We delved into a category of output feedback nonlinear systems that are distinguished by unmodeled dynamics, quantized input delays, and dynamic uncertainties. We introduce a novel finite-time adaptive dynamic surface control scheme developed through the construction of a first-order nonlinear filter. This approach integrates Young's inequality with neural network technologies. Then, to address unmodeled dynamics, the scheme incorporates a dynamic signal and utilizes Radial Basis Function (RBF) neural networks to approximate unknown smooth functions. Furthermore, an auxiliary function is devised to mitigate the impact of input quantization delays on the system's performance. The new controller design is both simple and effective, addressing the "hasingularity" problems typically associated with traditional finite-time controls. Theoretical analyses and simulation outcomes confirm the effectiveness of this approach, guaranteeing that all signals in the system are confined within a finite period.
Citation: Changgui Wu, Liang Zhao. Finite-time adaptive dynamic surface control for output feedback nonlinear systems with unmodeled dynamics and quantized input delays[J]. AIMS Mathematics, 2024, 9(11): 31553-31580. doi: 10.3934/math.20241518
We delved into a category of output feedback nonlinear systems that are distinguished by unmodeled dynamics, quantized input delays, and dynamic uncertainties. We introduce a novel finite-time adaptive dynamic surface control scheme developed through the construction of a first-order nonlinear filter. This approach integrates Young's inequality with neural network technologies. Then, to address unmodeled dynamics, the scheme incorporates a dynamic signal and utilizes Radial Basis Function (RBF) neural networks to approximate unknown smooth functions. Furthermore, an auxiliary function is devised to mitigate the impact of input quantization delays on the system's performance. The new controller design is both simple and effective, addressing the "hasingularity" problems typically associated with traditional finite-time controls. Theoretical analyses and simulation outcomes confirm the effectiveness of this approach, guaranteeing that all signals in the system are confined within a finite period.
[1] | S. D. Gu, J. G. Kuba, Y. P. Chen, Y. L. Du, L. Yang, A. Knoll, et al., Safe multi-agent reinforcement learning for multi-robot controly, Artif. Intell., 319 (2023), 103905. https://doi.org/10.1016/j.artint.2023.103905 doi: 10.1016/j.artint.2023.103905 |
[2] | Z. B. Liu, K. R. Peng, L. P. Han, S. C. Guan, Modeling and control of robotic manipulators based on artificial neural networks: A review, Iran. J. Sci. Technol. Trans. Mech. Eng., 47 (2023), 1307–1347. https://doi.org/10.1007/s40997-023-00596-3 doi: 10.1007/s40997-023-00596-3 |
[3] | K. S. Ratnam, K. Palanisamy, G. Y. Yang, Future low-inertia power systems: Requirements, issues, and solutions-A review, Renew. Sust. Energ. Rev., 124 (2020), 109773. https://doi.org/10.1016/j.rser.2020.109773 doi: 10.1016/j.rser.2020.109773 |
[4] | H. Q. Xie, Z. J. Qin, G. Y. Li, B. H. Juang, Deep learning enabled semantic communication systems, IEEE T. Signal Proces., 69 (2021), 2663–2675. https://doi.org/10.1109/TSP.2021.3071210 doi: 10.1109/TSP.2021.3071210 |
[5] | M. Hennink, B. N. Kaiser, Sample sizes for saturation in qualitative research: A systematic review of empirical tests, Soc. Sci. Med., 292 (2022), 114523. https://doi.org/10.1016/j.socscimed.2021.114523 doi: 10.1016/j.socscimed.2021.114523 |
[6] | L. You, C. D. Li, X. Y. Zhang, Z. L. He, Edge event-triggered control and state-constraint impulsive consensus for nonlinear multi-agent systems, AIMS Math., 5 (2022), 4151–4167. https://doi.org/10.3934/math.2020266 doi: 10.3934/math.2020266 |
[7] | D. H. He, B. Z. Bao, L. G. Xu, Robust stability and boundedness of uncertain conformable fractional-order delay systems under input saturation, AIMS Math., 8 (2023), 21123–21137. https://doi.org/10.3934/math.20231076 doi: 10.3934/math.20231076 |
[8] | X. W. Shao, L. Chen, J. L. Chen, D. X. Zhang, Prescribed-time control for spacecraft formation flying with uncertainties and disturbances, AIMS Math., 9 (2024), 1180–1198. https://doi.org/10.3934/math.2024058 doi: 10.3934/math.2024058 |
[9] | M. N. A. Parlakci, Robust static output feedback $H_{\infty}$ controller design for linear parameter-varying time delay systems, Circuits Syst. Signal Process., 43 (2024), 843–864. https://doi.org/10.1007/s00034-023-02514-z doi: 10.1007/s00034-023-02514-z |
[10] | D. Swaroop, J. K. Hedrick, P. P. Yip, J. C. Gerdes, Dynamic surface control for a class of nonlinear systems, IEEE T. Automat. Contr., 45 (2000), 1893–1899. https://doi.org/10.1109/TAC.2000.880994 doi: 10.1109/TAC.2000.880994 |
[11] | I. Kanellakopoulos, P. V. Kokotovic, A. S. Morse, Systematic design of adaptive controllers for feedback linearizable systems, In: 1991 American Control Conference, 1991,649–654. https://doi.org/10.23919/ACC.1991.4791451 |
[12] | X. F. Wang, M. Y. Sun, A new family of fourth-order Ostrowski-type iterative methods for solving nonlinear systems, AIMS Math., 9 (2024), 10255–10266. https://doi.org/10.3934/math.2024501 doi: 10.3934/math.2024501 |
[13] | H. Alhazmi, M. Kharrat, Echo state network-based adaptive control for nonstrict-feedback nonlinear systems with input dead-zone and external disturbance, AIMS Math., 9 (2024), 20742–20762. https://doi.org/10.3934/math.20241008 doi: 10.3934/math.20241008 |
[14] | H. R. Ren, H. Ma, H. Y. Li, R. Q. Lu, A disturbance observer based intelligent control for nonstrict-feedback nonlinear systems, Sci. China Tech. Sci., 66 (2023), 456–467. https://doi.org/10.1007/s11431-022-2126-7 doi: 10.1007/s11431-022-2126-7 |
[15] | Q. T. Meng, Q. Ma, Y. Shi, Adaptive fixed-time stabilization for a class of uncertain nonlinear systems, IEEE T. Automat. Contr., 68 (2023), 6929–6936. https://doi.org/10.1109/TAC.2023.3244151 doi: 10.1109/TAC.2023.3244151 |
[16] | D. Yang, Y. J. Liu, F. Ding, E. F. Yang, Hierarchical gradient-based iterative parameter estimation algorithms for a nonlinear feedback system based on the hierarchical identification principle, Circuits Syst. Signal Process., 43 (2024), 124–151. https://doi.org/10.1007/s00034-023-02477-1 doi: 10.1007/s00034-023-02477-1 |
[17] | J. B. Zhang, F. Ding, Y. Shi, Self-tuning control based on multi-innovation stochastic gradient parameter estimation, Syst. Control Lett., 58 (2009), 69–75. https://doi.org/10.1016/j.sysconle.2008.08.005 doi: 10.1016/j.sysconle.2008.08.005 |
[18] | Y. Sun, M. Chen, C. Gao, L. B. Wu, Output feedback command filtered fuzzy controller design for uncertain strict-feedback nonlinear systems with unmodeled dynamics and event-triggered strategy, Eng. Res. Express, 6 (2024), 025315. https://doi.org/10.1088/2631-8695/ad3f75 doi: 10.1088/2631-8695/ad3f75 |
[19] | G. Q. Ma, P. R. Pagilla, Periodic event-triggered dynamic output feedback control of switched systems, Nonlinear Anal-Hybri., 31 (2019), 247–264. https://doi.org/10.1016/j.nahs.2018.10.001 doi: 10.1016/j.nahs.2018.10.001 |
[20] | X. N. Xia, T. P. Zhang, Adaptive output feedback dynamic surface control of nonlinear systems with unmodeled dynamics and unknown high-frequency gain sign, Neurocomput, 143 (2014), 312–321. https://doi.org/10.1016/j.neucom.2014.05.061 doi: 10.1016/j.neucom.2014.05.061 |
[21] | T. P. Zhang, M. Z. Xia, J. M. Zhu, Adaptive backstepping neural control of state-delayed nonlinear systems with full-state constraints and unmodeled dynamics, Int. J. Adapt. Control Signal Process., 31 (2017), 1704–1722. https://doi.org/10.1002/acs.2795 doi: 10.1002/acs.2795 |
[22] | T. P. Zhang, X. N. Xia, Decentralized adaptive fuzzy output feedback control of stochastic nonlinear large-scale systems with dynamic uncertainties, Inform. Sci., 315 (2015), 17–38. https://doi.org/10.1016/j.ins.2015.04.002 doi: 10.1016/j.ins.2015.04.002 |
[23] | L. Xu, F. Ding, X. Zhang, Q. M. Zhu, Novel parameter estimation method for the systems with colored noises by using the filtering identification idea, Syst. Control Lett., 186 (2024), 105774. https://doi.org/10.1016/j.sysconle.2024.105774 doi: 10.1016/j.sysconle.2024.105774 |
[24] | L. T. Xing, C. Y. Wen, Y. Zhu, H. Y. Su, Z. T. Liu, Output feedback control for uncertain nonlinear systems with input quantization, Automatica, 65 (2016), 191–202. https://doi.org/10.1016/j.automatica.2015.11.028 doi: 10.1016/j.automatica.2015.11.028 |
[25] | K. Yu, X. H. Chang, Quantized output feedback resilient control of uncertain systems under hybrid cyber attacks, Int. J. Adapt. Control Signal Process., 36 (2022), 2954–2970. https://doi.org/10.1002/acs.3496 doi: 10.1002/acs.3496 |
[26] | N. Li, J. Feng, Quantized feedback adaptive reliable $H_{\infty}$ control for linear time-varying delayed systems, Circuits Syst. Signal Process., 35 (2016), 851–874. https://doi.org/10.1007/s00034-015-0109-2 doi: 10.1007/s00034-015-0109-2 |
[27] | Y. X. Li, G. H. Yang, Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults, Automatica, 72 (2016), 177–185. https://doi.org/10.1016/j.automatica.2016.06.008 doi: 10.1016/j.automatica.2016.06.008 |
[28] | T. F. Liu, Z. P. Jiang, D. J. Hill, A sector bound approach to feedback control of nonlinear systems with state quantization, Automatica, 48 (2012), 142–152. https://doi.org/10.1016/j.automatica.2011.09.041 doi: 10.1016/j.automatica.2011.09.041 |
[29] | W. L. Chen, J. H. Wang, K. M. Ma, T. Wang, Adaptive event-triggered neural control for nonlinear uncertain system with input constraint, Int. J. Robust Nonlin., 30 (2020), 3801–3815. https://doi.org/10.1002/rnc.4965 doi: 10.1002/rnc.4965 |
[30] | J. L. Ma, S. Y. Xu, Y. M. Li, Y. M. Chu, Z. Q. Zhang, Neural networks-based adaptive output feedback control for a class of uncertain nonlinear systems with input delay and disturbances, J. Franklin I., 355 (2018), 5503–5519. https://doi.org/10.1016/j.jfranklin.2018.05.045 doi: 10.1016/j.jfranklin.2018.05.045 |
[31] | T. P. Zhang, X. N. Xia, J. M. Zhu, Adaptive neural control of state delayed nonlinear systems with unmodeled dynamics and distributed time-varying delays, IET Control Theory Appl., 8 (2014), 1071–1082. https://doi.org/10.1049/iet-cta.2013.0803 doi: 10.1049/iet-cta.2013.0803 |
[32] | Q. Zhu, S. M. Fei, T. P. Zhang, T. Li, Adaptive RBF neural-networks control for a class of time-delay nonlinear systems, Neurocomput, 71 (2008), 3617–3624. https://doi.org/10.1016/j.neucom.2008.04.012 doi: 10.1016/j.neucom.2008.04.012 |
[33] | L. D. Fang, L. Ma, S. H. Ding, Finite-time fuzzy output-feedback control for p-norm stochastic nonlinear systems with output constraints, AIMS Math., 6 (2021), 2244–2267. https://doi.org/10.3934/math.2021136 doi: 10.3934/math.2021136 |
[34] | A. L. Li, X. L. Ye, Finite-time anti-synchronization for delayed inertial neural networks via the fractional and polynomial controllers of time variable, AIMS Math., 6 (2021), 8173–8190. https://doi.org/10.3934/math.2021473 doi: 10.3934/math.2021473 |
[35] | S. P. Bhat, D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751–766. https://doi.org/10.1137/S0363012997321358 doi: 10.1137/S0363012997321358 |
[36] | Y. M. Li, K. W. Li, S. C. Tong, Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems, IEEE T. Fuzzy Syst., 27 (2019), 96–110. https://doi.org/10.1109/TFUZZ.2018.2868898 doi: 10.1109/TFUZZ.2018.2868898 |
[37] | C. X. Wang, J. L. Du, J. B. Yu, Adaptive finite-time tracking control for time-varying output constrained nonlinear systems with unmatched uncertainties, IET Control Theory Appl., 13 (2019), 2416–2424. https://doi.org/10.1049/iet-cta.2018.5458 doi: 10.1049/iet-cta.2018.5458 |
[38] | Y. Zhang, F. Wang, J. Zhang, Adaptive finite-time tracking control for output-constrained nonlinear systems with non-strict-feedback structure, Int. J. Adapt. Control Signal Process., 34 (2020), 560–574. https://doi.org/10.1002/acs.3099 doi: 10.1002/acs.3099 |
[39] | J. P. Li, Y. Yang, C. C. Hua, X. P. Guan, Fixed-time backstepping control design for high-order strict-feedback nonlinear systems via terminal sliding mode, IET Control Theory Appl., 11 (2017), 1184–1193. https://doi.org/10.1049/iet-cta.2016.1143 doi: 10.1049/iet-cta.2016.1143 |
[40] | Y. Hua, T. P. Zhang, Adaptive finite-time optimal fuzzy control for novel constrained uncertain nonstrict feedback mixed multiagent systems via modified dynamic surface control, Inform. Sci., 681 (2024), 121216. https://doi.org/10.1016/j.ins.2024.121216 doi: 10.1016/j.ins.2024.121216 |
[41] | Y. X. Li, Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems, Automatica, 106 (2019), 117–123. https://doi.org/10.1016/j.automatica.2019.04.022 doi: 10.1016/j.automatica.2019.04.022 |
[42] | H. J. Brascamp, E. H. Lieb, Best constants in Young's inequality, its converse, and its generalization to more than three functions, Adv. Math., 20 (1976), 151–173. https://doi.org/10.1016/0001-8708(76)90184-5 doi: 10.1016/0001-8708(76)90184-5 |
[43] | S. Y. Gao, F. S. Li, H. Wang, Evaluation of the effects of oxygen enrichment on combustion stability of biodiesel through a PSO-EMD-RBF model: An experimental study, AIMS Math., 9 (2024), 4844–4862. https://doi.org/10.3934/math.2024235 doi: 10.3934/math.2024235 |
[44] | H. H. Qiu, L. Wan, Z. G. Zhou, Q. J. Zhang, Q. H. Zhou, Global exponential periodicity of nonlinear neural networks with multiple time-varying delays, AIMS Math., 8 (2023), 12472–12485. https://doi.org/10.3934/math.2023626 doi: 10.3934/math.2023626 |
[45] | Y. Linde, A. Buzo, R. Gray, An algorithm for vector quantizer design, IEEE T. Commun., 28 (1980), 84–95. https://doi.org/10.1109/TCOM.1980.1094577 doi: 10.1109/TCOM.1980.1094577 |
[46] | Y. F. Sun, L. L. Li, D. W. C. Ho, Quantized synchronization control of networked nonlinear systems: Dynamic quantizer design with event-triggered mechanism, IEEE T. Cybernetics, 53 (2023), 184–196. https://doi.org/10.1109/TCYB.2021.3090999 doi: 10.1109/TCYB.2021.3090999 |