In this article by means of shifted knots properties, we introduce a new type of coupled Bernstein operators for Bézier basis functions. First, we construct the operators based on shifted knots properties of Bézier basis functions then investigate the Korovkin's theorem, establish a local approximation theorem, and provide a convergence theorem for Lipschitz continuous functions and Peetre's $ K $-functional. In addition, we also obtain an asymptotic formula of the type Voronovskaja.
Citation: Mohammad Ayman-Mursaleen, Md. Nasiruzzaman, Nadeem Rao, Mohammad Dilshad, Kottakkaran Sooppy Nisar. Approximation by the modified $ \lambda $-Bernstein-polynomial in terms of basis function[J]. AIMS Mathematics, 2024, 9(2): 4409-4426. doi: 10.3934/math.2024217
In this article by means of shifted knots properties, we introduce a new type of coupled Bernstein operators for Bézier basis functions. First, we construct the operators based on shifted knots properties of Bézier basis functions then investigate the Korovkin's theorem, establish a local approximation theorem, and provide a convergence theorem for Lipschitz continuous functions and Peetre's $ K $-functional. In addition, we also obtain an asymptotic formula of the type Voronovskaja.
[1] | Z. Ye, X. Long, X. M. Zeng, Adjustment algorithms for Bézier curve and surface, In: 2010 5th International conference on computer science & education, 2010, 1712–1716. https://doi.org/10.1109/ICCSE.2010.5593563 |
[2] | A. D. Gadjiev, A. M. Ghorbanalizadeh, Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables, Appl. Math. Comput., 216 (2010), 890–901. https://doi.org/10.1016/j.amc.2010.01.099 doi: 10.1016/j.amc.2010.01.099 |
[3] | S. A. Mohiuddine, T. Acar, A. Alotaibi, Construction of a new family of Bernstein-Kantorovich operators, Math. Methods Appl. Sci., 40 (2017), 7749–7759. https://doi.org/10.1002/mma.4559 doi: 10.1002/mma.4559 |
[4] | M. Mursaleen, K. J. Ansari, A. Khan, Approximation properties and error estimation of $q$-Bernstein shifted operators, Numer. Algorithms, 84 (2020), 207–227. https://doi.org/10.1007/s11075-019-00752-4 doi: 10.1007/s11075-019-00752-4 |
[5] | S. A. Mohiuddine, F. Özger, Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter $\alpha$, RACSAM Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat., 114 (2020), 70. https://doi.org/10.1007/s13398-020-00802-w doi: 10.1007/s13398-020-00802-w |
[6] | S. A. Mohiuddine, T. Acar, M. A. Alghamdi, Genuine modified Bernstein-Durrmeyer operators, J. Inequal. Appl., 2018 (2018), 104. https://doi.org/10.1186/s13660-018-1693-z doi: 10.1186/s13660-018-1693-z |
[7] | F. Özger, On new Bézier bases with Schurer polynomials and corresponding results in approximation theory, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (2020), 376–393. https://doi.org/10.31801/cfsuasmas.510382 doi: 10.31801/cfsuasmas.510382 |
[8] | F. Özger, H. M. Srivastava, S. A. Mohiuddine, Approximation of functions by a new class of generalized Bernstein-Schurer operators, RACSAM Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat., 114 (2020), 1173. https://doi.org/10.31801/10.1007/s13398-020-00903-6 doi: 10.31801/10.1007/s13398-020-00903-6 |
[9] | X. M. Zeng, F. Cheng, On the rates of approximation of Bernstein type operators, J. Approx. Theory, 109 (2001), 242–256. https://doi.org/10.1006/jath.2000.3538 doi: 10.1006/jath.2000.3538 |
[10] | H. M. Srivastava, F. Özger, S. A. Mohiuddine, Construction of Stancu-type Bernstein operators Based on Bézier bases with shape parameter $\lambda$, Symmetry, 11 (2019), 316. https://doi.org/10.3390/sym11030316 doi: 10.3390/sym11030316 |
[11] | R. Aslan, Rate of approximation of blending type modified univariate and bivariate $\lambda$-Schurer-Kantorovich operators, Kuwait J. Sci., 2023, 100168. https://doi.org/10.1016/j.kjs.2023.12.007 doi: 10.1016/j.kjs.2023.12.007 |
[12] | R. Aslan, Approximation properties of univariate and bivariate new class $\lambda$-Bernstein-Kantorovich operators and its associated GBS operators, Comput. Appl. Math., 42 (2023), 34. https://doi.org/10.1007/s40314-022-02182-w doi: 10.1007/s40314-022-02182-w |
[13] | M. Ayman-Mursaleen, A. Kilicman, M. Nasiruzzaman, Approximation by $q$-Bernstein-Stancu-Kantorovich operators with shifted knots of real parameters, Filomat, 36 (2022), 1179–1194. https://doi.org/10.2298/FIL2204179A doi: 10.2298/FIL2204179A |
[14] | M. Ayman-Mursaleen, S. Serra-Capizzano, Statistical convergence via $q$-calculus and a Korovkin's type approximation theorem, Axioms, 11 (2022), 70. https://doi.org/10.3390/axioms11020070 doi: 10.3390/axioms11020070 |
[15] | M. Ayman-Mursaleen, N. Rao, M. Rani, A. Kilicman, A. A. H. A. Al-Abeid, P. Malik, A note on approximation of blending type Bernstein-Schurer-Kantorovich operators with shape parameter $\alpha$, J. Math., 2023 (2023), 5245806. https://doi.org/10.1155/2023/5245806 doi: 10.1155/2023/5245806 |
[16] | M. Y. Chen, M. Nasiruzzaman, M. Ayman-Mursaleen, N. Rao, A. Kilicman, On shape parameter $\alpha$-based approximation properties and $q$-statistical convergence of Baskakov-Gamma operators, J. Math., 2022 (2022), 4190732. https://doi.org/10.1155/2022/4190732 doi: 10.1155/2022/4190732 |
[17] | I. Haque, J. Ali, M. Mursaleen, Solvability of Implicit Fractional Order Integral Equation in $\ell_{p} (1\leq p < \infty)$ Space via Generalized Darbo's Fixed Point Theorem, J. Funct. Spaces, 2022 (2022), 1674243. https://doi.org/10.1155/2022/1674243 doi: 10.1155/2022/1674243 |
[18] | M. Heshamuddin, N. Rao, B. P. Lamichhane, A. Kiliçman, M. Ayman-Mursaleen, On one- and two-dimensional $\alpha$-Stancu-Schurer-Kantorovich operators and their approximation properties, Mathematics, 10 (2022), 3227. https://doi.org/10.3390/math10183227 doi: 10.3390/math10183227 |
[19] | M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Approximation results on Dunkl generalization of Phillips operators via $q$-calculus, Adv. Difference Equ., 2019 (2019), 244. https://doi.org/10.1186/s13662-019-2178-1 doi: 10.1186/s13662-019-2178-1 |
[20] | M. Nasiruzzaman, A. F. Aljohani, Approximation by $\alpha $-Bernstein-Schurer operators and shape preserving properties via $ q $-analogue, Math. Methods Appl. Sci., 46 (2023), 2354–2372. https://doi.org/10.1002/mma.8649 doi: 10.1002/mma.8649 |
[21] | N. Rao, M. Raiz, M. Ayman-Mursaleen, V. N. Mishra, Approximation properties of extended Beta-type Szász-Mirakjan operators, Iran. J. Sci., 47 (2023), 1771–1781. https://doi.org/10.1007/s40995-023-01550-3 doi: 10.1007/s40995-023-01550-3 |
[22] | M. Raiz, R. S. Rajawat, V. N. Mishra, $\alpha$-Schurer Durrmeyer operators and their approximation properties, An. Univ. Craiova Ser. Mat. Inform., 50 (2023), 189–204. https://doi.org/10.52846/ami.v50i1.1663 doi: 10.52846/ami.v50i1.1663 |
[23] | H. M. Srivastava, M. Mursaleen, M. Nasiruzzaman, Approximation by a class of $q$-Beta operators of the second kind via the Dunkl-Type generalization on weighted spaces, Complex Anal. Oper. Theory, 13 (2019), 1537–1556. https://doi.org/10.1007/s11785-019-00901-6 doi: 10.1007/s11785-019-00901-6 |
[24] | Q. B. Cai, B. Y. Lian, G. Zhou, Approximation properties of $\lambda$-Bernstein operators, J. Inequal. Appl., 2018 (2018), 61. https://doi.org/10.1186/s13660-018-1653-7 doi: 10.1186/s13660-018-1653-7 |
[25] | O. Shisha, B. Bond, The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci., 60 (1968), 1196–1200. https://doi.org/10.1073/pnas.60.4.1196 doi: 10.1073/pnas.60.4.1196 |
[26] | M. A. Ozarslan, H. Aktuğlu, Local approximation properties for certain King type operators, Filomat, 27 (2013), 173–181. |
[27] | B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces. Indag. Math. (Proc.), 91 (1988), 53–63. https://doi.org/10.1016/1385-7258(88)90007-8 doi: 10.1016/1385-7258(88)90007-8 |
[28] | R. A. DeVore, G. G. Lorentz, Constructive approximation, Springer Science & Business Media, 1993. |
[29] | F. Altomare, Korovkin-type theorems and approximation by positive linear operators, arXiv: 1009.2601v1, 2010. |
[30] | P. P. Korovkin, On Convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR., 90 (1953), 961–964. |
[31] | A. D. Gadziev, Theorems of the type of P.P. Korovkin's theorems, Mat. Zametki, 20 (1976), 781–786. |
[32] | A. D. Gadjiev, The convergence problem for a sequence of positive linear operators on bounded sets and theorems analogous to that of P. P. Korovkin, Dokl. Akad. Nauk SSSR., 218 (1974), 1001–1004. |
[33] | D. Barbosu, The Voronovskaja theorem for Bernstein-Schurer operators, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, 18 (2002), 133–136. |