Research article Special Issues

Uniform in number of neighbors consistency and weak convergence of $ k $NN empirical conditional processes and $ k $NN conditional $ U $-processes involving functional mixing data

  • * Both authors contributed equally to this work
  • Received: 27 November 2023 Revised: 27 December 2023 Accepted: 05 January 2024 Published: 18 January 2024
  • MSC : 60F05, 60F15, 62E20, 62G05, 62G07, 62G08, 62G20, 62G35

  • $ U $-statistics represent a fundamental class of statistics arising from modeling quantities of interest defined by multi-subject responses. $ U $-statistics generalize the empirical mean of a random variable $ X $ to sums over every $ m $-tuple of distinct observations of $ X $. Stute [182] introduced a class of so-called conditional $ U $-statistics, which may be viewed as a generalization of the Nadaraya-Watson estimates of a regression function. Stute proved their strong pointwise consistency to: $ r^{(m)}(\varphi, \mathbf{t}): = \mathbb{E}[\varphi(Y_{1}, \ldots, Y_{m})|(X_{1}, \ldots, X_{m}) = \mathbf{t}], \; \mbox{for}\; \mathbf{ t}\in \mathcal{X}^{m}. $ In this paper, we are mainly interested in the study of the $ k $NN conditional $ U $-processes in a functional mixing data framework. More precisely, we investigate the weak convergence of the conditional empirical process indexed by a suitable class of functions and of the $ k $NN conditional $ U $-processes when the explicative variable is functional. We treat the uniform central limit theorem in both cases when the class of functions is bounded or unbounded satisfying some moment conditions. The second main contribution of this study is the establishment of a sharp almost complete Uniform consistency in the Number of Neighbors of the constructed estimator. Such a result allows the number of neighbors to vary within a complete range for which the estimator is consistent. Consequently, it represents an interesting guideline in practice to select the optimal bandwidth in nonparametric functional data analysis. These results are proved under some standard structural conditions on the Vapnik-Chervonenkis classes of functions and some mild conditions on the model. The theoretical results established in this paper are (or will be) key tools for further functional data analysis developments. Potential applications include the set indexed conditional U-statistics, Kendall rank correlation coefficient, the discrimination problems and the time series prediction from a continuous set of past values.

    Citation: Salim Bouzebda, Amel Nezzal. Uniform in number of neighbors consistency and weak convergence of $ k $NN empirical conditional processes and $ k $NN conditional $ U $-processes involving functional mixing data[J]. AIMS Mathematics, 2024, 9(2): 4427-4550. doi: 10.3934/math.2024218

    Related Papers:

  • $ U $-statistics represent a fundamental class of statistics arising from modeling quantities of interest defined by multi-subject responses. $ U $-statistics generalize the empirical mean of a random variable $ X $ to sums over every $ m $-tuple of distinct observations of $ X $. Stute [182] introduced a class of so-called conditional $ U $-statistics, which may be viewed as a generalization of the Nadaraya-Watson estimates of a regression function. Stute proved their strong pointwise consistency to: $ r^{(m)}(\varphi, \mathbf{t}): = \mathbb{E}[\varphi(Y_{1}, \ldots, Y_{m})|(X_{1}, \ldots, X_{m}) = \mathbf{t}], \; \mbox{for}\; \mathbf{ t}\in \mathcal{X}^{m}. $ In this paper, we are mainly interested in the study of the $ k $NN conditional $ U $-processes in a functional mixing data framework. More precisely, we investigate the weak convergence of the conditional empirical process indexed by a suitable class of functions and of the $ k $NN conditional $ U $-processes when the explicative variable is functional. We treat the uniform central limit theorem in both cases when the class of functions is bounded or unbounded satisfying some moment conditions. The second main contribution of this study is the establishment of a sharp almost complete Uniform consistency in the Number of Neighbors of the constructed estimator. Such a result allows the number of neighbors to vary within a complete range for which the estimator is consistent. Consequently, it represents an interesting guideline in practice to select the optimal bandwidth in nonparametric functional data analysis. These results are proved under some standard structural conditions on the Vapnik-Chervonenkis classes of functions and some mild conditions on the model. The theoretical results established in this paper are (or will be) key tools for further functional data analysis developments. Potential applications include the set indexed conditional U-statistics, Kendall rank correlation coefficient, the discrimination problems and the time series prediction from a continuous set of past values.



    加载中


    [1] J. Abrevaya, W. Jiang, A nonparametric approach to measuring and testing curvature, J. Bus. Econ. Stat., 23 (2005), 1–19. https://doi.org/10.1198/073500104000000316 doi: 10.1198/073500104000000316
    [2] H. Akaike, An approximation to the density function, Ann. Inst. Stat. Math., 6 (1954), 127–132. https://doi.org/10.1007/BF02900741 doi: 10.1007/BF02900741
    [3] I. M. Almanjahie, S. Bouzebda, Z. C. Elmezouar, A. Laksaci, The functional $k$NN estimator of the conditional expectile: uniform consistency in number of neighbors, Statist. Risk Model., 38 (2022), 47–63. https://doi.org/10.1515/strm-2019-0029 doi: 10.1515/strm-2019-0029
    [4] I. M. Almanjahie, S. Bouzebda, Z. Kaid, A. Laksaci, Nonparametric estimation of expectile regression in functional dependent data, J. Nonparametr. Stat., 34 (2022), 250–281. https://doi.org/10.1080/10485252.2022.2027412 doi: 10.1080/10485252.2022.2027412
    [5] I. M. Almanjahie, S. Bouzebda, Z. Kaid, A. Laksaci, The local linear functional $k$NN estimator of the conditional expectile: Uniform consistency in number of neighbors, Metrika, 2024 (2024), 1–24. https://doi.org/10.1007/s00184-023-00942-0 doi: 10.1007/s00184-023-00942-0
    [6] G. Aneiros, R. Cao, R. Fraiman, C. Genest, P. Vieu, Recent advances in functional data analysis and high-dimensional statistics, J. Multivariate Anal., 170 (2019), 3–9. https://doi.org/10.1016/j.jmva.2018.11.007 doi: 10.1016/j.jmva.2018.11.007
    [7] A. Araujo, E. Giné, The central limit theorem for real and Banach valued random variables, New York: John Wiley & Sons, 1980.
    [8] M. A. Arcones, B. Yu. Central limit theorems for empirical and $U$-processes of stationary mixing sequences, J. Theor. Probab., 7 (1994), 47–71. https://doi.org/10.1007/BF02213360 doi: 10.1007/BF02213360
    [9] M. A. Arcones, A Bernstein-type inequality for $U$-statistics and $U$-processes, Stat. Probabil. Lett., 22 (1995), 239–247. https://doi.org/10.1016/0167-7152(94)00072-G doi: 10.1016/0167-7152(94)00072-G
    [10] M. A. Arcones, E. Giné, Limit theorems for $U$-processes, Ann. Probab., 21 (1993), 1494–1542. https://doi.org/10.1214/aop/1176989128 doi: 10.1214/aop/1176989128
    [11] M. A. Arcones, Y. Wang, Some new tests for normality based on $U$-processes, Stat. Probabil. Lett., 76 (2006), 69–82. https://doi.org/10.1016/j.spl.2005.07.003 doi: 10.1016/j.spl.2005.07.003
    [12] M. Attouch, A. Laksaci, F. Rafaa, On the local linear estimate for functional regression: uniform in bandwidth consistency, Commun. Stat. Theor. M., 48 (2019), 1836–1853. https://doi.org/10.1080/03610926.2018.1440308 doi: 10.1080/03610926.2018.1440308
    [13] A. K. Basu, A. Kundu, Limit distribution for conditional $U$-statistics for dependent processes, Calcutta Statistical Association Bulletin, 52 (2002), 381–407. https://doi.org/10.1177/0008068320020522 doi: 10.1177/0008068320020522
    [14] D. Z. Bello, M. Valk, G. B. Cybis, Towards U-statistics clustering inference for multiple groups, J. Stat. Comput. Sim., 94 (2024), 204–222. https://doi.org/10.1080/00949655.2023.2239978. doi: 10.1080/00949655.2023.2239978
    [15] N. Berrahou, S. Bouzebda, L. Douge, Functional uniform-in-bandwidth moderate deviation principle for the local empirical processes involving functional data, Math. Methods Statist., 33 (2024), 1–43.
    [16] P. K. Bhattachary, Y. P. Mack, Weak convergence of $k$-NN density and regression estimators with varying $k$ and applications, Ann. Statist., 15 (1987), 976–994. https://doi.org/10.1214/aos/1176350487 doi: 10.1214/aos/1176350487
    [17] G. Biau, L. Devroye, Lectures on the nearest neighbor method, Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-25388-6
    [18] V. I. Bogachev, Gaussian measures (Mathematical surveys and monographs), Providence: American Mathematical Society, 1998.
    [19] E. Bolthausen, The Berry-Esseen theorem for functionals of discrete Markov chains, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 54 (1980), 59–73. https://doi.org/10.1007/BF00535354 doi: 10.1007/BF00535354
    [20] Y. V. Borovskikh, $U$-Statistics in Banach spaces, Boston: De Gruyter, 1996. https://doi.org/10.1515/9783112313954
    [21] D. Bosq, Linear processes in function spaces, New York: Springer-Verlag, 2000. https://doi.org/10.1007/978-1-4612-1154-9
    [22] B. Feriel, O. S. Elias, Nonparametric local linear estimation of the relative error regression function for twice censored data, Stat. Probabil. Lett., 178 (2021), 109185. https://doi.org/10.1016/j.spl.2021.109185 doi: 10.1016/j.spl.2021.109185
    [23] F. Bouhadjerad, E. O. Saïd, Strong consistency of the local linear relative regression estimator for censored data, Opuscula Math., 42 (2022), 805–832. https://doi.org/10.7494/OpMath.2022.42.6.805 doi: 10.7494/OpMath.2022.42.6.805
    [24] F. Bouhadjera, M. Lemdani, E, O. Saïd, Strong uniform consistency of the local linear relative error regression estimator under left truncation, Stat. Papers, 64 (2023), 421–447. https://doi.org/10.1007/s00362-022-01325-9 doi: 10.1007/s00362-022-01325-9
    [25] S. Bouzebda, On the strong approximation of bootstrapped empirical copula processes with applications, Math. Meth. Stat., 21 (2012), 153–188. https://doi.org/10.3103/S1066530712030015 doi: 10.3103/S1066530712030015
    [26] S. Bouzebda, Asymptotic properties of pseudo maximum likelihood estimators and test in semi-parametric copula models with multiple change points, Math. Meth. Stat., 23 (2014), 38–65. https://doi.org/10.3103/S1066530714010037 doi: 10.3103/S1066530714010037
    [27] S. Bouzebda, B. Nemouchi, Central limit theorems for conditional empirical and conditional $U$-processes of stationary mixing sequences, Math. Meth. Stat., 28 (2019), 169–207. https://doi.org/10.3103/S1066530719030013 doi: 10.3103/S1066530719030013
    [28] S. Bouzebda, N. Taachouche, Rates of the strong uniform consistency with rates for conditional $U$-statistics estimators with general kernels on manifolds, Math. Meth. Stat., 33 (2024), 1–55.
    [29] S. Bouzebda, T. Zari, Strong approximation of multidimensional $\mathbb{P}$-$\mathbb{P}$ plots processes by Gaussian processes with applications to statistical tests, Math. Meth. Stat., 23 (2014), 210–238. https://doi.org/10.3103/S1066530714030041 doi: 10.3103/S1066530714030041
    [30] S. Bouzebda, M. Chaouch, N. Laïb, Limiting law results for a class of conditional mode estimates for functional stationary ergodic data, Math. Meth. Stat., 25 (2016), 168–195. https://doi.org/10.3103/S1066530716030029. doi: 10.3103/S1066530716030029
    [31] S. Bouzebda, Strong approximation of the smoothed $Q$-$Q$ processes, Far East Journal of Theoretical Statistics, 31 (2010), 169–191.
    [32] S. Bouzebda, General tests of independence based on empirical processes indexed by functions, Stat. Methodol., 21 (2014), 59–87. https://doi.org/10.1016/j.stamet.2014.03.001 doi: 10.1016/j.stamet.2014.03.001
    [33] S. Bouzebda, On the weak convergence and the uniform-in-bandwidth consistency of the general conditional $U$-processes based on the copula representation: multivariate setting, Hacet. J. Math. Stat., 52 (2023), 1303–1348. https://doi.org/10.15672/hujms.1134334 doi: 10.15672/hujms.1134334
    [34] S. Bouzebda, General tests of conditional independence based on empirical processes indexed by functions, Jpn. J. Stat. Data Sci., 6 (2023), 115–177. https://doi.org/10.1007/s42081-023-00193-3 doi: 10.1007/s42081-023-00193-3
    [35] S. Bouzebda, M. Chaouch, Uniform limit theorems for a class of conditional $Z$-estimators when covariates are functions, J. Multivariate Anal., 189 (2022), 104872. https://doi.org/10.1016/j.jmva.2021.104872 doi: 10.1016/j.jmva.2021.104872
    [36] K. Chokri, S. Bouzebda, Uniform-in-bandwidth consistency results in the partially linear additive model components estimation, Commun. Stat. Theor. M., 2023 (2023), 2153605. https://doi.org/10.1080/03610926.2022.2153605 doi: 10.1080/03610926.2022.2153605
    [37] S. Bouzebda, I. Elhattab, A strong consistency of a nonparametric estimate of entropy under random censorship, CR Math., 347 (2009), 821–826. https://doi.org/10.1016/j.crma.2009.04.021 doi: 10.1016/j.crma.2009.04.021
    [38] S. Bouzebda, I. Elhattab, Uniform-in-bandwidth consistency for kernel-type estimators of Shannon's entropy, Electron. J. Stat., 5 (2011), 440–459. https://doi.org/10.1214/11-EJS614 doi: 10.1214/11-EJS614
    [39] S. Bouzebda, A. A. Ferfache, Asymptotic properties of $M$-estimators based on estimating equations and censored data in semi-parametric models with multiple change points, J. Math. Anal. Appl., 497 (2021), 124883. https://doi.org/10.1016/j.jmaa.2020.124883 doi: 10.1016/j.jmaa.2020.124883
    [40] S. Bouzebda, A. A. Ferfache, Functional central limit theorems for triangular arrays of function-indexed $U$-processes under uniformly integrable entropy conditions, submitted for publication.
    [41] S. Bouzebda, A. A. Ferfache, Asymptotic properties of semiparametric $M$-estimators with multiple change points, Phys. A, 609 (2023), 128363. https://doi.org/10.1016/j.physa.2022.128363 doi: 10.1016/j.physa.2022.128363
    [42] S. Bouzebda, B. Nemouchi, Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional $U$-statistics involving functional data, J. Nonparametr. Stat., 32 (2020), 452–509. https://doi.org/10.1080/10485252.2020.1759597 doi: 10.1080/10485252.2020.1759597
    [43] S. Bouzebda, B. Nemouchi, Weak-convergence of empirical conditional processes and conditional $U$-processes involving functional mixing data, Stat. Inference Stoch. Process., 26 (2023), 33–88. https://doi.org/10.1007/s11203-022-09276-6 doi: 10.1007/s11203-022-09276-6
    [44] S. Bouzebda, A. Nezzal, Uniform consistency and uniform in number of neighbors consistency for nonparametric regression estimates and conditional $U$-statistics involving functional data, Jpn. J. Stat. Data Sci., 5 (2022), 431–533. https://doi.org/10.1007/s42081-022-00161-3 doi: 10.1007/s42081-022-00161-3
    [45] S. Bouzebda, A. Nezzal, Asymptotic properties of conditional $U$-statistics using delta sequences, Commun. Stat. Theor. M., 2023 (2023), 2179887. https://doi.org/10.1080/03610926.2023.2179887 doi: 10.1080/03610926.2023.2179887
    [46] S. Bouzebda, I. Soukarieh, Renewal type bootstrap for $U$-process Markov chains, Markov Process. Relat., 28 (2022), 673–735.
    [47] S. Bouzebda, I. Soukarieh, Non-parametric conditional $U$-processes for locally stationary functional random fields under stochastic sampling design, Mathematics, 11 (2023), 16. https://doi.org/10.3390/math11010016. doi: 10.3390/math11010016
    [48] S. Bouzebda, I. Soukarieh, Limit theorems for a class of processes generalizing the $U$-empirical process, in press.
    [49] S. Bouzebda, N. Taachouche, On the variable bandwidth kernel estimation of conditional $U$-statistics at optimal rates in sup-norm, Phys. A, 625 (2023), 129000. https://doi.org/10.1016/j.physa.2023.129000. doi: 10.1016/j.physa.2023.129000
    [50] S. Bouzebda, N. Taachouche, Rates of the strong uniform consistency for the kernel-type regression function estimators with general kernels on manifolds, Math. Meth. Stat., 32 (2023), 27–80. https://doi.org/10.3103/s1066530723010027. doi: 10.3103/s1066530723010027
    [51] S. Bouzebda, I. Elhattab, C. T. Seck, Uniform in bandwidth consistency of nonparametric regression based on copula representation, Stat. Probabil. Lett., 137 (2018), 173–182. https://doi.org/10.1016/j.spl.2018.01.021 doi: 10.1016/j.spl.2018.01.021
    [52] S. Bouzebda, I. Elhattab, B. Nemouchi, On the uniform-in-bandwidth consistency of the general conditional $U$-statistics based on the copula representation, J. Nonparametr. Stat., 33 (2021), 321–358. https://doi.org/10.1080/10485252.2021.1937621 doi: 10.1080/10485252.2021.1937621
    [53] S. Bouzebda, A. Laksaci, M. Mohammedi, Single index regression model for functional quasi-associated time series data, REVSTAT-Stat. J., 20 (2022), 605–631. https://doi.org/10.57805/revstat.v20i5.391 doi: 10.57805/revstat.v20i5.391
    [54] S. Bouzebda, T. El-hadjali, A. A. Ferfache, Uniform in bandwidth consistency of conditional $U$-statistics adaptive to intrinsic dimension in presence of censored data, Sankhya A, 85 (2023), 1548–1606. https://doi.org/10.1007/s13171-022-00301-7 doi: 10.1007/s13171-022-00301-7
    [55] S. Bouzebda, A. Laksaci, M. Mohammedi, The k-nearest neighbors method in single index regression model for functional quasi-associated time series data, Rev. Mat. Complut., 36 (2023), 361–391. https://doi.org/10.1007/s13163-022-00436-z doi: 10.1007/s13163-022-00436-z
    [56] S. Bouzebda, A. Nezzal, T. Zari, Uniform consistency for functional conditional U-statistics using delta-sequences, Mathematics, 11 (2023), 161. https://doi.org/10.3390/math11010161 doi: 10.3390/math11010161
    [57] J. Bretagnolle, Lois limites du bootstrap de certaines fonctionnelles, Ann. I. H. Poincare-PR., 19 (1983), 281–296.
    [58] F. Burba, F. Ferraty, P. Vieu, $k$-Nearest neighbour method in functional nonparametric regression, J. Nonparametr. Stat., 21 (2009), 453–469. https://doi.org/10.1080/10485250802668909 doi: 10.1080/10485250802668909
    [59] L. Chen, A. T. K. Wan, S. Zhang, Y. Zhou, Distributed algorithms for U-statistics-based empirical risk minimization, J. Mach. Learn. Res., 24 (2023), 1–43.
    [60] Z. Chikr-Elmezouar, I. M. Almanjahie, A. Laksaci, M. Rachdi, FDA: strong consistency of the $k$NN local linear estimation of the functional conditional density and mode, J. Nonparametr. Stat., 31 (2019), 175–195. https://doi.org/10.1080/10485252.2018.1538450 doi: 10.1080/10485252.2018.1538450
    [61] J. A. Clarkson, C. R. Adams, On definitions of bounded variation for functions of two variables, T. Am. Math. Soc., 35 (1933), 824–854. https://doi.org/10.2307/1989593 doi: 10.2307/1989593
    [62] S. Clémençon, G. Lugosi, N. Vayatis, Ranking and empirical minimization of $U$-statistics, Ann. Statist., 36 (2008), 844–874. https://doi.org/10.1214/009052607000000910 doi: 10.1214/009052607000000910
    [63] S. Clémençon, I. Colin, A. Bellet, Scaling-up empirical risk minimization: optimization of incomplete $U$-statistics, J. Mach. Learn. Res., 17 (2016), 76.
    [64] G. Collomb, Estimation de la régression par la méthode des $k$ points les plus proches avec noyau: quelques propriétés de convergence ponctuelle, In: Statistique non paramétrique asymptotique, Berlin: Springer, 1980,159–175. https://doi.org/10.1007/BFb0097428
    [65] G. B. Cybis, M. Valk, S. R. C. Lopes, Clustering and classification problems in genetics through $U$-statistics, J. Stat. Comput. Sim., 88 (2018), 1882–1902. https://doi.org/10.1080/00949655.2017.1374387 doi: 10.1080/00949655.2017.1374387
    [66] Y. A. Davydov, Mixing conditions for Markov chains, Theor. Probab. Appl., 18 (1974), 321–338. https://doi.org/10.1137/1118033 doi: 10.1137/1118033
    [67] V. H. de la Peña, Decoupling and Khintchine's inequalities for $U$-statistics, Ann. Probab., 20 (1992), 1877–1892. https://doi.org/10.1214/aop/1176989533 doi: 10.1214/aop/1176989533
    [68] V. H. de la Peña, E. Giné, Decoupling, New York: Springer, 1999. https://doi.org/10.1007/978-1-4612-0537-1
    [69] J. Dedecker, S. Louhichi, Maximal inequalities and empirical central limit theorems, In: Empirical process techniques for dependent data, Boston: Birkhäuser, 2002,137–159. https://doi.org/10.1007/978-1-4612-0099-4_3
    [70] P. Deheuvels, One bootstrap suffices to generate sharp uniform bounds in functional estimation, Kybernetika (Prague), 47 (2011), 855–865.
    [71] P. Deheuvels, D. M. Mason, General asymptotic confidence bands based on kernel-type function estimators, Stat. Infer. Stoch. Pro., 7 (2004), 225–277. https://doi.org/10.1023/B:SISP.0000049092.55534.af doi: 10.1023/B:SISP.0000049092.55534.af
    [72] H. Dehling, M. Wendler, Central limit theorem and the bootstrap for $U$-statistics of strongly mixing data, J. Multivariate Anal., 101 (2010), 126–137. https://doi.org/10.1016/j.jmva.2009.06.002 doi: 10.1016/j.jmva.2009.06.002
    [73] K. Dehnad, Density estimation for statistics and data analysis, Technometrics, 29 (1987), 495–495. https://doi.org/10.1080/00401706.1987.10488295 doi: 10.1080/00401706.1987.10488295
    [74] J. Demongeot, A. Hamie, A. Laksaci, M. Rachdi, Relative-error prediction in nonparametric functional statistics: theory and practice, J. Multivariate Anal., 146 (2016), 261–268. https://doi.org/10.1016/j.jmva.2015.09.019 doi: 10.1016/j.jmva.2015.09.019
    [75] L. Devroye, A course in density estimation, Boston: Birkhäuser Boston Inc., 1987.
    [76] L. Devroye, G. Lugosi, Combinatorial methods in density estimation, New York: Springer-Verlag, 2001. https://doi.org/10.1007/978-1-4613-0125-7
    [77] L. Devroye, L. Györfi, A. Krzyzak, G. Lugosi, On the strong universal consistency of nearest neighbor regression function estimates, Ann. Statist., 22 (1994), 1371–1385. https://doi.org/10.1214/aos/1176325633 doi: 10.1214/aos/1176325633
    [78] J. Dony, U. Einmahl, Uniform in bandwidth consistency of kernel regression estimators at a fixed point, Inst. Math. Stat. (IMS) Collect., 2009 (2009), 308–325. https://doi.org/10.1214/09-IMSCOLL520 doi: 10.1214/09-IMSCOLL520
    [79] J. Dony, D. M. Mason, Uniform in bandwidth consistency of conditional $U$-statistics, Bernoulli, 14 (2008), 1108–1133. https://doi.org/10.3150/08-BEJ136 doi: 10.3150/08-BEJ136
    [80] R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal., 1 (1967), 290–330. https://doi.org/10.1016/0022-1236(67)90017-1 doi: 10.1016/0022-1236(67)90017-1
    [81] R. M. Dudley, A course on empirical processes, In: École d'été de probabilités de Saint-Flour, XII-1982, Berlin: Springer, 1984, 1–142. https://doi.org/10.1007/BFb0099432
    [82] R. M. Dudley, Uniform central limit theorems, Cambridge: Cambridge University Press, 1999. https://doi.org/10.1017/CBO9780511665622
    [83] E. B. Dynkin, A. Mandelbaum, Symmetric statistics, poisson point processes, and multiple wiener integrals, Ann. Statist., 11 (1983), 739–745. https://doi.org/10.1214/aos/1176346241 doi: 10.1214/aos/1176346241
    [84] E. Eberlein, Weak convergence of partial sums of absolutely regular sequences, Stat. Probabil. Lett., 2 (1984), 291–293. https://doi.org/10.1016/0167-7152(84)90067-1 doi: 10.1016/0167-7152(84)90067-1
    [85] S. Efromovich, Nonparametric curve estimation, New York: Springer, 1999. https://doi.org/10.1007/b97679
    [86] P. P. B. Eggermont, V. N. LaRiccia, Maximum penalized likelihood estimation, New York: Springer, 2001. https://doi.org/10.1007/978-1-0716-1244-6
    [87] U. Einmahl, D. M. Mason, An empirical process approach to the uniform consistency of kernel-type function estimators, J. Theor. Probab., 13 (2000), 1–37. https://doi.org/10.1023/A:1007769924157. doi: 10.1023/A:1007769924157
    [88] U. Einmahl, D. M. Mason, Uniform in bandwidth consistency of kernel-type function estimators, Ann. Statist., 33 (2005), 1380–1403. https://doi.org/10.1214/009053605000000129 doi: 10.1214/009053605000000129
    [89] M. Ezzahrioui, E. Ould-Saïd, Asymptotic normality of a nonparametric estimator of the conditional mode function for functional data, J. Nonparametr. Stat., 20 (2008), 3–18. https://doi.org/10.1080/10485250701541454 doi: 10.1080/10485250701541454
    [90] L. Faivishevsky, J. Goldberger, ICA based on a smooth estimation of the differential entropy, In: Proceedings of the 21st international conference on neural information processing systems, New York: Curran Associates, Inc., 2008,433–440.
    [91] F. Ferraty, P. Vieu, Nonparametric functional data analysis, New York: Springer, 2006. https://doi.org/10.1007/0-387-36620-2
    [92] F. Ferraty, A. Mas, P. Vieu, Nonparametric regression on functional data: inference and practical aspects, Aust. N. Z. J. Stat., 49 (2007), 267–286. https://doi.org/10.1111/j.1467-842X.2007.00480.x doi: 10.1111/j.1467-842X.2007.00480.x
    [93] F. Ferraty, A. Laksaci, A. Tadj, P. Vieu, Rate of uniform consistency for nonparametric estimates with functional variables, J. Stat. Plan. Infer., 140 (2010), 335–352. https://doi.org/10.1016/j.jspi.2009.07.019 doi: 10.1016/j.jspi.2009.07.019
    [94] A. A. Filippova, Mises theorem on the limit behaviour of functionals derived from empirical distribution functions, Dokl. Akad. Nauk SSSR, 129 (1959), 44–47. https://doi.org/10.1137/1107003 doi: 10.1137/1107003
    [95] E. Fix, J. L. J. Hodges, Discriminatory analysis-nonparametric discrimination: consistency properties, Technical Report Project 21-49-004, Report 4, USAF School of Aviation Medicine, Randolph Field, Texas, 1951.
    [96] E. Fix, J. L. J. Hodges, Discriminatory analysis–nonparametric discrimination: consistency properties, Int. Stat. Rev., 57 (1989), 238–247. https://doi.org/10.2307/1403797 doi: 10.2307/1403797
    [97] E. W. Frees, Infinite order $U$-statistics, Scand. J. Stat., 16 (1989), 29–45.
    [98] K.-A. Fu, An application of $U$-statistics to nonparametric functional data analysis, Commun. Stat. Theor. M., 41 (2012), 1532–1542. https://doi.org/10.1080/03610926.2010.526747 doi: 10.1080/03610926.2010.526747
    [99] T. Gasser, P. Hall, B. Presnell, Nonparametric estimation of the mode of a distribution of random curves, J. R. Stat. Soc. B, 60 (1998), 681–691. https://doi.org/10.1111/1467-9868.00148 doi: 10.1111/1467-9868.00148
    [100] S. Ghosal, A. Sen, A. W. van der Vaart, Testing monotonicity of regression, Ann. Statist., 28 (2000), 1054–1082. https://doi.org/10.1214/aos/1015956707 doi: 10.1214/aos/1015956707
    [101] E. Giné, D. M. Mason, Laws of the iterated logarithm for the local U-statistic process, J. Theor. Probab., 20 (2007), 457–485. https://doi.org/10.1007/s10959-007-0067-0 doi: 10.1007/s10959-007-0067-0
    [102] E. Giné, J. Zinn, Some limit theorems for empirical processes, Ann. Probab., 12 (1984), 929–989. https://doi.org/10.1214/aop/1176993138 doi: 10.1214/aop/1176993138
    [103] H. L. Gray, N.-F. Zhang, W. A. Woodward, On generalized fractional processes, J. Time Ser. Anal., 10 (1989), 233–257. https://doi.org/10.1111/j.1467-9892.1989.tb00026.x doi: 10.1111/j.1467-9892.1989.tb00026.x
    [104] L. Györfi, The rate of convergence of k-nn regression estimation and classification, IEEE T. Inform. Theory, 27 (1981), 362–364. https://doi.org/10.1109/TIT.1981.1056344 doi: 10.1109/TIT.1981.1056344
    [105] P. Hall, Asymptotic properties of integrated square error and cross-validation for kernel estimation of a regression function, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 67 (1984), 175–196. https://doi.org/10.1007/BF00535267 doi: 10.1007/BF00535267
    [106] P. R. Halmos, The theory of unbiased estimation, Ann. Math. Statist., 17 (1946), 34–43. https://doi.org/10.1214/aoms/1177731020 doi: 10.1214/aoms/1177731020
    [107] F. Han, An exponential inequality for U-statistics under mixing conditions, J. Theor. Probab., 31 (2018), 556–578. https://doi.org/10.1007/s10959-016-0722-4 doi: 10.1007/s10959-016-0722-4
    [108] W. Härdle, Applied nonparametric regression, Cambridge: Cambridge University Press, 1990. https://doi.org/10.1017/CCOL0521382483
    [109] W. Härdle, J. S. Marron, Optimal bandwidth selection in nonparametric regression function estimation, Ann. Statist., 13 (1985), 1465–1481. https://doi.org/10.1214/aos/1176349748 doi: 10.1214/aos/1176349748
    [110] G. H. Hardy, On double fourier series and especially those which represent the double zeta-function with real and incommensurable parameters, Quart. J. Math, 37 (1905), 53–79.
    [111] M. Harel, M. L. Puri, Conditional $U$-statistics for dependent random variables, J. Multivariate Anal., 57 (1996), 84–100. https://doi.org/10.1006/jmva.1996.0023 doi: 10.1006/jmva.1996.0023
    [112] C. Heilig, D. Nolan, Limit theorems for the infinite-degree $U$-process, Stat. Sinica, 11 (2001), 289–302.
    [113] L. Heinrich, Bounds for the absolute regularity coefficient of a stationary renewal process, Yokohama Math. J., 40 (1992), 25–33.
    [114] E. W. Hobson, The theory of functions of a real variable and the theory of Fourier's series. Vol. II, New York: Dover Publications, Inc., 1958.
    [115] W. Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Statist., 19 (1948), 293–325. https://doi.org/10.1214/aoms/1177730196 doi: 10.1214/aoms/1177730196
    [116] L. Horváth, P. Kokoszka, Inference for functional data with applications, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-3655-3
    [117] P. J. Huber, Robust estimation of a location parameter, Ann. Math. Statist., 35 (1964), 73–101. https://doi.org/10.1214/aoms/1177703732 doi: 10.1214/aoms/1177703732
    [118] I. A. Ibragimov, V. N. Solev, A condition for regularity of a Gaussian stationary process, Soviet Math. Dokl., 10 (1969), 371–375.
    [119] S. Jadhav, S. Ma, An association test for functional data based on Kendall's Tau, J. Multivariate Anal., 184 (2021), 104740. https://doi.org/10.1016/j.jmva.2021.104740 doi: 10.1016/j.jmva.2021.104740
    [120] S. Janson, A functional limit theorem for random graphs with applications to subgraph count statistics, Random Struct. Algor., 1 (1990), 15–37. https://doi.org/10.1002/rsa.3240010103 doi: 10.1002/rsa.3240010103
    [121] S. Janson, Asymptotic normality for $m$-dependent and constrained $U$-statistics, with applications to pattern matching in random strings and permutations, Adv. Appl. Probab., 55 (2023), 841–894. https://doi.org/10.1017/apr.2022.51 doi: 10.1017/apr.2022.51
    [122] E. Joly, G. Lugosi, Robust estimation of $U$-statistics, Stoch. Proc. Appl., 126 (2016), 3760–3773. https://doi.org/10.1016/j.spa.2016.04.021 doi: 10.1016/j.spa.2016.04.021
    [123] M. C. Jones, H. Park, K. Shin, S. K. Vines, S. Jeong, Relative error prediction via kernel regression smoothers, J. Stat. Plan. Infer., 138 (2008), 2887–2898. https://doi.org/10.1016/j.jspi.2007.11.001 doi: 10.1016/j.jspi.2007.11.001
    [124] L. Kara, A. Laksaci, M. Rachdi, P. Vieu, Data-driven $k$NN estimation in nonparametric functional data analysis, J. Multivariate Anal., 153 (2017), 176–188. https://doi.org/10.1016/j.jmva.2016.09.016 doi: 10.1016/j.jmva.2016.09.016
    [125] L. Kara-Zaitri, A. Laksaci, M. Rachdi, P. Vieu, Uniform in bandwidth consistency for various kernel estimators involving functional data, J. Nonparametr. Stat., 29 (2017), 85–107. https://doi.org/10.1080/10485252.2016.1254780 doi: 10.1080/10485252.2016.1254780
    [126] H. A. Karlsen, D. Tjøstheim, Nonparametric estimation in null recurrent time series, Ann. Statist., 29 (2001), 372–416. https://doi.org/10.1214/aos/1009210546 doi: 10.1214/aos/1009210546
    [127] M. G. Kendall, A new measure of rank correlation, Biometrika, 30 (1938), 81–93. https://doi.org/10.2307/2332226 doi: 10.2307/2332226
    [128] I. Kim, A. Ramdas, Dimension-agnostic inference using cross U-statistics, Bernoulli, 30 (2024), 683–711. https://doi.org/10.3150/23-bej1613 doi: 10.3150/23-bej1613
    [129] R. Koenker, G. Bassett, Regression quantiles, Econometrica, 46 (1978), 33–50. https://doi.org/10.2307/1913643 doi: 10.2307/1913643
    [130] P. Kokoszka, M. Reimherr, Introduction to functional data analysis, Boca Raton: Chapman and Hall/CRC Press, 2017. https://doi.org/10.1201/9781315117416
    [131] A. N. Kolmogorov, V. M. Tikhomirov, $\varepsilon$-entropy and $\varepsilon$-capacity of sets in function spaces, Uspekhi Mat. Nauk, 14 (1959), 3–86.
    [132] M. R. Kosorok, Introduction to empirical processes and semiparametric inference, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-74978-5
    [133] M. Krause, Über mittelwertsätze im Gebiete der doppelsummen und doppelintegrale, Leipz. Ber., 55 (1903), 239–263.
    [134] N. L. Kudraszow, P. Vieu, Uniform consistency of $k$NN regressors for functional variables, Stat. Probabil. Lett., 83 (2013), 1863–1870. https://doi.org/10.1016/j.spl.2013.04.017 doi: 10.1016/j.spl.2013.04.017
    [135] T. Laloë, A $k$-nearest neighbor approach for functional regression, Stat. Probabil. Lett., 78 (2008), 1189–1193. https://doi.org/10.1016/j.spl.2007.11.014 doi: 10.1016/j.spl.2007.11.014
    [136] T. L. Minh, $U$-statistics on bipartite exchangeable networks, ESAIM Probab. Stat., 27 (2023), 576–620. https://doi.org/10.1051/ps/2023010 doi: 10.1051/ps/2023010
    [137] L. LeCam, A remark on empirical measures, In: A Festschrift for Erich Lehmann in honor of his sixty-fifth birthday, Belmont: Wadsworth, 1983,305–327.
    [138] A. J. Lee, $U$-statistics, New York: Marcel Dekker, Inc., 1990.
    [139] W. V. Li, Q.-M. Shao, Gaussian processes: inequalities, small ball probabilities and applications, Handbook of Statistics, 19 (2001), 533–597. https://doi.org/10.1016/S0169-7161(01)19019-X doi: 10.1016/S0169-7161(01)19019-X
    [140] F. Lim, V. M. Stojanovic, On U-statistics and compressed sensing Ⅰ: Non-asymptotic average-case analysis, IEEE T. Signal Proces., 61 (2013), 2473–2485. https://doi.org/10.1109/TSP.2013.2247598 doi: 10.1109/TSP.2013.2247598
    [141] N. Ling, S. Meng, P. Vieu, Uniform consistency rate of $k$NN regression estimation for functional time series data, J. Nonparametr. Stat., 31 (2019), 451–468. https://doi.org/10.1080/10485252.2019.1583338 doi: 10.1080/10485252.2019.1583338
    [142] N. Ling, G. Aneiros, P. Vieu, $k$NN estimation in functional partial linear modeling, Stat. Papers, 61 (2020), 423–444. https://doi.org/10.1007/s00362-017-0946-0 doi: 10.1007/s00362-017-0946-0
    [143] Q. Liu, J. Lee, M. Jordan, A kernelized stein discrepancy for goodness-of-fit tests, The 33rd International Conference on Machine Learning, New York, USA, 2016,276–284.
    [144] D. O. Loftsgaarden, C. P. Quesenberry, A nonparametric estimate of a multivariate density function, Ann. Math. Statist., 36 (1965), 1049–1051. https://doi.org/10.1214/aoms/1177700079 doi: 10.1214/aoms/1177700079
    [145] Y. P. Mack, Local properties of k-nn regression estimates, SIAM Journal on Algebraic Discrete Methods, 2 (1981), 311–323. https://doi.org/10.1137/0602035 doi: 10.1137/0602035
    [146] D. M. Mason, Proving consistency of non-standard kernel estimators, Stat. Inference Stoch. Process., 15 (2012), 151–176. https://doi.org/10.1007/s11203-012-9068-4 doi: 10.1007/s11203-012-9068-4
    [147] E. Masry, Nonparametric regression estimation for dependent functional data: asymptotic normality, Stoch. Proc. Appl., 115 (2005), 155–177. https://doi.org/10.1016/j.spa.2004.07.006 doi: 10.1016/j.spa.2004.07.006
    [148] E. Mayer-Wolf, O. Zeitouni, The probability of small Gaussian ellipsoids and associated conditional moments, Ann. Probab., 21 (1993), 14–24.
    [149] F. Merlevède, M. Peligrad, E. Rio, A Bernstein type inequality and moderate deviations for weakly dependent sequences, Probab. Theory Relat. Fields, 151 (2011), 435–474. https://doi.org/10.1007/s00440-010-0304-9 doi: 10.1007/s00440-010-0304-9
    [150] M. Mohammedi, S. Bouzebda, A. Laksaci, On the nonparametric estimation of the functional expectile regression, CR Math., 358 (2020), 267–272. https://doi.org/10.5802/crmath.27 doi: 10.5802/crmath.27
    [151] M. Mohammedi, S. Bouzebda, A. Laksaci, The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data, J. Multivariate Anal., 181 (2021), 104673. https://doi.org/10.1016/j.jmva.2020.104673 doi: 10.1016/j.jmva.2020.104673
    [152] M. Mohammedi, S. Bouzebda, A. Laksaci, O. Bouanani, Asymptotic normality of the k-NN single index regression estimator for functional weak dependence data, Commun. Stat. Theor. M., 2022 (2022), 2150823. https://doi.org/10.1080/03610926.2022.2150823 doi: 10.1080/03610926.2022.2150823
    [153] E. A. Nadaraja, On estimate regression, Theor. Probab. Appl., 9 (1964), 141–142.
    [154] E. A. Nadaraya, Nonparametric estimation of probability densities and regression curves, Netherlands: Kluwer Academic Publishers, 1989. https://doi.org/10.1007/978-94-009-2583-0
    [155] W. K. Newey, J. L. Powell, Asymmetric least squares estimation and testing, Econometrica, 55 (1987), 819–847. https://doi.org/10.2307/1911031 doi: 10.2307/1911031
    [156] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 1992. https://doi.org/10.1137/1.9781611970081
    [157] D. Nolan, D. Pollard, $U$-processes: rates of convergence, Ann. Statist., 15 (1987), 780–799. https://doi.org/10.1214/aos/1176350374 doi: 10.1214/aos/1176350374
    [158] S. Novo, G. Aneiros, P. Vieu, Automatic and location-adaptive estimation in functional single-index regression, J. Nonparametr. Stat., 31 (2019), 364–392. https://doi.org/10.1080/10485252.2019.1567726 doi: 10.1080/10485252.2019.1567726
    [159] H. Park, L. A. Stefanski, Relative-error prediction, Stat. Probabil. Lett., 40 (1998), 227–236. https://doi.org/10.1016/S0167-7152(98)00088-1 doi: 10.1016/S0167-7152(98)00088-1
    [160] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist., 33 (1962), 1065–1076. https://doi.org/10.1214/aoms/1177704472 doi: 10.1214/aoms/1177704472
    [161] W. Peng, T. Coleman, L. Mentch, Rates of convergence for random forests via generalized U-statistics, Electron. J. Statist., 16 (2022), 232–292. https://doi.org/10.1214/21-ejs1958 doi: 10.1214/21-ejs1958
    [162] N. Phandoidaen, S. Richter, Empirical process theory for locally stationary processes, Bernoulli, 28 (2022), 453–480. https://doi.org/10.3150/21-bej1351 doi: 10.3150/21-bej1351
    [163] D. Pollard, Convergence of stochastic processes, New York: Springer, 1984. https://doi.org/10.1007/978-1-4612-5254-2
    [164] W. Polonik, Q. Yao, Set-indexed conditional empirical and quantile processes based on dependent data, J. Multivariate Anal., 80 (2002), 234–255. https://doi.org/10.1006/jmva.2001.1988 doi: 10.1006/jmva.2001.1988
    [165] B. L. S. P. Rao, A. Sen, Limit distributions of conditional $U$-statistics, J. Theoret. Probab., 8 (1995), 261–301. https://doi.org/10.1007/BF02212880 doi: 10.1007/BF02212880
    [166] M. Rachdi, P. Vieu, Nonparametric regression for functional data: automatic smoothing parameter selection, J. Stat. Plan. Infer., 137 (2007), 2784–2801. https://doi.org/10.1016/j.jspi.2006.10.001 doi: 10.1016/j.jspi.2006.10.001
    [167] J. O. Ramsay, B. W. Silverman. Applied functional data analysis, New York: Springer, 2002. https://doi.org/10.1007/b98886
    [168] J. O. Ramsay, B. W. Silverman, Functional data analysis, New York: Springer, 2 Eds., 2005. https://doi.org/10.1007/b98888
    [169] P. M. Robinson, Large-sample inference for nonparametric regression with dependent errors, Ann. Statist., 25 (1997), 2054–2083. https://doi.org/10.1214/aos/1069362387 doi: 10.1214/aos/1069362387
    [170] M. Rosenblatt, A central limit theorem and a strong mixing condition, P. Nat. Acad. Sci. USA, 42 (1956), 43–47. https://doi.org/10.1073/pnas.42.1.43 doi: 10.1073/pnas.42.1.43
    [171] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, Ann. Math. Statist., 27 (1956), 832–837. https://doi.org/10.1214/aoms/1177728190 doi: 10.1214/aoms/1177728190
    [172] H. Rubin, R. A. Vitale, Asymptotic distribution of symmetric statistics, Ann. Statist., 8 (1980), 165–170.
    [173] A. Schick, Y. Wang, W. Wefelmeyer, Tests for normality based on density estimators of convolutions, Stat. Probabil. Lett., 81 (2011), 337–343. https://doi.org/10.1016/j.spl.2010.10.022 doi: 10.1016/j.spl.2010.10.022
    [174] D. W. Scott, Multivariate density estimation: theory, practice, and visualization, New York: John Wiley & Sons Inc., 1992. https://doi.org/10.1002/9780470316849
    [175] A. Sen, Uniform strong consistency rates for conditional $U$-statistics, Sankhyā Ser. A, 56 (1994), 179–194.
    [176] R. J. Serfling, Approximation theorems of mathematical statistics, New York: John Wiley & Sons, Inc., 1980. https://doi.org/10.1002/9780470316481
    [177] R. P. Sherman, Maximal inequalities for degenerate $U$-processes with applications to optimization estimators, Ann. Statist., 22 (1994), 439–459. https://doi.org/10.1214/aos/1176325377 doi: 10.1214/aos/1176325377
    [178] Y. Song, X. Chen, K. Kato. Approximating high-dimensional infinite-order $U$-statistics: statistical and computational guarantees, Electron. J. Statist., 13 (2019), 4794–4848. https://doi.org/10.1214/19-EJS1643 doi: 10.1214/19-EJS1643
    [179] I. Soukarieh, S. Bouzebda, Exchangeably weighted bootstraps of general markov U-process, Mathematics, 10 (2022), 3745. https://doi.org/10.3390/math10203745 doi: 10.3390/math10203745
    [180] I. Soukarieh, S. Bouzebda. Renewal type bootstrap for increasing degree $U$-process of a Markov chain, J. Multivariate Anal., 195 (2023), 105143. https://doi.org/10.1016/j.jmva.2022.105143 doi: 10.1016/j.jmva.2022.105143
    [181] I. Soukarieh, S. Bouzebda, Weak convergence of the conditional $U$-statistics for locally stationary functional time series, Stat. Inference Stoch. Process., 2023 (2023), 1–78. https://doi.org/10.1007/s11203-023-09305-y doi: 10.1007/s11203-023-09305-y
    [182] W. Stute, Conditional $U$-statistics, Ann. Probab., 19 (1991), 812–825.
    [183] W. Stute, Almost sure representations of the product-limit estimator for truncated data, Ann. Statist., 21 (1993), 146–156. https://doi.org/10.1214/aos/1176349019 doi: 10.1214/aos/1176349019
    [184] W. Stute, $L^p$-convergence of conditional $U$-statistics, J. Multivariate Anal., 51 (1994), 71–82. https://doi.org/10.1006/jmva.1994.1050 doi: 10.1006/jmva.1994.1050
    [185] W. Stute, Universally consistent conditional $U$-statistics, Ann. Statist., 22 (1994), 460–473. https://doi.org/10.1214/aos/1176325378 doi: 10.1214/aos/1176325378
    [186] W. Stute, Symmetrized NN-conditional $U$-statistics, In: Research developments in probability and statistics, VSP, Utrecht, 1996,231–237.
    [187] J. Su, Z. Yao, C. Li, Y. Zhang. A statistical approach to estimating adsorption-isotherm parameters in gradient-elution preparative liquid chromatography, Ann. Appl. Stat., 17 (2023), 3476–3499. https://doi.org/10.1214/23-aoas1772 doi: 10.1214/23-aoas1772
    [188] K. K. Sudheesh, S. Anjana, M. Xie. U-statistics for left truncated and right censored data, Statistics, 57 (2023), 900–917. https://doi.org/10.1080/02331888.2023.2217314 doi: 10.1080/02331888.2023.2217314
    [189] O. Toussoun, Mémoire sur l'histoire du nil, In: Mémoires de l'Institut d'Egypte, Cairo: Institut d'Egypte, 1925.
    [190] A. W. van der Vaart, Asymptotic statistics, Cambridge: Cambridge University Press, 1998. https://doi.org/10.1017/CBO9780511802256
    [191] A. van der Vaart, The statistical work of Lucien Le Cam. Ann. Statist., 30 (2002), 631–682. https://doi.org/10.1214/aos/1028674836 doi: 10.1214/aos/1028674836
    [192] A. van der Vaart, H. van Zanten, Bayesian inference with rescaled Gaussian process priors, Electron. J. Statist., 1 (2007), 433–448. https://doi.org/10.1214/07-EJS098 doi: 10.1214/07-EJS098
    [193] A. W. van der Vaart, J. A. Wellner, Weak convergence and empirical processes, New York: Springer, 1996. https://doi.org/10.1007/978-1-4757-2545-2
    [194] V. N. Vapnik, A. Ja. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theor. Probab. Appl., 16 (1971), 264–279.
    [195] G. Vitali, Sui gruppi di punti e sulle funzioni di variabili reali, Atti Accad. Sci. Torino, 43 (1908), 75–92.
    [196] A. G. Vituškin, O mnogomernyh variaciyah, Gostehisdat: Moskva, 1955.
    [197] V. Volkonski, Y. Rozanov, Some limit theorems for random functions. Ⅰ, Theor. Probab. Appl., 4 (1959), 178–197. https://doi.org/10.1137/1104015 doi: 10.1137/1104015
    [198] R. von Mises, On the asymptotic distribution of differentiable statistical functions, Ann. Math. Statist., 18 (1947), 309–348. https://doi.org/10.1214/aoms/1177730385 doi: 10.1214/aoms/1177730385
    [199] M. P. Wand, M. C. Jones, Kernel smoothing, New York: Chapman and Hall/CRC Press, 1994. https://doi.org/10.1201/b14876
    [200] G. S. Watson, Smooth regression analysis, Sankhya: The Indian Journal of Statistics, Series A, 26 (1964), 359–372.
    [201] C. Xu, Y. Zhang, Estimating the memory parameter for potentially non-linear and non-Gaussian time series with wavelets, Inverse Probl., 38 (2022), 035004. https://doi.org/10.1088/1361-6420/ac48ca doi: 10.1088/1361-6420/ac48ca
    [202] Y. Yajima, On estimation of a regression model with long-memory stationary errors, Ann. Statist., 16 (1988), 791–807. https://doi.org/10.1214/aos/1176350837 doi: 10.1214/aos/1176350837
    [203] K. Yoshihara, Limiting behavior of $U$-statistics for stationary, absolutely regular processes, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 35 (1976), 237–252. https://doi.org/10.1007/BF00532676 doi: 10.1007/BF00532676
    [204] Y. Zhang, C. Chen, Stochastic asymptotical regularization for linear inverse problems, Inverse Probl., 39 (2023), 015007. https://doi.org/10.1088/1361-6420/aca70f doi: 10.1088/1361-6420/aca70f
    [205] Y. Zhang, Z. Yao, P. Forssén, T. Fornstedt, Estimating the rate constant from biosensor data via an adaptive variational Bayesian approach, Ann. Appl. Stat., 13 (2019), 2011–2042. https://doi.org/10.1214/19-aoas1263 doi: 10.1214/19-aoas1263
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1055) PDF downloads(100) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog