical errors with 6 = 1 at 7 = 1 on Gauss points.

Basis (h1, hy) (@,p) llet — wanlloo llee — unllo |t — uply
(553 2 - 6.5300¢ — 02 3.0700e —02  5.5750¢ — 01
A1 i - 8.9000e — 03  3.9000e —03  1.2390e — 01
Lagrange

¢4 : - 1.2000e =03 4.9092¢ — 04 3.0600¢ — 02
(&, L) - 1.4754¢ — 04 6.1522¢—05  7.6000¢ — 03
;, % (3,1 8.9760e —03  6.6711e—03  6.2550e — 02
x 1761e—04 7. 04 1. - 02

C-Bégior ¢ v ‘1‘ (1 9.1761e —04  7.6076¢ — 0 5600e — 0
. (%2 8.5430e —05  7.6793¢—05  3.1000e — 03
16> 16 = 8.6433¢ —06  7.9016e—06  6.1891¢ — 04

Table 7. Convergence order under the three norms with 8 = 0.25 at r = 1.

Basis (hy, hy) (a,B) L>”-order [?-order H'-order
1
L : : : :
(4, 1 - 2.87523 2.9767 2.1698
Lagrange M
g, 3 - 2.8908 2.9899 2.0176
16, 16) - 3.0200 2.9963 2.0095
11 Sz - - -
2°2 672
] 1z 3.2901 3.1324 2.0035
C-Bézier ‘1‘ ‘l‘ 274
303 13 3.4251 3.3083 2.3312
1 1 T
(15> 7¢) 3016 3.3051 3.2808 2.3245

Table 8. Convergence order under the three norms with 8 = 1 at ¢ = 1.

Basis (hy, hy) (o, B) L®-order L?-order H'-order
¥ : - : :
5 - 2.8663 2.9813 2.1707
Lagrange M
1 - 2.8908 2.9903 2.0187
(&, ) - 3.0227 2.9963 2.0095
(l 1 on oz - _ -
6°2
. i 5.4 3.3726 3.1919 2.1699
C-Bézier i
LL T I 3.3754 3.1134 2.0418
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Figure 6. The error comparison with 8 = 0.25 at ¢t = 1.
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Figure 7. The error comparison with§ = 1 at ¢ = 1.

The C-Bézier finite element method has higher accuracy and faster convergence rate. The accuracy
of numerical results obtained by C-Bézier basis function are improved by 1-3 orders of magnitude.

6. Conclusions and future work

This article presents a detailed finite element algorithm description of how C-Bézier basis functions
can be applied to give more accurate solutions for unsteady elastic equations. The error estimates
and corresponding convergence order under the L norm, L?> norm and H' semi-norm are obtained by
numerical experiments. It is verified that the C-Bézier basis functions have higher numerical accuracy
when solving unsteady elastic equations.

The accuracy of the numerical solutions is closely related to the selection of shape parameters. The
determination of shape parameters is always the focus of researchers in error estimation. In the future,
we will continue to study how to select the optimal shape parameters so that the numerical solutions
can more effectively approximate the exact solutions.

AIMS Mathematics Volume 9, Issue 1, 702-722.
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