In this study, we processed the flame images of biodiesel combustion in industrial furnaces, classified and evaluated flame states using digital image processing techniques, and proposed a combustion stability index (CSI) using the particle swarm optimization (PSO) algorithm. In order to more accurately predict the combustion stability under different oxygen concentrations, we proposed a method that combines the Multi-Input Radial basis function neural network (RBF-NN) with empirical mode decomposition (EMD). Initially, the EMD method was employed to decompose the original time series of CSI. Subsequently, a decomposition model incorporating initial parameters and CSI was established using the radial basis function. The results of the computations indicate that the EMD-RBF-NN model significantly outperforms existing models in enhancing the accuracy of CSI.
Citation: Shengyang Gao, Fashe Li, Hua Wang. Evaluation of the effects of oxygen enrichment on combustion stability of biodiesel through a PSO-EMD-RBF model: An experimental study[J]. AIMS Mathematics, 2024, 9(2): 4844-4862. doi: 10.3934/math.2024235
In this study, we processed the flame images of biodiesel combustion in industrial furnaces, classified and evaluated flame states using digital image processing techniques, and proposed a combustion stability index (CSI) using the particle swarm optimization (PSO) algorithm. In order to more accurately predict the combustion stability under different oxygen concentrations, we proposed a method that combines the Multi-Input Radial basis function neural network (RBF-NN) with empirical mode decomposition (EMD). Initially, the EMD method was employed to decompose the original time series of CSI. Subsequently, a decomposition model incorporating initial parameters and CSI was established using the radial basis function. The results of the computations indicate that the EMD-RBF-NN model significantly outperforms existing models in enhancing the accuracy of CSI.
[1] | R. A. Belale, F. E. M. Alaoui, Y. Chhiti, A. Sahibeddine, N. M. Rujas, F. Aguilar, Study on the thermophysical properties of waste cooking oil biodiesel fuel blends with 1-butanol, Fuel, 287 (2020), 119540. https://doi.org/10.1016/j.fuel.2020.119540 doi: 10.1016/j.fuel.2020.119540 |
[2] | S. Simsek, Effects of biodiesel obtained from Canola, sefflower oils and waste oils on the engine performance and exhaust emissions, Fuel, 265 (2020), 117026. https://doi.org/10.1016/j.fuel.2020.117026 doi: 10.1016/j.fuel.2020.117026 |
[3] | N. Hashimoto, Y. Ozawa, N. Mori, I. Yuri, T. Hisamatsu, Fundamental combustion characteristics of palm methyl ester (PME) as alternative fuel for gas turbines, Fuel, 87 (2008), 3373−3378. https://doi.org/10.1016/j.fuel.2008.06.005 doi: 10.1016/j.fuel.2008.06.005 |
[4] | C. T. Chong, S. Hochgreb, Spray and combustion characteristics of biodiesel: Non-reacting and reacting, Int. Biodeter. Biodegr., 102 (2015), 353−360. https://doi.org/10.1016/j.ibiod.2015.01.012 doi: 10.1016/j.ibiod.2015.01.012 |
[5] | A. Jhalani, D. Sharma, S. Soni, P. K. Sharma, D. Singh, Feasibility assessment of a newly prepared cow-urine emulsified diesel fuel for CI engine application, Fuel, 288 (2021). https://doi.org/10.1016/j.fuel.2020.119713 doi: 10.1016/j.fuel.2020.119713 |
[6] | Y. C. Shen, F. Li, Z. W. Liu, H. G. Wang, J. X. Shen, Study on the characteristics of evaporation-atomization-combustion of biodiesel, J. Energy Inst., 92 (2019), 1458−1467. https://doi.org/10.1016/j.joei.2018.08.005 doi: 10.1016/j.joei.2018.08.005 |
[7] | R. Junga, J. Pospolita, P. Niemiec, M. Dudek, R. Szleper, Improvement of coal boiler's efficiency after application of liquid fuel additive, Appl. Therm. Eng., 179 (2020), 115663. https://doi.org/10.1016/j.applthermaleng.2020.115663 doi: 10.1016/j.applthermaleng.2020.115663 |
[8] | X. Yu, Z. Cao, J. B. Peng, Y. Yu, G. Chang, Y. F. Ma, et al., statistical analysis of flame oscillation characterization of oxy-fuel in heavy oil boiler using OH planar laser-induced fluorescence, J. Spectrosc., 2019 (2019), 1−10. https://doi.org/10.1155/2019/7085232 doi: 10.1155/2019/7085232 |
[9] | K. Zhang, Y. Z. Shen, C. Duwig, Finite rate simulations and analyses of wet/distributed flame structure in swirl-stabilized combustion, Fuel, 289 (2021). https://doi.org/10.1016/j.fuel.2020.119922 doi: 10.1016/j.fuel.2020.119922 |
[10] | S. Gao, F. Li, Q. Xiao, J. Zhu, Chaotic diagnostics in a biodiesel combustion system using PLIF and nonlinear time series analysis, Fuel Cells, 21 (2020), 109−118. https://doi.org/10.1002/fuce.202000085 doi: 10.1002/fuce.202000085 |
[11] | S. Y. Gao, F. S. Li, Q. T. Xiao, J. X. Xu, H. G. Wang, H. Wang, Experimental demonstration of deterministic chaos in a waste oil biodiesel semi-industrial furnace combustion system, Energies, 12 (2019), 4479. https://doi.org/10.3390/en12234479 doi: 10.3390/en12234479 |
[12] | S. L. Ding, E. Z. Song, L. P. Yang, G. Litak, C. Yao, X. Z. Ma, Investigation on nonlinear dynamic characteristics of combustion instability in the lean-burn premixed natural gas engine, Chaos Soliton. Fract., 93 (2016), 99−110. https://doi.org/10.1016/j.chaos.2016.10.010 doi: 10.1016/j.chaos.2016.10.010 |
[13] | C. Gu, X. Y. Qiao, L. J. Han, Analysis about the influences of different fuels on the combustion stability of a heavy duty diesel engine, Acta Armamentarii, 41 (2020), 426−433. https://doi.org/10.3969/j.issn.1000-1093.2020.03.002 doi: 10.3969/j.issn.1000-1093.2020.03.002 |
[14] | N. E. Huang, M. L. Wu, W. D. Qu, S. R. Long, S. S. P. Shen, J. E. Zhang, Application of Hilbert-Huang transform to non-stationary financial time series analysis, 19 (2003), 245−268. https://doi.org/10.1002/asmb.506 |
[15] | C. P. Hu, Y. Chou, M. C. Wu, T. C. Yang, Y. H. Su, An application of Hilbert-Huang transform on the non-stationary astronomical time series: The superorbital modulation of SMC X-1, J. Astron. Space Sci., 30 (2013), 79−82. |
[16] | F. R. Bi, T. Ma, X. Wang, Development of a novel knock characteristic detection method for gasoline engines based on wavelet-denoising and EMD decomposition, Mech. Syst. Signal Pr., 117 (2019), 517−536. https://doi.org/10.1016/j.ymssp.2018.08.008 doi: 10.1016/j.ymssp.2018.08.008 |
[17] | S. Z. Lu, X. H. Wang, H. L. Yu, H. J. Dong, Z. Q. Yang, Trend extraction and identification method of cement burning zone flame temperature based on EMD and least square, Measurement, 111 (2017). https://doi.org/10.1016/j.measurement.2017.07.047 doi: 10.1016/j.measurement.2017.07.047 |
[18] | S. P. Mishra, R. K. Patnaik, P. K. Dash, R. Bisoi, J. Naik, An EMD based polynomial kernel methodology for superior wind power prediction, In: 2019 1st International Conference on Artificial Intelligence and Data Sciences (AiDAS), IEEE, Malaysia, 2019, 58−63. https://doi.org/10.1109/AiDAS47888.2019.8970690 |
[19] | X. W. Mi, H. Liu, Y. F. Li, Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine, Energ. Convers. Manage., 180 (2019), 196−205. https://doi.org/10.1016/j.enconman.2018.11.006 doi: 10.1016/j.enconman.2018.11.006 |
[20] | M. Aghbashlo, S. Shamshirband, M. Tabatabaei, P. L. Yee, Y. N. Larimi, The use of ELM-WT (extreme learning machine with wavelet transform algorithm) to predict exergetic performance of a DI diesel engine running on diesel/biodiesel blends containing polymer waste, Energy, 94 (2016), 443−456. https://doi.org/10.1016/j.energy.2015.11.008 doi: 10.1016/j.energy.2015.11.008 |
[21] | Y. Wang, P. Yang, Z. Song, J. Chevallier, Q. Xiao, Intelligent prediction of annual CO2 emissions under data decomposition mode, Comput. Econ., 2023, 1−30. https://doi.org/10.1007/s10614-023-10357-8 doi: 10.1007/s10614-023-10357-8 |
[22] | R. Piloto-Rodriguez, Y. Sanchez-Borroto, M. Lapuerta, L. Goyos-Perez, S. Verhelst, Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression, Energ. Convers. Manage., 65 (2013), 255−261. https://doi.org/10.1016/j.enconman.2012.07.023 doi: 10.1016/j.enconman.2012.07.023 |
[23] | S. Gurgen, B. Unver, I. Altin, Prediction of cyclic variability in a diesel engine fueled with n-butanol and diesel fuel blends using artificial neural network, Renew. Energ., 117 (2017), 538−544. https://doi.org/10.1016/j.renene.2017.10.101 doi: 10.1016/j.renene.2017.10.101 |
[24] | S. Dubey, Flame shape prediction with artificial neural network, Int. J. Current Eng. Technol., 2 (2013), 563−566. http://dx.doi.org/10.14741/ijcet/spl.2.2014.107 doi: 10.14741/ijcet/spl.2.2014.107 |
[25] | B. Z. Adewole, O. A. Abidakun, A. A. Asere, Artificial neural network prediction of exhaust emissions and flame temperature in LPG (liquefied petroleum gas) fueled low swirl burner, Energy, 61 (2013), 606−611. https://doi.org/10.1016/j.energy.2013.08.027 doi: 10.1016/j.energy.2013.08.027 |
[26] | M. Taghavi, A. Gharehghani, F. B. Nejad, M. Mirsalim, Developing a model to predict the start of combustion in HCCI engine using ANN-GA approach, Energ. Convers. Manage., 195 (2019), 57−69. https://doi.org/10.1016/j.enconman.2019.05.015 doi: 10.1016/j.enconman.2019.05.015 |
[27] | Z. T. Wen, L. B. Xie, H. W. Feng, Y. Tan, Robust fusion algorithm based on RBF neural network with TS fuzzy model and its application to infrared flame detection problem, Appl. Soft Comput., 76 (2018), 251−264. https://doi.org/10.1016/j.asoc.2018.12.019 doi: 10.1016/j.asoc.2018.12.019 |
[28] | J. Gajewski, D. Valis, The determination of combustion engine condition and reliability using oil analysis by MLP and RBF neural networks, Tribol. Int., 115 (2017), 557−572. https://doi.org/10.1016/j.triboint.2017.06.032 doi: 10.1016/j.triboint.2017.06.032 |
[29] | K. Yang, J. Liu, M. Wang, H. Wang, Q. Xiao, Identifying flow patterns in a narrow channel via feature extraction of conductivity measurements with a support vector machine, Sensors, 23 (2023), 1907. https://doi.org/10.3390/s23041907 doi: 10.3390/s23041907 |
[30] | H. F. Li, Price forecasting of stock index futures based on a new hybrid EMD-RBF neural network model, Agro Food Ind. Hi Tec., 28 (2017), 1744−1747. |
[31] | J. W. Huang, Q. T. Xiao, J. J. Liu, H. Wang, Modeling heat transfer properties in an ORC direct contact evaporator using RBF neural network combined with EMD, Energy, 173 (2019), 306−316. https://doi.org/10.1016/j.energy.2019.02.056 doi: 10.1016/j.energy.2019.02.056 |