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Abstract: In this study, we processed the flame images of biodiesel combustion in industrial furnaces, 

classified and evaluated flame states using digital image processing techniques, and proposed a 

combustion stability index (CSI) using the particle swarm optimization (PSO) algorithm. In order to 

more accurately predict the combustion stability under different oxygen concentrations, we proposed 

a method that combines the Multi-Input Radial basis function neural network (RBF-NN) with 

empirical mode decomposition (EMD). Initially, the EMD method was employed to decompose the 

original time series of CSI. Subsequently, a decomposition model incorporating initial parameters and 

CSI was established using the radial basis function. The results of the computations indicate that the 

EMD-RBF-NN model significantly outperforms existing models in enhancing the accuracy of CSI. 
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Abbreviations 

PCA = Principal component analysis 

WT = Wavelet transform 
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RBF = Radial basis function 

IMF = Intrinsic mode function 

EMD = Empirical mode decomposition 

ANN = Artificial neural networks 

DWT = Discrete wavelet transform 

GPR = Gaussian process regression 

BP-NN = Artificial neural networks base backpropagation screening 

BP = Backpropagation screening 

MAE = Average absolute error 

MAPE = Relative errors 

PSO = Particle swarm optimization 

RMSE = Deviation 

𝑆𝑇𝐷𝑛 = Standard deviation 

Csi = Flame stability 

MLP = Multi-layer perceptron 

𝑎𝑣𝑒 = Mean value of correlation function 

Sh = Information entropy based on gray histogram 

S = Flame area 

th = Segmentation threshold 

var = Gray variance 

gl = Gray scale 

Asm = Image energy of flame area 

Nomenclature 

k = number of nodes in hidden layer 

m = length of y 

n = length of x 

s = number of times in sifting process 

SDps = termination criterion 

t = time parameter 

𝑟𝑛(𝑡) = the nth residue 

x = input vector 

y = output vector 

𝑦̂(𝑛) = estimation of time series 

𝑦(𝑛) = original time series 

mk =center vector of the kth node in hidden layer 

Greeks 

‖𝑥 − 𝑐𝑘‖ = Euclidean norm between 𝑥 and 𝑐𝑘 

σ𝑘 = bandwidth vector of the kth node in hidden layer 

𝜆(‖𝑥 − 𝑐𝑘‖) = kernel function of the kth center in hidden layer 

𝑤𝑖𝑘 = connecting weight vector between the kth center in hidden layer and yi 

𝑐𝑘 = parameter vector 
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1. Introduction 

Biodiesel, an important renewable energy, possesses high calorific value and low pollution 

characteristics and is increasingly utilized as a substitute for traditional fossil fuels in various 

industries [1,2]. In this study, the flame stability characteristics of waste cooking oil biodiesel 

combustion in industrial furnaces are investigated. Previous studies, such as those by Hashimoto et al. [3] 

and Chong et al. [4], investigated the combustion characteristics of alternative fuels for gas turbines 

and the spray flames of jet A-1 and palm biodiesel under continuous and stable swirl conditions, 

respectively. Jhalani et al. [5] examined the characteristics of various ether fractions used as oxidation 

fuel additives in cottonseed oil biodiesel-diesel mixed fuel in a diesel engine. Shen et al. [6] assessed 

the combustion characteristics of biodiesel, including flame speed and total signal intensity of hydrogen 

and oxygen using hydrogen and oxygen PLIF (planar laser-induced fluorescence technology). 

Flame stability during the combustion process has consistently been a research focus. Junga et al. [7] 

explored the influence of liquid fuel additives on combustion temperature and emissions of pulverized 

coal combustion in a boiler. Yu et al. [8] analyzed the flame structure and oscillation characteristics of 

oxy-fuel combustion in heavy oil boilers to evaluate burner performance in boilers, discovering that 

an increase in oxygen concentration reduces oscillation generation. Zhang et al. [9] employed a large 

eddy simulation and partially stirred reactor to study wet/steam dilution combustion in a premixed swirl 

burner, utilizing a proposed method to quantify the wet flame behavior in stable and low emission operation. 

As research progresses, the nonlinear characteristics of flame during the combustion process have 

garnered significant attention. Gao et al. [10,11] investigated the oxygen-enriched combustion process 

of biodiesel in industrial furnaces, concluding that the combustion process is a nonlinear dynamic 

process significantly influenced by initial variables. Additional studies, such as those by Ding et al. [12] 

and Gu et al. [13], examined the nonlinear dynamic characteristics of natural gas combustion instability 

in an in-cylinder injection engine and the combustion stability of diesel engines through quantitative 

analysis of cyclic fluctuation rates of combustion parameters. Consequently, it is evident that the 

combustion process exhibits nonlinear dynamic characteristics, which may adversely impact the 

sustainability and stability of combustion and diminish combustion efficiency. 

Empirical mode decomposition (EMD) represents an analytical method proposed by scholars that 

is highly adaptive to generalized linear time-frequency, thereby accurately describing time-varying 

signals in the time-frequency plane. This method is particularly effective for analyzing component 

signals resulting from multifactorial superposition [14,15]. EMD facilitates the smoothing of non-

stationary data, followed by the execution of a Hilbert transform to obtain the time spectrum, thereby 

determining frequencies with physical significance, independent of Fourier transform theory. Invented 

by Bi et al., a novel method for extracting knock characteristics by vibration signal was used to 

decrease thermal efficiency and limit the performance enhancement of the gasoline engine [16]. Lu et 

al. employed empirical mode decomposition in conjunction with the least squares method to study 

trend extraction and identification of flame temperature in cement combustion zones [17]. A low-

complexity empirical mode decomposition method, proposed by Mishra et al., was trained via a kernel-

based algorithm and used to predict wind power in Californian wind farms across different time ranges 

(i.e., 10 minutes to 5 hours) [18]. Mi et al. developed a novel multi-step wind speed prediction model 

based on singular spectrum analysis, empirical mode decomposition, and convolution support vector 

machine [19]. Aghbashlo et al. found that, in comparison to traditional genetic programming methods 

and artificial neural network methods, the empirical mode decomposition method can enhance the 

working performance of direct injection diesel engines [20]. Wang et al. [21] use the EMD to predict 

the annual CO2 emissions under data decomposition mode. Thus, it is evident that the EMD analysis 
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method offers considerable advantages in accurate data optimization and control. However, the use of 

this method remains infrequent in applications related to biodiesel combustion stability. 

In recent years, the proliferation of artificial intelligence has led to increased interest in using 

sophisticated intelligent algorithms for controlling and predicting combustion processes. Piloto-

Rodríguez et al. [22] devised a model for estimating the cetane number of biodiesel from fatty acid 

methyl ester using multiple linear regression and an artificial neural network. Gurgen et al. [23] 

employed the artificial neural network method to model the cycle variability of diesel engines using 

diesel and butanol-diesel blends. Dubey et al. [24] introduced a flame shape descriptor based on 

coordinates of the flame edge to predict flame image edges. Adewole et al. [25] constructed an artificial 

neural network model to predict the flame temperature and pollutant emission of liquefied petroleum 

gas burned by a swirl burner. Taghavi et al. [26] developed an accurate prediction model based on 

intake air mixing characteristics, using three popular architectures: nonlinear autoregressive network, 

multi-layer perceptron (MLP), and radial basis function (RBF), to control the start of the combustion 

(SOC). Wen et al. [27] proposed a robust fusion algorithm based on the Takagi-Sugino fuzzy model to 

address issues of data loss, data distortion, or signal saturation during multi-sensor infrared flame 

detection. Gajewski et al. [28] improved the service efficiency of the diesel engine with different 

physical parameters by using MPL and RBF to predict the combustion state of the diesel engine. 

The radial basis function (RBF) neural network, compared to other neural networks, possesses 

potent nonlinear fitting capabilities, which enables it to map any complex nonlinear relationships. 

Additionally, it exhibits strong memory capacity, robustness, and self-learning abilities. The 

integration of empirical mode decomposition (EMD) with RBF can enhance prediction data accuracy, 

demonstrating particular suitability for nonlinear data prediction. Yang et al. [29] identified flow 

patterns in a narrow channel via feature extraction of conductivity measurements with a support vector 

machine. Li et al. [30] developed a novel forecasting method for the settlement price prediction of 

stock index futures in China, utilizing empirical mode decomposition and radial basis function. Huang 

et al. [31] proposed an EMD-RBF-NN model that correlates two-phase flow rates with the volumetric 

heat transfer coefficient, achieving superior forecasting accuracy compared to pre-existing models. 

Given that the combustion process is nonlinear, using the EMD-RBF neural network for predictions 

could improve prediction efficiency and accuracy. However, this method has not yet been applied to 

the prediction of the combustion process. 

This study aims to introduce an innovative modelling approach that integrates data decomposition 

and neural networking to scrutinize the impact of oxygen content on the combustion performance of 

waste cooking oil. Due to the elevated viscosity, substantial water content, and high condensation point 

inherent in waste cooking oil, the atomization combustion process engenders complexity. This 

complexity amplifies the challenge of accurately controlling and predicting the combustion process, 

particularly in comparison to the conventional combustion of gaseous and solid particles. The 

incorporation of neural networking in the biomass fuel industry remains infrequent, thus rendering the 

monitoring and analysis of biodiesel atomization combustion, along with the examination of 

combustion state characteristic changes via efficient extraction of collected flame image information, 

critically significant. The remaining sections of this paper are organized as follows: Section 2 

elucidates the experimental apparatus system involved in oxygen-enriched swirl combustion in 

industrial biodiesel furnaces and kilns, as well as the protocol for combustion stability data acquisition 

and pretreatment. Section 3 provides a comprehensive overview of EMD-RBF-NN. Section 4 presents 

the prediction outcomes of CSI and compares these findings with existing neural network models. 

Section 5 concludes the paper with a conclusion. 
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2. Biodiesel swirl atomization combustion device and data extraction 

2.1. Swirl atomization combustion equipment and materials 

Characterized by high viscosity and inadequate atomization, biodiesel’s combustion efficiency 

can be compromised. This study introduces a self-engineered swirl atomizer to achieve enhanced 

combustion efficiency. The atomizer simultaneously ensures efficient atomization while providing 

ample combustion-supporting gas for biomass fuel. 

The burner assembly consists of three concentric layers. The innermost layer houses high-

pressure liquid fuel, which undergoes primary atomization in a specialized channel, facilitated by a 

high-speed atomization nozzle.  

The medium layer’s primary function is to supply combustion air. The flow of air commences 

from an inlet and encounters swirl vanes at the outlet, intensifying the air pressure. This high-pressure 

air from the swirl vanes amalgamates with the atomized fuel from the innermost layer, enabling 

secondary fuel atomization due to the increased air pressure. However, the primary air outlet's limited 

aperture results in an insufficient quantity of air for optimal biodiesel combustion. 

Addressing this, the outermost layer incorporates a secondary air channel with ample space to 

provide the necessary supplementary combustion-supporting gas for biodiesel combustion. Moreover, 

it features a ring of air baffles around the secondary air outlet, surrounded by gas outlets. This design 

ensures high gas flow and air velocity at the outlets, leading to more effective mixing of atomized 

biofuel with combustion-supporting air, thereby enhancing the combustion process. 

Figure 1 depicts the nozzle employed in the biodiesel combustion experiment. Figure 2 represents 

the flame monitoring system positioned in the combustion chamber. Table 1 shows the basic physical 

parameters of the oils used for the tests. 

 

Figure 1. The nozzle used in the biodiesel combustion experiment. 
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Figure 2. Flame monitoring system (on the left is the on-site system diagram, and on the 

right is the schematic diagram of the combustion system). 

Table 1. Physical and chemical properties of fuel. 

Name 
Kinematic 

viscosity 

Surface 

tension 

Flash 

point  

Thermal 

value  

Condensation 

point 

Cetane 

number 

WCOB 4.61 m2/s 28.3 mN/m 152℃ 38.98 MJ/kg 6℃ 51 

2.2. Data acquisition and preprocessing 

A flame represents the immediate manifestation of fuel combustion conditions within a furnace, 

furnishing rapid and definitive data pertaining to these conditions. Figure 3 delineates the evolving 

pattern of the flame image during the combustion process under certain operational circumstances. As 

digital image technology and artificial intelligence continue to advance, intelligent combustion 

diagnostic tools not only facilitate investigations into the mechanisms of combustion processes, but 

also enable the training and optimisation of models using collected combustion characteristic 

parameters within the furnace. This ultimately uncovers the inherent dynamics of the combustion 

process, thereby illuminating its combustion characteristics. 

Previous research has identified that an increment in temperature and oxygen concentration elicits 

the following attributes in high-temperature oxygen-enriched combustion flames: 1) a progressive 

enhancement in flame brightness; 2) an escalating flame volume and length; 3) a systematic shift in 

flame colour from blue towards yellow; 4) a trend of uniformity in brightness and colour within the 

same image; and 5) a correlation between higher combustion efficiency and finer image texture. 

In light of these characteristics, the flame feature vector, f(i, j) (where i = 1 to n-1 and j = 1 

to n-1), has been established to extract the aforementioned features, which will serve as the input 

for the neural network.  

http://www.baidu.com/link?url=LW5t-_rBiQ8FnyClLf0SdEKMd7wGOAfdV4p_YNvrxLhubSGHAH1qJHJFd91wGDVjbLNTfPpKnbhGgw5S6V3-E5PJGf85er7QGkDVBkNUzhhnjyJCaYmUpWKyauEZpJy0
http://www.baidu.com/link?url=LW5t-_rBiQ8FnyClLf0SdEKMd7wGOAfdV4p_YNvrxLhubSGHAH1qJHJFd91wGDVjbLNTfPpKnbhGgw5S6V3-E5PJGf85er7QGkDVBkNUzhhnjyJCaYmUpWKyauEZpJy0
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Figure 3. Development trend of flame in the combustion process. 

(1) Mean value of the correlation function: ave 

𝑝(𝑖, 𝑗) = [∑ ∑ 𝑓(𝑖, 𝑗)𝑓(𝑖 + 𝑎, 𝑗 + 𝑏)]/ ∑ ∑ 𝑓2(𝑖, 𝑗))]𝑁−1
𝑗=1

𝑁−1
𝑖=1

𝐵
𝑏=−𝐵

𝐴
𝑎=−𝐴     (1) 

𝑎𝑣𝑒 = (∑ ∑ 𝑝(𝑖, 𝑗))/(𝑁 − 1)2𝑁−1
𝑗=1

𝑁−1
𝑖=1 .       (2) 

Matrix p reflects the correlation between a pixel and its surrounding pixels. The ave is the average 

value of the gray correlation function matrix. Experiments show that the better the flame burns, the 

finer the image texture, and the larger the ave. 

(2) Information entropy based on the gray histogram: sh 

𝑠ℎ = − ∑ 𝑝𝑔log𝑝𝑔
𝑔
𝑔=0 .         (3) 

The pg is the probability that pixels with grayscale “g” appear. The “g” is the grayscale range of 

the flame picture. Experiments indicate that the more stable the combustion, the higher the value of the 

information entropy based on the grayscale histogram; conversely, the less stable the combustion, the lower 

the entropy value. 

(3) Flame area: s 

There has been a great deal of research on flame area in combustion theory, which is a geometric 

characteristic quantity representing combustion state. The area is calculated by counting the total 

number of pixels with gray level greater than zero in the preprocessed image. 

𝑠 = ∑ ∑ 𝐹(𝑔(𝑖, 𝑗) − 𝑡ℎ)𝑛
𝑗=1

𝑚
𝑖=1  .        (4) 

The th is used as the segmentation threshold of the flame image, which has different values for different 

images, and F(x) is a step function, which is defined as follows: 

𝐹(𝑥) = {
1      𝑥 ≥ 0
0      𝑥 < 0

.          (5) 

(4) Flame length: L 

The flame length is also a characteristic quantity between reaction gas flow and atomization effect 

and combustion effect, and a geometric characteristic quantity representing combustion state. 

𝐿 = α𝑙 = α(𝑥1 − 𝑥2)         (6) 

where L is the actual length of flame, α is the actual length represented by a unit pixel, l is the pixel 

length of flame, and 𝑥1, 𝑥2 are the horizontal coordinates of flame head and tail pixels. 
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(5) The gray variance of the flame image: var 

The combustion process is dynamic, potent, and intricate, as evidenced by the asymmetrical gray 

distribution in the associated image. Combustion stability is inversely proportional to the variability in 

gray levels; that is, the more stable the combustion, the lesser the gray fluctuation and the more 

consistent the distribution, thus allowing the portrayal of flame pulsation via gray variance. In a state 

of stable combustion, the variance in image gray levels is minute, encapsulating the subdued flame 

pulsation. Conversely, in an unstable combustion scenario, a heightened gray image variance manifests, 

signaling intense flame pulsation throughout the unstable combustion period. The respective 

mathematical representation is as follows: 

θ2= ∑ ∑ (𝑓(𝑖, 𝑗) − 𝑎𝑣)2𝑛
𝑗=1

𝑚
𝑖=1 .        (7) 

In which m and n are the number of rows and columns of the flame image, and f is the total number of 

pixels in the image whose gray value is not 0. 

(6) Gray level：gl 

As combustion temperature escalates, the radiant energy discharged by the flame intensifies, 

resulting in an elevated gray level within the image. Therefore, it can be inferred that there exists a 

positive correlation between the temperature of the combustion flame and the gray level of the image. 

Given specific combustion conditions, a rise in combustion temperature correlates with enhanced 

combustion stability and an increased gray level of the flame. 

𝑔𝑙 =
1

𝐺
∑ ∑ 𝑔(𝑖, 𝑗)𝑛

𝑗=1
𝑚
𝑖=1 .         (8) 

(7) Image energy of flame area：Asm 

A large ASM value indicates a more uniform and regular texture pattern. The more stable the 

flame, the smaller its pulsation, the smaller the gray level change, the more uniform the distribution, 

and the higher the energy. 

𝐴𝑠𝑚 = ∑ ∑ 𝑝(𝑖, 𝑗)2
𝑗𝑖 .         (9) 

Figure 4 illustrates the variation pattern of combustion characteristic parameters under different 

oxygen-enrichment conditions, with the x-axis representing length, the y-axis denoting area, and the 

z-axis corresponding to grayscale. Owing to the varying magnitudes and units derived from the 

extraction of feature quantities, an initial step of data normalization is performed. Subsequent 

computations, conducted in accordance with pertinent data and employing the Particle swarm 

optimization (PSO) algorithm, reveal that the primary result for S and ave is zero. Therefore, the 

representation of flame stability is formulated as follows: 

Csi=0.16l+0.02sh +0.12var+0.33gl+0.77en.      (10) 

In the context of this experiment, the derived image feature value indicates a direct correlation 

between combustion stability and the CSI index, whereby greater stability reflects a higher CSI index. 

During instances of extreme flame instability or flameout, the CSI oscillates between 0 and 25. A CSI 

range of 25 to 45 signifies generally normal combustion, whereas a CSI between 45 and 100 indicates 

stable combustion. Concurrently, it is imperative to note that the eigenvalues of distinct flames vary, 

resulting in differential impact coefficients for each eigenvalue with respect to stability. 
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Figure 4. Distribution of combustion characteristic parameters of biomass liquid fuel 

under different oxygen enrichments: (a) 21%, (b) 28%, and (c) 33%. 

3. A new method based on EMD and RBF-NN  

In this paper, a flame image representation method based on EMD and RBF-NN is proposed, which 

can be used to monitor and predict the combustion process. This combination method improves the 

performance of combustion conditions. 

3.1. Traditional methods and models 

The neural network, owing to its potent learning and classification capabilities, has effectively 

superseded linear regression, autocorrelation, and multivariate regression, among other statistical 

methodologies, finding extensive applications across diverse fields. Of particular interest is the radial 

basis function (RBF) neural network, renowned for its computational agility and superior convergence 

speed. Structurally, the RBF neural network mirrors the architecture of a feedforward neural network, 

comprising three distinct layers: an input layer constituted by signal source nodes, a hidden layer (also 

known as the radial basis layer) typified by a non-negative, radially symmetric function with local 

distribution and a peak at the center, and an output layer. As depicted in Figure 5, the framework of the 

RBF neural network exhibits a nonlinear transformation from the input layer to the hidden layer, while 

the transformation from the hidden layer to the output layer is linear. The radial basis function is trained 

by the traditional gradient descent learning algorithm, the kernel function is the Gaussian kernel 

function, and the center and diffusion of kernel function are obtained by the K-means clustering 

algorithm. Here, let 𝑥 = (𝑥1,𝑥2, ⋯ 𝑥𝑛)T be an input vector with input nodes of n (n=5 in this paper) 

and 𝑐𝑘 = (𝑐𝑘1, 𝑐𝑘2, ⋯ 𝑐𝑘𝑛)T be the kth node center vector in the hidden layer (k=1,2,⋯,K). This kind 

of neural network can be represented by a parameter model, which reveals the output node calculated 

by the weighted sum of hidden node outputs as follows: 

𝑔𝑖 = ∑ 𝑤𝑖𝑘𝜆(‖𝑥 − 𝑐𝑘‖)𝐾
𝑘=1 .        (11) 

‖𝑥 − 𝑐𝑘‖ is a transformation matrix (usually a Euclidean matrix), 𝑤𝑖𝑘 is the connecting weight vector, 

𝜆(‖𝑥 − 𝑐𝑘‖) is a kernel function of the kth node, and 𝑦 = (𝑦1, 𝑦2, ⋯ 𝑦𝑚)T is the output vector with 

the output nodes of m (m =1 in this paper, which is the CSI). 

Gaussian function is the most commonly used kernel function in the hidden layer, which will be 

used as the activation function. The position of kth is controled by the parameter vector 𝑐𝑘. σ𝑘 =
(σ𝑘1, σ𝑘2, ⋯ σ𝑘𝑛)T is the bandwidth vector of the kth, the following equation is given by: 
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ℎ𝑘(𝑥𝑖) = exp (−
‖𝑥𝑖−𝑐𝑘‖2

2𝜎𝑘
2 ).        (12) 

In this paper, the RBF neural network is used to describe the nonlinear mapping fromthe input 

vector of the flame characteristics and Csi(t) to the output vector. However, how to determine the 

information of the Csi(t) in the input layer to get perfect σ𝑘 of RBF-NN is also a significant problem. 

 

Figure 5. (a) Basic structure diagram of radial basis function neural network and (b) flow 

chart of its calculation principle. 

EMD is the core content of the empirical mode decomposition method, which does not need any 

filter or wavelet basis function. Time series is originally a nonlinear wave signal, and a series of 

different characteristic scales of data are decomposed by EMD gradually smoothing signals of different 

scales or trends. Each decomposed sequence is named as an intrinsic mode function (IMF), and the 

lowest frequency usually represents the trend or mean value of the original signal. In this paper, the 

EMD process for the time series Csi(t) is given as follows: (1) Search out the local minimum and 

maximum values of the CSI time series. (2) The shapes of the upper envelope and lower envelope of 

the Csi(t) raw data series are determined by fitting extreme values. (3) Get the instantaneous average 

of the two envelopes: 𝑒1(𝑡) = 0.5(𝐸𝑚𝑎𝑥(𝑡) + 𝐸min(𝑡)). (4) Calculate the difference between Csi(t) 

and 𝑒1(𝑡): 𝑑1(𝑡) = Csi(𝑡)-𝑒1(𝑡). (5) Processing 𝑑1(𝑡): If 𝑑1(𝑡) meets two limit conditions of IMF 

(the difference between the extreme value and zero crossing point in the whole data sequence is less 

than or equal to 1; the average value of the upper and lower envelopes is equal to 0 at any point), 𝑑1(𝑡) 

will be defined as the first 𝐼𝑀𝐹1(𝑡). While 𝑑1(𝑡) does not meet the two limit conditions of IMF, let 

Csi(𝑡) = 𝑑1(𝑡) return to (1)−(4), then 𝑑1(𝑡) cannot be repeated n times (n > 0) unless the nth repeat 

difference sequence 𝑑1𝑛(𝑡)  meets the above conditions (i.e., the screening process); then, 

𝑑1𝑛(𝑡) was defined as the first IMF, 𝐼𝑀𝐹1(𝑡). Moreover the residue 𝑟1(𝑡) = Csi(𝑡) − 𝐼𝑀𝐹1(𝑡). (6) 

Execute (1)−(5) only when the termination criteria are met. When the residue 𝑟𝑛 becomes a constant, 

monotone function or a function with only one maximum value or one minimum value, the screening 

process will finally end, and no more IMF can be extracted from this function. Finally, the low-pass 

filtering result of the signal with IMF components can be primitively indicated as 
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𝐶𝑠𝑖(𝑡) = ∑ 𝐼𝑀𝐹𝑛(𝑡)𝑛
𝑛=1 + 𝑟𝑛(𝑡).       (13) 

3.2. New model 

Figure 6 illustrates the proposed hybrid model. As depicted, the EMD-RBF-NN model is 

established through two stages: (1) Information extraction: This involves the utilization of the EMD 

method to isolate deterministic information from the raw data sequence of the Combustion stability 

index (CSI). The first Intrinsic Mode Function (IMF) encapsulates a simple oscillation mode 

embedded within the CSI series. In the screening process applied in this research, stimuli satisfying 

the first restriction (the total count of extreme values and zero crossings should be identical or differ 

by at most one) are not granted flexibility within the engineering practice domain. Consequently, the 

termination standard for calculation can be delineated as follows: 

𝑆𝑇𝐷𝑛 = ∑
|𝑑𝑛−1(𝑡)−𝑑𝑛|

2

𝑑𝑛−1
2 (𝑡)

𝑇
𝑡=1 .       (14) 

The termination standard is enacted by confining the value of the standard deviation (𝑆𝑇𝐷𝑛), 

employing the same nomenclature as used in the preceding section. Consequently, the highest 

frequency band intrinsic mode function (IMF) is procured for the subsequent stage. (2) Multivariable 

input prediction: Relying on the existing Combustion stability index (CSI) data series, the future 

sequence is forecasted using the radial basis function neural network (RBF-NN). The RBF-NN 

comprises three distinct layers: An input layer, a hidden layer, and an output layer. The data for the 

input layer, which comprises combustion characteristic parameters, is gleaned from the flame's 

characteristic parameters, and the nonlinear information is then directly dispatched to the succeeding 

layer. The activation function within the hidden layer facilitates the computation of the radial basis 

function. Eventually, the weighted sum of the hidden layer results is relayed to the output layer, 

generating the predicted flame stability data as the output. 

 

Figure 6. Flowchart depicting this new proposed hybrid model. 

3.3. Data simulation 

In order to systematically verify the validity and feasibility of the technology proposed in the 

study, the analyzed data x(t) is expressed as the following equation,  

x(t) = sin(2*pi*10*t) + sin(2*pi*50*t) + sin(2*pi*100*t) + 0.1*randn(1, length(t)).  (15) 

Figure 7 shows the IMF results of Eq (15), where the time parameter t is set from 1 to 10 by 0.1, and 

there is no noise with any signal noise ration. The following three indicators are used to evaluate the 

accuracy of the model. 
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Figure 7. EMD method using synthetic data generated in MATLAB. 

The MAE is used to measure the average absolute error between the predicted value and the real 

value on the experimental data set. For a test set containing n microblog messages, MAE is defined as: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦(𝑛) − 𝑦̂(𝑛)|𝑛

𝑖=1 .        (16) 

MAPE is used to measure the relative errors between the average test value and the real value on the 

experimental datasets. MAPE is defined as: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦(𝑛)−𝑦̂(𝑛)

y(n)
| × 100%𝑛

𝑖=1 .      (17) 

RMSE is used to measure the deviation between the observed value and the true value 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ [𝑦(𝑛) − 𝑦̂(𝑛)]2𝑛

𝑖=1        (18) 

where 𝑦̂(𝑛) is the estimation of investigated time series 𝑦(𝑛). 
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4. Results and discussion 

4.1. Use the mixed model to analyze the time series of the stability model 

In this segment of the research, the empirical mode decomposition (EMD) method and radial 

basis function (RBF) are employed, along with a neural network, to model the experimental findings, 

which include six color feature parameters and four texture feature parameters, as outlined in Table 2. 

Traditional procedures typically implement wavelet decomposition to break down time series into sub-

band sequences of varying directions and scales. On a uniform scale, distinct sub-bands encapsulate 

time series information of differing orientations. Utilizing empirical mode decomposition (EMD) as a 

substitute for wavelet transformation results in the attainment of the flame combustion stability index 

(CSI) signal and the decomposition of the intrinsic mode function (IMF), as illustrated in the Figure 8. 

The original time series is divided into nine IMFs. The CSI time series, owing to the ever-present 

combustion volatility, exhibits unsteady and non-linear features over time. Nevertheless, EMD 

decomposition reveals that all IMFs and final residuals demonstrate increased stability and pronounced 

periodicity when compared to the initial time series. This suggests that the EMD method can generate 

superior decomposition results. A total of 500 data points were utilized to construct the neural network 

model and were arbitrarily categorized in a 3:1 ratio into training and testing groups. The RBF neural 

network, implemented via MATLAB, incorporates two principal adjustment parameters, namely, the 

spread parameter and the maximum number of neurons. As depicted in the Figure 9, the model 

converges to an optimal state. 

Table 2. Statistical parameters of experimental results for establishing intelligent models. 
 

L/cm S/m2 ave Sh Var Gl Asm 

Extinguish 

Extinguish 

Extinguish 

Extinguish 

Extinguish 

Extinguish 

15.978 0.0058 134.687 6.146 9.94 46.57 0.1404 

11.024 0.0023 102.084 6.420 10.83 50.09 0.1338 

19.240 0.0063 121.989 5.831 11.43 40.36 0.1409 

11.891 0.0029 83.865 5.411 8.96 35.62 0.1549 

10.281 0.0021 95.539 5.050 13.01 29.99 0.1534 

11.956 0.0026 119.545 4.698 11.54 27.50 0.155 

Abnormal 

Abnormal 

Abnormal 

Abnormal 

Abnormal 

Abnormal 

27.043 0.0191 217.852 7.245 7.14 88.86 0.2161 

31.131 0.0221 217.662 7.219 5.89 108.07 0.1912 

28.736 0.0215 218.576 7.059 11.69 91.49 0.2236 

28.530 0.0200 208.822 7.131 8.81 104.61 0.19 

27.952 0.0188 215.930 7.131 5.12 104.40 0.1993 

26.094 0.0192 212.581 7.034 11.02 71.35 0.2316 

Stable 

Stable 

Stable 

Stable 

Stable 

Stable 

39.347 0.0437 222.687 6.584 2.86 129.33 0.3291 

39.429 0.0373 222.217 6.586 1.80 124.07 0.3006 

43.021 0.0365 220.879 6.754 1.20 111.47 0.3481 

40.957 0.0381 221.612 6.753 2.61 125.56 0.4098 

31.544 0.0394 220.677 6.519 4.30 126.84 0.4691 

45.705 0.0412 224.030 6.410 3.96 147.87 0.4876 
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Figure 8. Decomposed results of original CSI signal by EMD. 

 

Figure 9. Convergence to the optimum values of spread and maximum number of neurons. 
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4.2. Analysis of prediction results of CSI under different oxygen enrichment levels 

Figure 10 presents the predicted Combustion stability index (CSI) over a specified duration at 

varying degrees of oxygen enrichment. It is observable that despite the flame’s fluctuation throughout 

the entire combustion process, its stability is maintained within a certain range for a specific period. 

This indicates the swirl atomization burner, designed in the current study, can secure continuous and 

stable flame combustion, provided the air and fuel quantities are sufficient. Simultaneously, a gradual 

increase in the degree of oxygen enrichment results in an enhanced flame stability index. 

 

Figure 10. The CSI under different oxygen enrichment levels. 

4.3. Comparison with other methods 

To ascertain the efficacy and convenience of the EMD-RBF-NN diagnostic approach, this new 

method is juxtaposed with other predictive methodologies. The backpropagation (BP) neural network 

also serves as a commonly employed model for time series prediction in Figure 11. Guided by past 

experiences, the BP-NN, WT-BP-NN, EMD-BP-NN, and RBF-NN are utilized to compute Intrinsic 

Mode Functions (IMFs) across various layers. To assess the model’s applicability, the EMD-NN, RBF-

NN, and EMD-RBF-NN are used to predict the Combustion stability index (CSI), which constitutes 

50% of the total data in the test data set. As can be inferred from Table 3, the novel method exhibits 

superior predictive ability when contrasted with existing techniques. 
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Figure 11. Prediction results of CSI by EMD-BP-NN and EMD-RBF-NN. 

Table 3. Comparison between proposed model (EMD-RBF-NN) and existing models 

(RBF-NN, EMD-BP-NN, WT-RBF-NN, and WT-EMD-RBF-NN). 

 MAE RMSE MAPE R2 

BP-NN 0.0053 0.0138 0.0713 0.8488 

RBF-NN 0.0041 0.0051 0.0488 0.90178 

EMD-BP-NN(1) 0.562 0.7232 1.9394 0.90054 

EMD-BP-NN(2) 0.1781 0.5293 0.5293 0.96039 

EMD-BP-NN(3) 0.6075 0.7484 0.6075 0.96294 

EMD-BP-NN(4) 0.458 0.5854 0.8272 0.97384 

EMD-BP-NN(5) 0.4573 0.5821 1.0173 0.97384 

EMD-BP-NN(6) 0.5508 0.7802 2.0976 0.90799 

EMD-BP-NN(7) 0.3374 0.5256 1.6169 0.97543 

EMD-BP-NN(8) 0.296 0.6208 1.4858 0.96018 

EMD-RBF-NN(1) 2.93E-05 3.59E-04 5.23E-06 1 

EMD-RBF-NN(2) 1.25E-05 1.57E-04 1.85E-06 1 

EMD-RBF-NN(3) 3.08E-05 3.20E-04 4.82E-06 1 

EMD-RBF-NN(4) 1.22E-05 1.17E-04 4.90E-06 1 

EMD-RBF-NN(5) 2.17E-06 2.03E-05 3.06E-06 1 

EMD-RBF-NN(6) 6.23E-06 8.18E-05 2.50E-06 1 

EMD-RBF-NN(7) 1.73E-05 1.06E-04 4.37E-06 1 

EMD-RBF-NN(8) 1.20E-04 0.0015 2.34E-05 1 

WT-BP-NN(1) 0.4312 0.5866 1.1081 0.97279 

WT-BP-NN(2) 0.1002 0.119 0.3066 0.99699 

WT-BP-NN(3) 0.1463 0.2158 0.6815 0.9765 

WT-RBF-NN(1) 8.67E-06 3.85E-05 4.55E-06 1 

WT-RBF-NN(2) 8.11E-06 3.43E-05 1.60E-05 1 

WT-RBF-NN(3) 9.47E-06 3.44E-05 3.36E-05 1 
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5. Conclusions 

In the present study, a hybrid PSO-EMD-RBF neural network-based model is introduced to 

enhance the prediction accuracy of biodiesel combustion flame stability. Based on the swirling spray 

combustion characteristics of biodiesel, a method for calculating flame stability was devised employing 

the Particle swarm optimization (PSO) algorithm alongside flame image processing techniques. Given 

the volatility and instability inherent in combustion processes, the empirical mode decomposition 

(EMD) is applied to transform the irregular flame stability sequence into a series of relatively stable 

components whose periodic traits are more pronounced than the original sequence, thereby mitigating 

the impact of noise within the data. In selecting the prediction model, the nonlinear fitting capability, 

self-learning, and self-adapting attributes of the radial basis function model are considered. This 

facilitates the projection of the future values for each component using the radial basis function model, 

and the aggregation of these values yields the ultimate prediction result. Calculations indicate that the 

Empirical Mode Decomposition-Radial Basis Function-Neural Network (EMD-RBF-NN) model 

substantially augments the accuracy of CSI predictions in comparison to other extant predictive models. 

Use of AI tools declaration  

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article. 

Acknowledgments 

This research was funded by [the National Natural Science Fund of China] grant number 

[51766007], [the National Natural Science Fund of China] grant number [51666006], NSFC--Yunnan 

joint fund project grant number [U1602272], and [Research Fund from State Key Laboratory of 

Complex Nonferrous Metal Resources Clean Utilization] grant number [CNMRCUTS1704]. Yunnan 

Provincial Department of Education Project [2024J0453]. 

Conflict of interest  

The authors declare no conflict of interest. 

References 

1. R. A. Belale, F. E. M. Alaoui, Y. Chhiti, A. Sahibeddine, N. M. Rujas, F. Aguilar, Study on the 

thermophysical properties of waste cooking oil biodiesel fuel blends with 1-butanol, Fuel, 287 

(2020), 119540. https://doi.org/10.1016/j.fuel.2020.119540 

2. S. Simsek, Effects of biodiesel obtained from Canola, sefflower oils and waste oils on the engine 

performance and exhaust emissions, Fuel, 265 (2020), 117026. 

https://doi.org/10.1016/j.fuel.2020.117026 

3. N. Hashimoto, Y. Ozawa, N. Mori, I. Yuri, T. Hisamatsu, Fundamental combustion characteristics 

of palm methyl ester (PME) as alternative fuel for gas turbines, Fuel, 87 (2008), 3373−3378. 

https://doi.org/10.1016/j.fuel.2008.06.005 

4. C. T. Chong, S. Hochgreb, Spray and combustion characteristics of biodiesel: Non-reacting and 

reacting, Int. Biodeter. Biodegr., 102 (2015), 353−360. https://doi.org/10.1016/j.ibiod.2015.01.012 

https://doi.org/10.1016/j.fuel.2020.119540
https://doi.org/10.1016/j.fuel.2020.117026
https://doi.org/10.1016/j.fuel.2008.06.005
https://doi.org/10.1016/j.ibiod.2015.01.012


4861 

AIMS Mathematics  Volume 9, Issue 2, 4844–4862. 

5. A. Jhalani, D. Sharma, S. Soni, P. K. Sharma, D. Singh, Feasibility assessment of a newly prepared 

cow-urine emulsified diesel fuel for CI engine application, Fuel, 288 (2021). 

https://doi.org/10.1016/j.fuel.2020.119713 

6. Y. C. Shen, F. Li, Z. W. Liu, H. G. Wang, J. X. Shen, Study on the characteristics of evaporation-

atomization-combustion of biodiesel, J. Energy Inst., 92 (2019), 1458−1467. 

https://doi.org/10.1016/j.joei.2018.08.005 

7. R. Junga, J. Pospolita, P. Niemiec, M. Dudek, R. Szleper, Improvement of coal boiler’s efficiency 

after application of liquid fuel additive, Appl. Therm. Eng., 179 (2020), 115663. 

https://doi.org/10.1016/j.applthermaleng.2020.115663 

8. X. Yu, Z. Cao, J. B. Peng, Y. Yu, G. Chang, Y. F. Ma, et al., statistical analysis of flame oscillation 

characterization of oxy-fuel in heavy oil boiler using OH planar laser-induced fluorescence, J. 

Spectrosc., 2019 (2019), 1−10. https://doi.org/10.1155/2019/7085232 

9. K. Zhang, Y. Z. Shen, C. Duwig, Finite rate simulations and analyses of wet/distributed flame structure 

in swirl-stabilized combustion, Fuel, 289 (2021). https://doi.org/10.1016/j.fuel.2020.119922 

10. S. Gao, F. Li, Q. Xiao, J. Zhu, Chaotic diagnostics in a biodiesel combustion system using PLIF 

and nonlinear time series analysis, Fuel Cells, 21 (2020), 109−118. 

https://doi.org/10.1002/fuce.202000085 

11. S. Y. Gao, F. S. Li, Q. T. Xiao, J. X. Xu, H. G. Wang, H. Wang, Experimental demonstration of 

deterministic chaos in a waste oil biodiesel semi-industrial furnace combustion system, Energies, 

12 (2019), 4479. https://doi.org/10.3390/en12234479 

12. S. L. Ding, E. Z. Song, L. P. Yang, G. Litak, C. Yao, X. Z. Ma, Investigation on nonlinear dynamic 

characteristics of combustion instability in the lean-burn premixed natural gas engine, Chaos 

Soliton. Fract., 93 (2016), 99−110. https://doi.org/10.1016/j.chaos.2016.10.010 

13. C. Gu, X. Y. Qiao, L. J. Han, Analysis about the influences of different fuels on the combustion 

stability of a heavy duty diesel engine, Acta Armamentarii, 41 (2020), 426−433. 

https://doi.org/10.3969/j.issn.1000-1093.2020.03.002 

14. N. E. Huang, M. L. Wu, W. D. Qu, S. R. Long, S. S. P. Shen, J. E. Zhang, Application of Hilbert-

Huang transform to non-stationary financial time series analysis, 19 (2003), 245−268. 

https://doi.org/10.1002/asmb.506 

15. C. P. Hu, Y. Chou, M. C. Wu, T. C. Yang, Y. H. Su, An application of Hilbert-Huang transform on 

the non-stationary astronomical time series: The superorbital modulation of SMC X-1, J. Astron. 

Space Sci., 30 (2013), 79−82. 

16. F. R. Bi, T. Ma, X. Wang, Development of a novel knock characteristic detection method for 

gasoline engines based on wavelet-denoising and EMD decomposition, Mech. Syst. Signal Pr., 

117 (2019), 517−536. https://doi.org/10.1016/j.ymssp.2018.08.008 

17. S. Z. Lu, X. H. Wang, H. L. Yu, H. J. Dong, Z. Q. Yang, Trend extraction and identification method 

of cement burning zone flame temperature based on EMD and least square, Measurement, 111 

(2017). https://doi.org/10.1016/j.measurement.2017.07.047 

18. S. P. Mishra, R. K. Patnaik, P. K. Dash, R. Bisoi, J. Naik, An EMD based polynomial kernel 

methodology for superior wind power prediction, In: 2019 1st International Conference on 

Artificial Intelligence and Data Sciences (AiDAS), IEEE, Malaysia, 2019, 58−63. 

https://doi.org/10.1109/AiDAS47888.2019.8970690 

19. X. W. Mi, H. Liu, Y. F. Li, Wind speed prediction model using singular spectrum analysis, 

empirical mode decomposition and convolutional support vector machine, Energ. Convers. 

Manage., 180 (2019), 196−205. https://doi.org/10.1016/j.enconman.2018.11.006 

https://doi.org/10.1016/j.fuel.2020.119713
https://doi.org/10.1016/j.joei.2018.08.005
https://doi.org/10.1016/j.applthermaleng.2020.115663
https://doi.org/10.1155/2019/7085232
https://doi.org/10.1016/j.fuel.2020.119922
https://doi.org/10.1002/fuce.202000085
https://doi.org/10.3390/en12234479
https://doi.org/10.1016/j.chaos.2016.10.010
https://doi.org/10.3969/j.issn.1000-1093.2020.03.002
https://doi.org/10.1002/asmb.506
https://doi.org/10.1016/j.ymssp.2018.08.008
https://doi.org/10.1016/j.measurement.2017.07.047
https://doi.org/10.1109/AiDAS47888.2019.8970690
https://doi.org/10.1016/j.enconman.2018.11.006


4862 

AIMS Mathematics  Volume 9, Issue 2, 4844–4862. 

20. M. Aghbashlo, S. Shamshirband, M. Tabatabaei, P. L. Yee, Y. N. Larimi, The use of ELM-WT 

(extreme learning machine with wavelet transform algorithm) to predict exergetic performance of 

a DI diesel engine running on diesel/biodiesel blends containing polymer waste, Energy, 94 

(2016), 443−456. https://doi.org/10.1016/j.energy.2015.11.008 

21. Y. Wang, P. Yang, Z. Song, J. Chevallier, Q. Xiao, Intelligent prediction of annual CO2 emissions 

under data decomposition mode, Comput. Econ., 2023, 1−30. https://doi.org/10.1007/s10614-

023-10357-8 

22. R. Piloto-Rodriguez, Y. Sanchez-Borroto, M. Lapuerta, L. Goyos-Perez, S. Verhelst, Prediction 

of the cetane number of biodiesel using artificial neural networks and multiple linear regression, 

Energ. Convers. Manage., 65 (2013), 255−261. https://doi.org/10.1016/j.enconman.2012.07.023 

23. S. Gurgen, B. Unver, I. Altin, Prediction of cyclic variability in a diesel engine fueled with n-

butanol and diesel fuel blends using artificial neural network, Renew. Energ., 117 (2017), 538−544. 

https://doi.org/10.1016/j.renene.2017.10.101 

24. S. Dubey, Flame shape prediction with artificial neural network, Int. J. Current Eng. Technol., 2 

(2013), 563−566. http://dx.doi.org/10.14741/ijcet/spl.2.2014.107 

25. B. Z. Adewole, O. A. Abidakun, A. A. Asere, Artificial neural network prediction of exhaust 

emissions and flame temperature in LPG (liquefied petroleum gas) fueled low swirl burner, 

Energy, 61 (2013), 606−611. https://doi.org/10.1016/j.energy.2013.08.027 

26. M. Taghavi, A. Gharehghani, F. B. Nejad, M. Mirsalim, Developing a model to predict the start 

of combustion in HCCI engine using ANN-GA approach, Energ. Convers. Manage., 195 (2019), 

57−69. https://doi.org/10.1016/j.enconman.2019.05.015 

27. Z. T. Wen, L. B. Xie, H. W. Feng, Y. Tan, Robust fusion algorithm based on RBF neural network 

with TS fuzzy model and its application to infrared flame detection problem, Appl. Soft Comput., 

76 (2018), 251−264. https://doi.org/10.1016/j.asoc.2018.12.019 

28. J. Gajewski, D. Valis, The determination of combustion engine condition and reliability using oil 

analysis by MLP and RBF neural networks, Tribol. Int., 115 (2017), 557−572. 

https://doi.org/10.1016/j.triboint.2017.06.032 

29. K. Yang, J. Liu, M. Wang, H. Wang, Q. Xiao, Identifying flow patterns in a narrow channel via 

feature extraction of conductivity measurements with a support vector machine, Sensors, 23 

(2023), 1907. https://doi.org/10.3390/s23041907 

30. H. F. Li, Price forecasting of stock index futures based on a new hybrid EMD-RBF neural network 

model, Agro Food Ind. Hi Tec., 28 (2017), 1744−1747. 

31. J. W. Huang, Q. T. Xiao, J. J. Liu, H. Wang, Modeling heat transfer properties in an ORC direct 

contact evaporator using RBF neural network combined with EMD, Energy, 173 (2019), 306−316. 

https://doi.org/10.1016/j.energy.2019.02.056 

© 2024 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

 

https://doi.org/10.1016/j.energy.2015.11.008
https://doi.org/10.1007/s10614-023-10357-8
https://doi.org/10.1007/s10614-023-10357-8
https://doi.org/10.1016/j.enconman.2012.07.023
https://doi.org/10.1016/j.renene.2017.10.101
http://dx.doi.org/10.14741/ijcet/spl.2.2014.107
https://doi.org/10.1016/j.energy.2013.08.027
https://doi.org/10.1016/j.enconman.2019.05.015
https://doi.org/10.1016/j.asoc.2018.12.019
https://doi.org/10.1016/j.triboint.2017.06.032
https://doi.org/10.3390/s23041907
https://doi.org/10.1016/j.energy.2019.02.056

