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Abstract: We delved into a category of output feedback nonlinear systems that are distinguished
by unmodeled dynamics, quantized input delays, and dynamic uncertainties. We introduce a novel
finite-time adaptive dynamic surface control scheme developed through the construction of a first-
order nonlinear filter. This approach integrates Young’s inequality with neural network technologies.
Then, to address unmodeled dynamics, the scheme incorporates a dynamic signal and utilizes Radial
Basis Function (RBF) neural networks to approximate unknown smooth functions. Furthermore,
an auxiliary function is devised to mitigate the impact of input quantization delays on the system’s
performance. The new controller design is both simple and effective, addressing the “hasingularity”
problems typically associated with traditional finite-time controls. Theoretical analyses and simulation
outcomes confirm the effectiveness of this approach, guaranteeing that all signals in the system are
confined within a finite period.
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1. Introduction

With the rapid advancement of science and technology, nonlinear systems are increasingly utilized
in various domains, including robot control [1,2], power systems [3], and communication systems [4].
These systems often display complex dynamic behaviors and significant levels of uncertainty, which
pose substantial challenges in control and optimization tasks. Output feedback, a critical method for
controlling nonlinear systems, has substantial theoretical and practical value. A nonlinear output
feedback system uses the system’s output to regulate the input, exhibiting nonlinear characteristics
within the internal model itself. Such systems rely on output data for controller design rather than
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requiring information from all states. Nonlinear systems, being inherently more complex than linear
ones, can exhibit behaviors such as limitations, saturation [5–7], asymmetric responses, and other
nonlinear traits. The output feedback mechanism, by capturing system output data in real-time and
adjusting accordingly, can achieve system stability and optimization. Theoretically, this mechanism
expands the scope of traditional control theory and enhances its applicability across a broader spectrum
of fields.

In control engineering and automation, the nonlinearity and uncertainty of systems pose significant
challenges to enhancing performance [8, 9]. Traditional linear control theories often fall short in
such complex scenarios, failing to achieve the desired control outcomes. As a result, researchers
are continually exploring and developing innovative control strategies to overcome these hurdles.
The dynamic surface control method, introduced by Swaroop et al. [10], represents a significant
advancement over the backstepping approach initially proposed by Kanellakopoulos [11]. This
method not only circumvents the over-parameterization issues typical of backstepping designs but
also offers a controller structure that is more streamlined, efficient, and intuitive. Both dynamic
surface control and backstepping have garnered extensive attention and have been widely applied
in designing controllers for nonlinear systems [12–15], providing fresh insights and techniques for
improving system performance. Yang and colleagues studied iterative parameter estimation methods
for nonlinear feedback systems. They developed a new gradient-based iterative algorithm using
negative gradient search and hierarchical identification principles, which significantly improved the
accuracy and computational efficiency of parameter estimation [16]. Zhang and his colleagues
developed a self-tuning control scheme using a multi-innovation random gradient algorithm. This
work is very important and interesting, which ensures the optimal control and stability in discrete-
time systems, and these results are proved by supporting simulation [17]. Controlling nonlinear
systems remains a pivotal area of academic inquiry, as nonlinearity is an intrinsic characteristic of
most real-world systems. Numerous scholars from both domestic and international backgrounds have
extensively researched the output feedback control of nonlinear systems, yielding many significant
breakthroughs [18, 19]. Despite these advancements, challenges persist, especially when contending
with unmodeled dynamics, input quantization, and time delays. Traditional control strategies often
fall short of fully ensuring system performance and stability. Unmodeled dynamics can degrade
system performance, input quantization, and time delays to complicate control system design. For
instance, a novel approach involving dynamic surface control for output feedback nonlinear systems
with unmodeled dynamics is explored in [20], where simulations demonstrate its robust dynamic
performance. Additionally, in [21], a new controller is crafted using the backstepping design method,
effectively mitigating the impacts of unmodeled dynamics and full state constraints. Furthermore, [22]
introduces a decentralized adaptive fuzzy output feedback control strategy for stochastic nonlinear
systems with dynamic uncertainties, showcasing the evolving complexity of control strategies in
response to system challenges. In a recent departure from prior studies, Xu et al. [23] introduced
an innovative parameter estimation algorithm leveraging filter identification and model transformation
techniques. Their numerical simulations demonstrated that this novel approach achieves more precise
parameter estimations compared to several existing correlation identification algorithms, marking a
significant advancement in the field of parameter estimation methods.

Input quantization delay is a significant issue in digital control systems, as highlighted in various
studies, including those by Xing and Yu [24, 25]. In [26], Li examines the issue of output feedback
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resilient control for an uncertain system with two quantized signals under the influence of hybrid
network attacks, including denial-of-service and deception attacks. This study is quite interesting,
ensures the stability and performance indices of the closed-loop system by designing a cost-preserving
resilient controller and solving a set of linear matrix inequalities. A substantial corpus of research,
including studies like [27], has explored and analyzed the impacts of input quantization. For
instance, the researchers in [28] conducted an in-depth analysis of the stability of strictly feedback
nonlinear systems with state quantization, assuming bounded sector regions of the quantizer. Another
innovative approach in [24] combined the benefits of lag and uniform quantizers to propose a
novel quantizer design that enhances quantization efficiency and offers fresh perspectives for future
research. Further, [29] primarily focused on the adaptive event-triggered neural control problem for
nonlinear uncertain systems with input delays, introducing an auxiliary system combined with adaptive
backstepping techniques to develop a new adaptive time-triggered control strategy. Similarly, [30]
investigated the adaptive output feedback control problem for nonlinear systems with input delays
and disturbance uncertainties, employing an auxiliary system and backstepping techniques alongside
Lyapunov stability theory to offset the effects of input delays. In [31], the adaptive control problem
for time-varying delay nonlinear systems with full state constraints was addressed. Researchers
constructed suitable Lyapunov-Krasovskii functions to account for uncertainties caused by state and
distributed delays. Furthermore, Zhu et al. [32] investigated nonlinear systems that exhibit both
input and state delays. They employed state transformation techniques to reformulate the original
system into one devoid of input delays, devising an advanced control strategy that amalgamates
backstepping, Radial Basis Function (RBF) neural networks, and adaptive control approaches. Their
research contributes innovative strategies and methodologies for addressing the challenges associated
with delays in intricate dynamic systems.

The adoption of finite-time control strategies has surged due to their ability to achieve rapid
and accurate control in various applications. These methods, which are the focus of contemporary
research like that of Fang et al. [33], provide efficient and effective solutions for dynamic system
regulation within a fixed time frame, enhancing both system performance and stability. This approach
is distinguished by its ability to bring system states to equilibrium within a finite timeframe, after
which they remain stable [34]. The foundational framework for finite-time stability, which utilizes
Lyapunov theory and homogeneous systems theory, was first established in [35]. Additionally, [36]
explored a class of strict-feedback nonlinear systems with known control gains and virtual coefficients,
introducing a finite-time adaptive control strategy via the backstepping design method. While this
strategy marks a significant advancement in control efficiency, it overlooks the potential impacts of
input quantization delays on system performance, a critical consideration for practical applications.
Furthermore, in [37], researchers applied dynamic surface control techniques and incorporated a novel
first-order filter into their designs. However, the use of a sign function in the virtual controller’s
design rendered the control law non-differentiable, leading to theoretical inaccuracies and, ultimately,
algorithm failure. Beyond ensuring that system states achieve desired values or stability within a
finite timeframe, finite-time control strategies also potentially enhance the system’s resilience against
external disturbances.

To tackle the challenges mentioned above, this study introduces a novel finite-time dynamic surface
control strategy designed for managing output feedback systems plagued by unmodeled dynamics,
quantized input delays, and external disturbances. The primary contributions of this research include:
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(1) For output feedback systems affected by unmodeled dynamics and quantized input delays, we
introduce a first-order auxiliary system to generate dynamic signals that tackle unmodeled dynamics,
and the system replaces traditional first-order linear low-pass filters with first-order nonlinear filters.
This research innovates by integrating input quantization and delays, through the design of an auxiliary
function that compensates for delays caused by quantization. Furthermore, neural networks are
employed to approximate unknown functions. By integrating these with dynamic surface technology,
a new finite-time adaptive dynamic surface control strategy is proposed.

(2) The virtual control law designed in this paper is characterized by its continuous differentiability,
which effectively circumvents the potential singularity issues associated with control derivatives
noted in [38], and mitigates discontinuity issues related to neural network approximation functions.
Additionally, unlike the virtual control strategies that utilize sign functions as detailed in [37, 39], the
proposed control scheme ensures the differentiability of the virtual control law. This introduction
effectively provides an overview of the research background, addresses the key challenges, and
highlights the significant contributions of this study, laying a solid groundwork for a detailed
exploration of the article’s content.

The remainder of this paper is structured as follows: In Section 2 introduce the problem, outline
useful lemmas, and detail necessary assumptions. In Section 3, we describe the development
of an RBF-based adaptive controller and establishes its stability through the design of Lyapunov
functions. In Section 4, we demonstrate the effectiveness of the proposed control method through
numerical simulations using MATLAB. Finally, in Section 5 we present the conclusions of this study,
encapsulating the findings and implications.

2. Problem statement and preliminaries

2.1. Dynamics of nonlinear systems

Consider the following type of output feedback nonlinear system, characterized by unique
unmodeled dynamics and quantized input time delays:

ζ̇ = Q(ζ, y, t)
ẋ1 = x2 + f1(y) + D1(ζ, y, t)
...

ẋs−1 = xs + fs−1(y) + Ds−1(ζ, y, t)
ẋs = xs+1 + fs(y) + Ds(ζ, y, t) + bmq(v(t − τ))
...

ẋn = fn(y) + Dn(ζ, y, t) + b0q(v(t − τ))
y = x1

, (2.1)

where xi(i = 1, 2, . . . , n) represent the state variables of the system, fi(y) denotes unknown smooth
nonlinear functions, ζ ∈ Rn0 encapsulates the unmodeled dynamics, y ∈ R is the system output, and
v ∈ R is the system input. The term Di(ζ, y, t) describes unknown nonlinear disturbances. B(s) =

bmsm + · · ·+b1s+b0 is a Hurwitz polynomial, with bm, · · · , b0 as unknown coefficients. The expression
q(v(t − τ)) represents the quantized form of the input signal, where τ is a known positive constant
indicating the input delay.

AIMS Mathematics Volume 9, Issue 11, 31553–31580.



31557

2.2. Some useful lemmas and assumptions

Assumption 1. [20] The desired trajectory vector xd =
[
yd, ẏd, ÿd

]T
∈ Ωd belongs to the set Ωd, where

Ωd is defined as Ωd =
{
xd : y2

d + ẏ2
d + ÿ2

d ≤ B0

}
. Additionally, the absolute value |yd| does not exceed B1.

Here, B0 and B1 are known positive constants.
Assumption 2. [19] For the unknown disturbances Di(ζ, y, t), where i = 1, 2, . . . , n, there
exist unknown non-negative continuous functions ∆i1(·) and unknown non-negative continuous
monotonically increasing functions ∆i2(·) such that the absolute value of the disturbances is bounded
by the sum of these two functions:

|Di(ζ, y, t)| ≤ ∆i1(|y|) + ∆i2(‖ζ‖), (2.2)

where | · | denotes the Euclidean norm.
Assumption 3. [40] For the system described by ζ̇ = Q(ζ, y, t), the unmodeled dynamics ζ are
exponentially input-to-state stable.
Assumption 4. [20] There is a known positive constant bmax that satisfies the inequality 0 < |bm| ≤ bmax.
Lemma 1. [40] Suppose that V0(ζ) is a Lyapunov function for the system ζ̇ = Q(ζ, y, t) that is
exponentially input-to-state practically stable. Then, for any constant c̄ f ∈ (0, c), initial time t0 > 0,
initial state ζ0 = ζ (t0), initial radius r0 > 0, and any Λ̄(|y|) ≥ Λ(|y|), there exists a finite time T0 =

max
{
0, ln[V0(ζ0)/r0]

c−c̄ f

}
≥ 0 and a non-negative function D (t0, t), such that the dynamic signal satisfies:

ṙ = −c̄ f r + Λ̄(|y|) + d. (2.3)

For t ≥ t0 +T0, D(t0, t) = 0 and V0(ζ) ≤ r(t)+D(t0, t) hold. Without loss of generality, it can be assumed
that Λ̄(|y|) = Λ(|y|).
Lemma 2. [41] Consider the nonlinear system ẋ = f (x). If there exists a smooth positive-definite
function V(x) and scalar parameters α > 0, β > 0, 1

2 < q < 1, 0 < C < ∞, and 0 < v < 1 that satisfy:

V̇(x) ≤ −αV(x) − βVq(x) + C, (2.4)

then the system is practically finite-time stable, with a settling time T0 ≤
1

α(1−q) ln αV1−q(x0)+vβ

α
(

C
(1−q)β

) 1−q
q +vβ

.

Lemma 3. [41] For any positive real numbers η1, . . . , ηN and a constant m between 0 and 1 (0 ≤ m < 1),
the inequality

∑N
i=1 η

m
i ≥

(∑N
i=1 ηi

)m
holds.

Lemma 4. [42] Let a and b be non-negative real numbers, and let p and q be positive real numbers
such that 1

p+ 1
q = 1 (where p, q > 1 ). Then Young’s inequality states that:

ab ≤
ap

p
+

bq

q
. (2.5)

Lemma 5. [20] For any continuous real function f (x, y), there exist two smooth non-negative scalar
functions ϕ0(x) and ϑ0(y) such that the inequality

| f (x, y)| ≤ ϕ0(x) + ϑ0(y) (2.6)

holds, where x is in Rm and y is in Rn.
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2.3. Control objective

Our objective is to design a controller v and a quantizer q(v) that enable the system output y to
accurately follow a predefined desired trajectory yd. The approach aims to ensure that all signals in
the closed-loop system remain bounded within a finite timeframe and to minimize the tracking error.
We employ a first-order nonlinear filter and a dynamic surface control strategy to effectively address
uncertainties caused by unmodeled dynamics and input delays. Additionally, we seek to improve the
system’s handling of quantized inputs, thereby enhancing the overall response speed and stability of
the system.

3. Design of adaptive controller and stability proof

3.1. RBF neural network

Remark 1. The Radial Basis Function (RBF) neural network, a specialized type of artificial neural
network, is characterized by its use of radial basis functions as activation functions in the hidden layer,
as detailed in recent research [43,44]. This network structure typically includes an input layer, a hidden
layer where neurons utilize functions like the Gaussian for non-linear transformations, and an output
layer. RBF networks are particularly valued for their ability to universally approximate any continuous
function, making them highly effective in various function approximation tasks.

Define a compact set Πy =
{
y||y |≤ My

}
⊂ RLi , where My > 0 is a predetermined design constant.

If a RBF neural network Θ∗iϕi(y) is used to approximate an unknown continuous function fi(y) on the
compact set ΠZi , then

fi(y) = Θi
∗Tϕi(y) + δi(y), (3.1)

where δi(y) represents the approximation error, ϕi(y) is a vector composed of multiple RBFs,
specifically ϕi(y) =

[
ϕi1(y), · · · , ϕiMi(y)

]T
∈ RMi . Each radial basis function ϕi j(y) is defined as a

Gaussian function, defined by:

ϕi1(y) = exp

−
(
y − µi j

)2

bi j
2

 , (3.2)

where µi j and bi j represent the center and width parameters of the Gaussian functions, respectively, for
1 ≤ i ≤ n and 1 ≤ j ≤ Mi. The term Mi indicates the number of nodes in the i-th neuron. Additionally,
the ideal weights are defined as follows:

Θ∗i = arg min
Θi∈RMi

sup
y∈Ωy

∣∣∣ΘT
i ϕi(y) − fi(y)

∣∣∣ . (3.3)

According to the above formula, Eq (2.1) can be rewritten as
ζ̇ = Q(ζ, y, t)
ẋ = Ax + FT (y, q(v(t − τ)))Θ + δ(y) + D(ζ, y, t)
y = eT

1 x
, (3.4)
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where,

φT (y) =


ϕT

1 (y) 0 0

0 . . . 0
0 0 ϕT

n (y)

 , Θ f =


Θ∗1
...

Θ∗n

 , δ(y) =


δ1(y)
...

δn(y)

 , A =

[
0 In−1

0 0

]
,

FT

y, q(v(t − τ)) =




0
(s − 1) × (m + 1)

Im+1

 q(v(t − τ)), φT (y)

 , Θ =

[
b

Θ f

]
∈ R(m+1+N),

s = n − m,N =

n∑
i=1

Mi·, x =


x1
...

xn

 , D(ζ, y, t) =


D1(ζ, y, t)

...

Dn(ζ, y, t)

 , b =


bm
...

b0

 , e1 =


1
0
...

0

 .
Since only the system output y is measurable and the other states are unobservable, we have

designed the following filter to reconstruct the states of the system.{
ζ̇ = A0ζ + Ly, ζ ∈ Rn

Ω̇T = A0Ω
T + FT (y, q(v(t − τ))), ΩT ∈ Rn×(m+1+N) . (3.5)

Let L = [l1, · · · , ln]T and A0 = A − LeT
1 , where both are Hurwitz matrices that satisfy the equation

PA0 + AT
0 P = −hI. Here, P is a positive definite symmetric matrix ( P = PT > 0 ), and h > 0 is a

design constant.
Define the matrix ΩT = [vm, · · · , v0,Ξ], size Rn×(m+1+N), and vectors v j( j = 0, 1, · · · ,m) follow

the equation
v j = A j

0λ, (3.6)

A j
0en = en− j, (3.7)

v̇ j = A0v j + en− jq(v(t − τ)), (3.8)

where A j
0 represents the j-th power of the matrix A0. In accordance with Eq (3.4), the matrix Ξ must

meet the following conditions:
Ξ̇ = A0Ξ + φT (y). (3.9)

The following equation can be obtained from Eq (3.6):

vi, j = [∗, · · · , ∗, 1]


λ1
...

λi+ j

 , (3.10)

where i = 0, 1, · · · ,m, j = 1, 2, · · · , n, λk = 0, k > n
Design the following state observer:

x̂ = Υ + ΩT Θ. (3.11)

The observer error is defined as:
ε = x − x̂. (3.12)
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Taking the derivative of this error gives:

ε̇ = A0ε + δ(y) + D(ζ, y, t). (3.13)

In summary, the general form of the filter is expressed as follows:
Υ̇ = A0Υ + Ly,Υ ∈ Rn

Ξ̇ = A0Ξ + φT (y),Ξ ∈ Rn×N

λ̇ = A0λ + enq(v(t − τ)), λ ∈ Rn
. (3.14)

Based on the above analysis, the expression for the system state x2 can be derived as follows:

x2 = x̂2 + ε2

= Υ2 + ΩT
2 Θ + ε2

= bmvm,2 + ζ2 +
[
0, vm−1,2, · · · , v0,2,Ξ(2)

]
Θ + ε2,

(3.15)

where ΩT
(2) denotes the second row of the matrix ΩT ,Ξ(2) denotes the second row of the matrix Ξ, Υ2 is

the second element of the column vector Υ, and ε2 is the second element of the column vector ε. Using
Eqs (3.4) and (3.15), we obtain the following:

ẏ = bmvm,2 + Υ2 +$T Θ + ε2 + δ1(y) + D1(ζ, y, t). (3.16)

Here, $T =
[
0, vm−1,2, · · · , v0,2,Ξ(2) + φT

(1)

]
, where φT

(1) represents the first row of the matrix φT . By
combining Eqs (3.6) and (3.8), the following description of a system of order ρ can be derived:

ẏ = bmvm,2 + Υ2 +$T Θ + ε2 + δ1(y) + D1(ζ, y, t)
v̇m,i = vm,i+1 − livm,1i = 2, · · · , s − 1
v̇m,s = q(v(t − τ)) + vm,s+1 − lsvm,1

. (3.17)

3.2. Design of quantizer

Remark 2. The quantizer presented in this study combines features from both hysteresis and uniform
quantizers to enhance system performance, as noted by Linde in his seminal work [45]. Hysteresis
quantizers, known for their ability to reduce signal chattering through variable transition thresholds,
limit frequent switching, enhancing signal stability. Uniform quantizers, on the other hand, keep
quantization errors within a predictable upper bound throughout the operation, crucial for maintaining
system reliability. The integration of these two quantizer types in the new design not only improves the
system’s dynamic responses but also stabilizes the quantization error, thereby increasing the overall
system efficiency and reliability as further explored by Sun [46].

In this section, the new quantizer is described as follows:

q(v) =

 qh (vth) + Int
[

v−vth
v̄ + κ (vth)

]
v̄, |v| ≥ vth,

qh(v), |v| < vth ,
(3.18)
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where,

qh(v) =



vi sgn(v), vi
1+δ

< |v| < vi, v̇ < 0, or
vi(1 + δ) sgn(v), vi < |v| ≤ vi

1−δ , v̇ > 0
vi

1−δ < |v| <
vi(1+δ)

1−δ , v̇ > 0
0, 0 ≤ |v| < vmin

1+δ
, or

qh (v (t−)) , vmin
1+δ

< |v| ≤ vmin, v̇ > 0
v̇ = 0

, (3.19)

κ (vth) =

{
1, qh (vth) < vth

0, qh (vth) ≥ vth
, (3.20)

where, each vi is defined as p1−ivmin where i = 1, 2, . . . and vmin > 0 is a positive constant. The parameter
0 < p < 1 is crucial as it regulates the dead zone size in the function qh(u), with δ =

1−p
1+p reflecting the

quantization density. The function qh(v) assigns values within the set U = 0,±vi,±vi(1 + δ). Int[a] is
the greatest integer less than or equal to a. The term v ≥ |qh (vth) − vth| represents a design parameter
that controls the quantization density for the uniform quantizer. vth, another positive design constant,
determines the switching threshold for the hysteresis and uniform quantizers. This framework leads
to the derivation of the expression for quantization error, enhancing our understanding of quantizer
behavior and error dynamics

∣∣∣∆q

∣∣∣ ≤ v̄, |v| ≥ vth

δvth + (1 − δ)vmin, |v| < vth
. (3.21)

Clearly, the quantization error ∆q of the new quantizer is bounded for any v, meaning there exists a
positive constant d such that

∣∣∣∆q

∣∣∣ ≤ d, where d is defined as d = max {v̄, δvth + (1 − δ)vmin}. Based on
the definition ∆q(v) = q(v) − v, we can derive:

q(v) = v + ∆q(v). (3.22)

3.3. Design of controller

Develop an auxiliary function to mitigate the effects of quantization delay. This function aims
to refine and enhance the data processing workflow, effectively minimizing or removing the delays
associated with data quantization and processing.

The auxiliary function is described as follows:{
λ̇i = λi+1 − ciλi(i = 1, · · · , s − 1)
λ̇s = −csλs + q(v(t − τ)) − q(v)

. (3.23)

To design an adaptive controller, the following coordinate transformation is performed:{
z1 = y − yd − λ1

zi = vm,i − ωi − λi
, (3.24)

where ωi is the output of a first-order filter with αi−1 as its input, for i = 2, · · · , s.
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To simplify the design process, several notations are defined:

sig(·)m = | · |m sgn(·), θi =
∥∥∥W∗

hi

∥∥∥2
|, z̄i = [z1, · · · , zi]T , ȳ j =

[
y2, · · · , y j

]T
,

θ̂i =
[
θ̂1, · · · , θ̂i

]T
, 1 ≤ i ≤ s, 2 ≤ j ≤ s, θ̃i = θi − θ̂i, b̃m = bm − b̂m,

Θ̃ = Θ − Θ̂, V1 = Vε + Vz1 +
r
λ0
.

In the adaptive controller design, specific variables are designated as follows: θ̂i, b̂m, and Θ̂ are the
time-dependent estimates of θi, bm, and Θ, respectively, at time t. Additionally, for each corresponding
index j, y j is defined as ω j − α j−1.

The design includes the definition of a Lyapunov function candidate:

Vε = εT pε. (3.25)

Here, Vε is a function intended to demonstrate the stability of the adaptive control system, where ε is a
vector of error terms, and p is a positive definite matrix.

The time derivative of Vε is given by:

V̇ε = ε̇T pε + εT pε̇

= εT
(
pA0 + AT

0 p
)
ε + 2εT pδ + 2εT pD

≤ −(h − 2)εTε + ‖p‖2‖δ‖2 + ‖p‖2‖D‖2,

(3.26)

where A0 denotes the nominal system matrix, while δ signifies the uncertainties or disturbances
impacting the system, and D captures modeling inaccuracies or other deviations. The expression
pA0 + AT

0 p is associated with the Lyapunov equation, which is integral to determining the stability
of the system, emphasizing the system’s ability to return to equilibrium in the face of perturbations.

Based on Assumption 2 and Lemma 4, we can obtain

V̇ε ≤ −(h − 2)εTε +

n∑
j=1

‖p‖2
∥∥∥δ j

∥∥∥2
+

n∑
j=1

‖p‖2
(
∆ j1(|y|) + ∆ j2(‖ξ‖)

)2

≤ −(h − 2)εTε +

n∑
j=1

‖p‖2
∥∥∥δ j

∥∥∥2
+ 2

n∑
j=1

‖p‖2
(
∆2

j1(|y|) + ∆2
j2(‖ξ‖)

)
≤ −(h − 2)εTε +

n∑
j=1

‖p‖2
∥∥∥δ j

∥∥∥2
+ 2

n∑
j=1

‖p‖2∆2
j1(|y|)

+ ‖p‖2ϕ0(r) + ‖p‖2ϑ0 (D (t0, t))

≤ −(h − 2)εTε +

n∑
j=1

‖p‖2
∥∥∥δ j

∥∥∥2
+ 2

n∑
j=1

‖p‖2∆2
j1(|y|) + ‖p‖2ϕ0(r) + ‖p‖2ϑ∗0,

(3.27)

where the functions ϕ0(·) and ϑ0(·) are unknown continuous functions that are central to the system’s
dynamic behavior. Hence, there exists a constant ϑ∗0 such that the inequality:

ϑ0 (D (t0, t)) ≤ ϑ∗0. (3.28)

AIMS Mathematics Volume 9, Issue 11, 31553–31580.



31563

Step 1. Defining the first dynamic surface

z1 = y − yd −λ̄1, (3.29)

where z1 represents the error between the actual output y and the desired output yd.
The time derivative of z1 is:

ż1 = ẏ − ẏd − ˙̄λ1

= bm (z2 + y2 + α1 + λ2) + ζ2 +$T Θ + ε2 + δ1 + D1 − ẏd − λ2 + c1λ̄1.
(3.30)

Take Lyapunov function

Vz1 =
1
2

z2
1 +

1
2
θ̃2

1 +
1
2

b̃2
m +

1
2

Θ̃2. (3.31)

The derivative of Vz1 about t is obtained:

V̇z1 =z1ż1 − θ̃1
˙̂θ1 − b̃m

˙̂bm − Θ̃ ˙̂Θ

= z1

[
bm (z2 + y2 + α1 +λ̄2) + ζ2 + wT Θ + ε2 + δ1 + D1 − ẏd −λ̄2 + c1λ̄1

]
− θ̃1

˜̂θ1 − b̃m
˙̂bm − Θ̃ ˙̂Θ.

(3.32)

Using Young’s inequality and based on Assumption 4, we derive the following:

bmz1z2 ≤
b2

max

4
z2

1 + z2
2. (3.33)

bmz1y2 ≤
b2

max

4
z2

1 + y2
2. (3.34)

bmz1λ̄2 ≤
z2

1λ̄
2
2

4
+ b2

max. (3.35)

−λ̄2z1 ≤ 1 +
z2

1λ̄
2
2

4
. (3.36)

z1D1 ≤ z1
[
∆11(|y|) + ∆12(‖ζ‖)

]
≤ z2

1
[
∆11(|y|) + ∆12 ◦ ᾱ1 (r + D0)

]2
+

1
4
.

(3.37)

The Eq (3.32) can be transformed into:

V̇z1 ≤z1

[
bmα1 + ζ2 +$T Θ + ε2 + δ1 − ẏd + c1λ̄1 +

b2
max

2
z1 +

1
2
λ̄2

2z1

+z1
[
∆11(|y|) + ∆12 ◦ ᾱ1 (r + D0)

]2
]

+
5
4

+ b2
max + y2

2 + z2
2 − θ̃1

˙̂θ1 − b̃m
˙̂bm − Θ̃ ˙̂Θ.

(3.38)

Let
H1 (X1) = −ẏd + c1λ̄1 +

1
2
λ̄2

2z1 + z1
[
∆11(|y|) + ∆12 ◦ ᾱ1 (r + D0)

]2
+ |z1|

2q−1 , (3.39)

where X1 = [z1, yd, ẏd,λ̄1,λ̄2, r]T .
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Then

V̇z1 ≤z1

[
bmα1 + ζ2 +$T Θ + ε2 + δ1 +

b2
max

2
z1 + W∗T

h1 ψ1 (X1) + B1 (X1)
]

+
5
4

+ b2
max + y2

2 + z2
2 − θ̃1

˙̂θ1 − b̃m
˙̂bm − Θ̃ ˙̂Θ − |z1|

2q .

(3.40)

According to Young’s inequality, we can see that:

z1W∗T
h1 ψ1 (X1) ≤

‖ψ1 (X1)‖2 z2
1θ1

2a2
1

+
a2

1

2
, (3.41)

where a1 is a positive constant which is strategically chosen as part of the design of the control system.
Given the importance of this design constant, Eq (3.40) can then be transformed as follows:

V̇z1 ≤z1

[
bmα1 + Υ2 + wT Θ + ε2 + δ1 +

b2
max

2
z1 +

‖ψ1 (X1)‖2 z1θ1

2a2
1

+ B1 (X1)
]

+
5
4

+ b2
max + y2

2 + z2
2 − θ̃1

˙̂θ1 − b̃m
˙̂bm − Θ̃Θ̇ − |z1|

2q +
a2

1

2
.

(3.42)

A virtual control law is designed as follows:

α1 = −
b̂m

b̂2
m + β

(
(k1 + 3) z1 + Υ2 +$T Θ̂ +

‖ψ1 (X1)‖2 z1θ̂1

2a2
1

)
. (3.43)

The adaptive law is designed as follows:

˙̂θ =
‖ψ1 (X1)‖2 z2

1

2a2
1

− σ1θ̂1, (3.44)

˙̂bm = z1α1 − γ1b̂m, (3.45)
˙̂Θ = $z1 − γ2Θ̂, (3.46)

where the constants k1, σ1, β, γ1, and γ2 are all set to positive values.
Substituting the Eqs (3.43)–(3.46) into the Eq (3.42), we get:

V̇z1 ≤ z1B1 (X1) −
(
k1 −

b2
max

2

)
z2

1 + z1ε1 + z1δ1 −
z1β

b̂2
m + β

(− (k1 + 3) z1 − Υ2

−$T Θ̂ −
‖ψ1 (X1)‖2 z1θ̂1

2a2
1

)
+

5
4

+ b2
max + y2

2 + z2
2 + σ1θ̃1θ̂1 + γ1b̃mb̂m

+ γ2Θ̃Θ̂ − |z1|
2q +

a2
1

2
− 3z2

1,

(3.47)

where there exists a non-negative continuous function S
(
z1, Θ̂, b̂m, θ̂1,Υ,Ξ, λ̄m+2, yd, r, ¯̄λ2

)
, such that:∣∣∣∣∣∣δ1 −

β

b̂2
m + β

(
− (k1 + 3) z1 − Υ2 − σ

T Θ̂ −
‖ψ1 (X1)‖2 z1θ̂1

2a2
1

)∣∣∣∣∣∣
≤ S

(
z1, Θ̂, b̂m, θ̂1,Υ,Ξ, λ̄m+2, yd, r, ¯̄λ2

)
.

(3.48)
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There exists a non-negative continuous function K1

(
z1, yd, ẏd, r, ¯̄λ2

)
such that the absolute value of

B1 (X1) is bounded by K1

(
z1, yd, ẏd, r, ¯̄λ2

)
. According to Young’s inequality:

z1ε1 ≤ z2
1 +

1
4
ε2

1. (3.49)

z1B1 (X1) ≤ z2
1 +

1
4

K2
1 . (3.50)

z1S ≤ z2
1 +

1
4

S 2. (3.51)

Utilizing Eq (3.49) through (3.51), Eq (3.47) can be reformulated as:

V̇z1 ≤ −

(
k1 −

b2
max

2

)
z2

1 +
5
4

+ b2
max + y2

2 + z2
2 + σ1θ̃1θ̂1 + γ1b̃mb̂m

+ γ2Θ̃Θ̂ − |z1|
2q +

a2
1

2
+

1
4
ε2

1 +
1
4

K2
1 +

1
4

S 2.

(3.52)

According to Young’s inequality:

σ1θ̃1θ̂1 ≤ −
σ1

2
θ̃2

1 +
σ1

2
θ2

1

≤ −σ1
1 − q

2
θ̃2

1 +
σ1

2
θ2

1 − σ1
q
2
θ̃2

1.
(3.53)

Applying Lemma 4 with x = θ̃
2q
1 , y = 1, a = 1

q > 1, and b = 1
1−q , we obtain:

θ̃
2q
1 ≤ q

(
θ̃

2q
1

) 1
q

+ (1 − q)

= qθ̃2
1 + (1 − q).

(3.54)

Therefore

− σ1
q
2
θ̃2

1 ≤ −
σ1θ̃

2q
1

2
+
σ1(1 − q)

2
. (3.55)

Substitute Eq (3.55) into Eq (3.53) to obtain:

σ1θ̃1θ̂1 ≤ −σ1
1 − q

2
θ̃2

1 +
σ1

2
θ2

1 −
σ1θ̃

2q
1

2
+
σ1(1 − q)

2
. (3.56)

Similarly, it can be proved:

γ1b̃mb̂m ≤ −γ1
1 − q

2
b̃2

m +
γ1

2
b2

m −
γ1b̃2q

m

2
+
γ1(1 − q)

2
. (3.57)

γ2Θ̃Θ̂ ≤ −γ2
1 − q

2
Θ̃2 +

γ2

2
Θ2 −

γ2Θ̃
2q

2
+
γ2(1 − q)

2
. (3.58)
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Therefore, Eq (3.52) is rewritten as

V̇z1 ≤ −

(
k1 −

b2
max

2

)
z2

1 +
5
4

+ b2
max + y2

2 + z2
2 − σ1

1 − q
2

θ̃2
1 +

σ1

2
θ2

1

−
σ1θ̃

2q
1

2
+
σ1(1 − q)

2
− γ1

1 − q
2

b̃2
m +

γ1

2
b2

m −
γ1b̃2q

m

2
+
γ1(1 − q)

2

− γ2
1 − q

2
Θ̃2 +

γ2

2
Θ2 −

γ2Θ̃
2q

2
+
γ2(1 − q)

2
− |z1|

2q +
a2

1

2
+

1
4
ε2

1 +
1
4

K2
1 +

1
4

S 2.

(3.59)

If V1 = Vε + Vz1 + r
λ0

, then:

V̇1 =V̇ε + V̇z1 +
ṙ
λ0

≤ −(h − 2)εTε +

n∑
j=1

‖p‖2
∥∥∥δ j

∥∥∥2
+ 2

n∑
j=1

‖p‖2∆2
j1(|y|) + ‖p‖2ϕ0(r) + ‖p‖2ϑ∗0

−

(
k1 −

b2
max

2

)
z2

1 +
5
4

+ b2
max + y2

2 + z2
2 − σ1

1 − q
2

θ̃2
1 +

σ1

2
θ2

1 −
σ1θ̃

2q
1

2
+
σ1(1 − q)

2

− γ1
1 − q

2
b̃2

m +
γ1

2
b2

m −
γ1b̃2q

m

2
+
γ1(1 − q)

2
− γ2

1 − q
2

Θ̃2 +
γ2

2
Θ2

−
γ2Θ̃

2q

2
+
γ2(1 − q)

2
− |z1|

2q +
a2

1

2
+

1
4
ε2

1 +
1
4

K2
1 +

1
4

S 2 −
c̄r
λ0

+
Λ̄(|y|)
λ0

+
d
λ0

≤ −

(
h −

9
4

)
εTε + ‖p‖2ϑ∗0 − k1z2

1 − |z1|
2q
− σ1

1 − q
2

θ̃2
1 −

σ1θ̃
2q
1

2
+ y2

2 + z2
2

− γ1
1 − q

2
b̃2

m −
γ1b̃2q

m

2
− γ2

1 − q
2

Θ̃2 −
γ2Θ̃

2q

2
+

1
4

K2
1 +

1
4

S 2 −
c̄r
λ0

+ Q(y, r)

+
5
4

+ b2
max +

σ1

2
θ2

1 +
σ1(1 − q)

2
+
γ1

2
b2

m +
γ1(1 − q)

2
+
γ2

2
Θ2 +

γ2(1 − q)
2

+
a2

1

2
+

d
λ0
,

(3.60)

where

Q(y, r) =

n∑
j=1

‖p‖2
∥∥∥δ j

∥∥∥2
+ 2

n∑
j=1

‖p‖2∆2
j1(|y|) + ‖p‖2ϕ0(r) +

Λ̄(|y|)
λ0

.

Using Lemma 4, we derive the following:

−

(
h −

9
4

)
εTε ≤ −

h − 9
4

2λmax(p)
εT pε −

h − 9
4

2λmax(p)
εT pε

≤ −
h − 9

4

2λmax(p)q

(
εT pε

)q
+

(
h − 9

4

)
(1 − q)

2λmax(p)q
−

h − 9
4

2λmax(p)
εT pε

(3.61)

−
c̄r
λ0
≤ −

c̄r
2λ0
−

c̄r
2λ0

≤ −
c̄

2λ0q
rq +

c̄(1 − q)
2λ0q

−
c̄r

2λ0
.

(3.62)
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Then, Eq (3.60) can be transformed into

V̇1 ≤ −
h − 9

4

2λmax(p)q

(
εT pε

)q
−

h − 9
4

2λmax(p)
εT pε −

(
k1 −

b2
max

2

)
z2

1 − |z1|
2q

− σ1
1 − q

2
θ̃2

1 −
σ1θ̃

2q
1

2
+ y2

2 + z2
2 − γ1

1 − q
2

b̃2
m −

γ1b̃2q
m

2
− γ2

1 − q
2

Θ̃2.

−
γ2Θ̃

2q

2
+

1
4

K2
1 +

1
4

S 2 −
c̄

2λ0q
rq −

c̄r
2λ0

+ Q(y, r) + C1,

(3.63)

where
C1 =

5
4

+ b2
max +

σ1

2
θ2

1 +
σ1(1 − q)

2
+
γ1

2
b2

m +
γ1(1 − q)

2
+
γ2

2
Θ2 +

γ2(1 − q)
2

+
a2

1

2
+

d
λ0

+

(
h − 9

4

)
(1 − q)

2λmax(p)q
+

c̄(1 − q)
2λ0q

+ ‖p‖2ϑ∗0.

For i = 2, the first-order filter is designed as follows:

τiω̇i = sig (αi−1 − ωi)2q−1 + sig (αi−1 − ωi) − ω̇i

=
1
τi
|yi|

2q−1 sgn (yi) +
1
τi
|yi| sgn (yi)

≤
1
τ2

i

|yi|
4p−2 +

1
τ2

i

y2
i +

1
2
,

(3.64)

where τi > 0 is a design constant.
Step i (where 2 ≤ i ≤ s − 1 ), define the i th dynamic layer as:

zi = vm,i − ωi −λ̄i. (3.65)

The time derivative of the dynamic layer zi is expressed as:

żi = v̇m,i − ω̇i − ˙ωi −λ̄i

= zi+1 + yi+1 + αi − livm,1 − ω̇i + ciωi −λ̄i.
(3.66)

A Lyapunov function is selected as

Vi = Vi−1 +
1
2

z2
i +

1
2
θ̃2

i +
1
2

y2
i . (3.67)

Take the derivative of Vi about t and get:

V̇i = V̇i−1 + ziżi − θ̃i
˙̂θi + yiẏi

= V̇i−1 + zi
(
zi+1 + yi+1 + αi − livm,1 − ω̇i + ciωi −λ̄i

)
− θ̃i

˙̂θi + yiẏi.
(3.68)

Based on Eqs (3.70) and (3.71), we can further simplify Eq (3.69):

V̇i ≤ V̇i−1 + zi

(
zi+1 + yi+1 + αi − livm,1 +

1
τ2

i

|yi|
4p−2 +

1
τ2

i

y2
i +

1
2

+ ciλ̄i

)
− θ̃i

˙̂θi + yiẏi. (3.69)
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Applying Young’s inequality, we find:

zizi+1 ≤
1
4

z2
i + z2

i+1, (3.70)

ziyi+1 ≤
1
4

z2
i + y2

i+1. (3.71)

Using Lemma 5 Young’s inequality, Eq (3.69) can be transformed as follows:

V̇i ≤ V̇i−1 + zi

(
zi+1 + yi+1 + αi − livm,1 +

1
τ2

i

|yi|
4p−2 +

1
τ2

i

y2
i +

1
2

+ ciλ̄i

)
− θ̃i

˙̂θi + yiẏi

≤ V̇i−1 + zi

(
1
2

zi + αi − livm,1 +
1
τ2

i

|yi|
4p−2 +

1
τ2

i

y2
i +

1
2

+ ciλ̄i

)
− θ̃i

˙̂θi + yiẏi + z2
i+1 + y2

i+1.

(3.72)

Let
Hi (Xi) =

1
τ2

i

|yi|
4p−2 +

1
τ2

i

y2
i +

1
2

+ ciλ̄i + |zi|
2q−1 ,

where Xi =
[
zi, yi, λi

]T , then

V̇i ≤ V̇i−1 + zi

(
1
2

zi + αi − livm,1 + W∗T
hi ψi (Xi) + Bi (Xi)

)
− θ̃i

˙̂θi + yiẏi + z2
i+1 + y2

i+1 − |zi|
2q .

(3.73)

Using Young’s inequality as shown in Eq (3.74), we can transform Eq (3.73) into:

ziW∗T
hi ψi (Xi) ≤

‖ψi (Xi)‖2 z2
i θi

2a2
i

+
a2

i

2
, (3.74)

where ai > 0 serves as a design constant that helps balance the trade-off between the growth of the
Lyapunov function due to the nonlinearity in the system and the control effort.

V̇i ≤ V̇i−1 + zi

(
1
2

zi + αi − livm,1 +
‖ψi (Xi)‖2 ziθi

2a2
i

+ Bi (Xi)
)

− θ̃i
˙̂θi + yiẏi + z2

i+1 + y2
i+1 − |zi|

2q +
a2

i

2
.

(3.75)

The virtual control law is designed as follows:

αi = −

(
ki +

5
2

)
zi + livm,1

‖ψi (Xi)‖2 ziθ̂i

2a2
i

. (3.76)

The adaptive law is designed as follows:

˙̂θi =
‖ψi (Xi)‖2 z2

i

2a2
i

− σiθ̂i, (3.77)
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where ki > 0, σi > 0 is the design constant.
Substituting the Eqs (3.76) and (3.77) into the Eq (3.75), we get

V̇i ≤ V̇i−1 + ziBi (Xi) + σiθ̃iθ̂i + yiẏi + z2
i+1 + y2

i+1 − |zi|
2q +

a2
i

2
− 2z2

i

≤ V̇i−1 + ziBi (Xi) + yiẏi + z2
i+1 + y2

i+1 − |zi|
2q +

a2
i

2
− 2z2

i

− σi
1 − q

2
θ̃2

i +
σi

2
θ2

i −
σiθ̃

2q
i

2
+
σi(1 − q)

2
.

(3.78)

There is a nonnegative continuous function Ki (zi, yi, λi), which makes |Bi (Xi)| ≤ Ki (zi, yi, λi).
From Young’s:

ziBi (Xi) ≤ z2
i +

1
4

K2
i . (3.79)

Based on Eqs (3.79) and (3.78) can be reformulated as:

V̇i ≤ V̇i−1 + yiẏi + z2
i+1 + y2

i+1 − |zi|
2q +

a2
i

2
− z2

i − kiz2
i

− σi
1 − q

2
θ̃2

i +
σi

2
θ2

i −
σiθ̃

2q
i

2
+
σi(1 − q)

2
+

1
4

K2
i

≤ −
h − 9

4

2λmax(p)q

(
εT pε

)q
−

h − 9
4

2λmax(p)
εT pε +

1
4

S 2 −
c̄

2λ0q
rq −

c̄r
2λ0

+ Q(y, r) − γ1
1 − q

2
b̃2

m −
γ1b̃2q

m

2
− γ2

1 − q
2

Θ̃2 −
γ2Θ̃

2q

2
−

i∑
j=2

k jz2
j

−

(
k1 −

b2
max

2

)
z2

1 −

i∑
j=1

∣∣∣z j

∣∣∣2q
−

i∑
j=1

σ j
1 − q

2
θ̃2

j −

i∑
j=1

σ jθ̃
2q
j

2
+

i∑
j=1

(
1
4

K2
j + C j

)

+

i−1∑
j=1

[
−

1
τ j

∣∣∣y j

∣∣∣2q
−

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
+ yiẏi + z2

i+1 + y2
i+1 + y2

i ,

(3.80)

where

Ci =
a2

i

2
+
σi

2
θ2

i +
σi(1 − q)

2
.

The first-order nonlinear filter is introduced as follows:

ω̇i = −
1
τi

sig (yi)2q−1
−

1
τi

sig (yi) , (3.81)

where τi is a positive design constant, αi−1 and ωi are the input and output of the first-order
filter, respectively.

Assuming the existence of a non-negative continuous function ηi

(
z̄i, ȳi, θ̂i, b̂m, Θ̂, yd, ẏd, ÿd, r, π̄i

)
, it

can be stated that:
|−α̇i−1| ≤ ηi

(
z̄i, ȳi, θ̂i, b̂m, Θ̂, yd, ẏd, ÿd, r, λ̄i

)
, (3.82)
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yiẏi = yi (ω̇i − α̇i−1)

= −
1
τi
|yi|

2q
−

1
τi

y2
i − yiα̇i−1

≤ −
1
τi
|yi|

2q
−

1
τi

y2
i + y2

i +
1
4
η2

i .

(3.83)

Substituting the Eq (3.83) into the Eq (3.80)

V̇i ≤ −
h − 9

4

2λmax(p)q

(
εT pε

)q
−

h − 9
4

2λmax(p)
εT pε +

1
4

S 2 −
c̄

2λ0q
rq −

c̄r
2λ0

+ Q(y, r) − γ1
1 − q

2
b̃2

m −
γ1b̃2q

m

2
− γ2

1 − q
2

Θ̃2 −
γ2Θ̃

2q

2
−

i∑
j=2

k jz2
j

−

(
k1 −

b2
max

2

)
z2

1 −

i∑
j=1

∣∣∣z j

∣∣∣2q
−

i∑
j=1

σ j
1 − q

2
θ̃2

j −

i∑
j=1

σ jθ̃
2q
j

2
+

i∑
j=1

(
1
4

K2
j + C j

)

+

i∑
j=1

[
−

1
τ j

∣∣∣y j

∣∣∣2q
−

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
+ z2

i+1 + y2
i+1.

(3.84)

Here is a reformulated expression of your description of a first-order filter:

τsω̇s = sig (αs−1 − ωs)2q−1 + sig (αs−1 − ωs)

=
1
τs
|ys|

2q−1 sgn (ys) +
1
τs
|ys| sgn (ys) − ω̇s

≤
1
τ2

s
|ys|

4p−2 +
1
τ2

s
y2

s +
1
2
,

(3.85)

where ωs is the output of the first-order filter with αs−1 as input, and τs > 0 is a design constant.
Step ρ: Define the ρ th dynamic surface

zρ = vm,ρ − ωρ −λ̄ρ. (3.86)

The derivative of zρ with respect to time t is

żρ = v̇m,ρ − ω̇ρ − λ̇ρ

= vm,ρ+1 − lρvm,1 − ω̇ρ + cρλ̄ρ + q(v).
(3.87)

Select a Lyapunov function as:

Vρ = Vρ−1 +
1
2

z2
ρ +

1
2
θ̃2
ρ +

1
2

y2
ρ. (3.88)

The design control law is as follows:

v = −
(
kρ + 3

)
zρ − vm,ρ+1 + lρvm,1 −

∥∥∥∥ψρ (Xρ

)∥∥∥∥2
zρθ̂ρ

2a2
ρ

. (3.89)
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An adaptive law is designed as follows:

˙̂θρ =

∥∥∥∥ψρ (Xρ

)∥∥∥∥2
z2
ρ

2a2
ρ

− σρθ̂ρ, (3.90)

where kρ > 0, and σρ > 0 are design constants.
The proof process of ρ step is similar to the previous one, so I won’t repeat it here. Therefore, the

derivative of Vρ is

V̇ρ ≤ −
h − 9

4

2λmax(p)q

(
εT pε

)q
−

h − 9
4

2λmax(p)
εT pε +

1
4

S 2 −
c̄

2λ0q
rq −

c̄r
2λ0

+ Q(y, r) − γ1
1 − q

2
b̃2

m −
γ1b̃2q

m

2
− γ2

1 − q
2

Θ̃2 −
γ2Θ̃

2q

2
−

ρ∑
j=2

k jz2
j

−

(
k1 −

b2
max

2

)
z2

1 −

ρ∑
j=1

∣∣∣z j

∣∣∣2q
−

ρ∑
j=1

σ j
1 − q

2
θ̃2

j −

ρ∑
j=1

σ jθ̃
2q
j

2
+

ρ∑
j=1

(
1
4

K2
j + C j

)

+

ρ∑
j=2

[
−

1
τ j

∣∣∣y j

∣∣∣2q
−

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
.

(3.91)

3.4. Stability analysis

The compact set Ω is specified by the vector components:

Ω =

{[
z̄ρ, ȳρ, θ̂ρ, b̂m, Θ̂, r, ε

]T
: V = Vρ ≤ P

}
, (3.92)

where P represents any positive constant. On the compact set Ω × Ωd, the non-negative continuous
function ηi(·) attains a maximum value of Mi. The non-negative continuous function Ki(·) reaches a
maximum value of Ni on the same set, and the non-negative continuous function S achieves a maximum
value of N0 on this set.
Theorem 1. Consider a closed-loop system composed of system Eq (2.1), control law Eq (3.89),
virtual control laws Eqs (3.76) and (3.43), along with adaptive laws Eqs (3.44)–(3.46), Eqs (3.77)
and (3.90). If Assumptions 1–4 hold, and the initial condition satisfies V(0) ≤ P, by appropriately
choosing positive constants ki, τi, σi, γ1, γ2, h, c̄, the boundedness of all signals within the closed-loop
system can be ensured. Furthermore, the design constants ki, τi, σi, γ1, γ2, h, c̄, the boundedness of all
signals within the system can be ensured, achieving practically finite-time stability.

k1 ≥
b2

max
2 + α0

2 , h >
9
4 , σi > 0, γ1 > 0, c̄ > 0, γ2 > 0, i = 1, · · · , ρ

k j ≥
α0
2 ,

1
τ j
≥ 2, j = 2, · · · , ρ

α0 ≤ min
{
σi(1 − q), h− 9

4
2λmax(p) , γ1(1 − q), γ2(1 − q), c̄

2 ,
1
τ j
− 2

}
β0 ≤ min

{
2q, 2q−1σi,

h− 9
4

2λmax(p)q , γ12q−1, γ221−q,
c̄λq−1

0
2q , 1

τ j
2q

} . (3.93)

The Lyapunov function is defined as follows:

V = Vρ = Vε +
r
λ0

+

ρ∑
i=1

1
2

z2
i +

ρ∑
i=1

1
2
θ̃2

i +

ρ∑
i=1

1
2

y2
i +

1
2

b̃2
m +

1
2

Θ̃2. (3.94)
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The time derivative of V is

V̇ ≤ −
h − 9

4

2λ̄max(p)q

(
εT pε

)q
−

h − 9
4

2λ̄max(p)
εT pε −

c̄
2λ̄0q

rq −
c̄r
2λ̄0

+ Q(y, r) − γ1
1 − q

2
b̃2

m −
γ1b̃2q

m

2
− γ2

1 − q
2

Θ̃2 −
γ2Θ̃

2q

2
−

ρ∑
i=2

kiz2
i

−

(
k1 −

b2
max

2

)
z2

1 −

ρ∑
i=1

|zi|
2q
−

ρ∑
i=1

σi
1 − q

2
θ̃2

i −

ρ∑
i=1

σiθ̃
2q
i

2
+

ρ∑
i=1

(
1
4

N2
i + Ci

)
+

ρ∑
i=2

[
−

1
τi
|yi|

2q
−

(
1
τi
− 2

)
y2

i +
1
4

M2
i

]
+

1
4

N2
0

≤

− ρ∑
i=2

kiz2
i −

(
k1 −

b2
max

2

)
z2

1 −
h − 9

4

2λ̄max(p)
εT pε −

c̄r
2λ̄0
− γ1

1 − q
2

b̃2
m

−γ2
1 − q

2
Θ̃2 −

ρ∑
i=1

σi
1 − q

2
θ̃2

i −

ρ∑
i=2

(
1
τi
− 2

)
y2

i

 +

− h − 9
4

2λ̄max(p)q

(
εT pε

)q

−
c̄

2λ̄0q
rq −

γ1b̃2q
m

2
−
γ2Θ̃

2q

2
−

ρ∑
i=1

|zi|
2q
−

ρ∑
i=1

σiθ̃
2q
i

2
−

ρ∑
i=2

1
τi
|yi|

2q

 + C + Q(y, r),

(3.95)

where

C =

ρ∑
i=1

(
1
4

N2
i + Ci

)
+

ρ∑
i=2

1
4

M2
i +

1
4

N2
0 · (3.96)

If V(t) ≤ P, then the variables z̄ρ, ȳρ, θ̂ρ, b̂m, Θ̂, r, ε, y are all bounded. From the equation z1 =

y − yd −λ̄1, it is evident thatλ̄1 is bounded. Furthermore, according to Eq (3.26), λi is confirmed to be
bounded. Based on Eq (3.17), it is known that ζ and Ξ are bounded as well. From system Eq (2.1) and
the third expression in Eq (3.17), it can be seen that

λi =
si−1 + l1si−2 + · · · + li−1

L(s)B(s)

dny
dtn −

n∑
i=1

dn−1y
dtn−1

[
fi(y) + di(ξ, y, t)

] . (3.97)

Given that L(s) = |sI − A0| = sn + l1sn−1 + · · · + ln−1s + ln, and considering that fi(y) and di(ξ, y, t) are
smooth functions, it follows that the values λ1, · · · , λm+1 are bounded. In conjunction with Eq (3.13),
this ensures that the variables vm,1, vm−1,2, . . . , v0,2 are also bounded. From Eq (3.43), we can see that
α1 is bounded. With vm,2 = z2 + y2 + α1 + λ1, it is clear that vm,2 is bounded. Referring to Eq (3.89), we
find that the control law is also bounded. Consequently, Eq (3.95) can be simplified as follows:

V̇ ≤ −α0V − β0Vq + C + Q(y, r). (3.98)

Given that Q(y, r) is a non-negative continuous function and the variables y and r are bounded, it
follows that Q(y, r) is likewise bounded. Consequently, there is an unknown positive constant µ0 such
that Q(y, r) ≤ µ0. Hence, Eq (3.98) can be simplified as follows:

Where
C̄ = C + µ0.
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If V = P and α0 >
C̄
P , then V̇n ≤ 0. If at the initial time V(0) ≤ P, then for any t > 0,V(t) ≤ P. Multiply

both sides of Eq (3.98) by eα0t and then integrate over the interval [0, t] :

0 ≤ V(t) ≤
C̄
α0

+

[
V(0) −

C̄
α0

]
e−α0t. (3.99)

According to Eqs (3.94) and (3.99), and Lemma 2, the settling time T0 can be estimated as less than or
equal to 1

α0(1−q) ln α0V1−q(x0)+vβ0

α0(C̄/((1−q)β0))(1−q)/q
+vβ0

. This formula provides an upper bound on the time required for

the system’s state to reach a predefined neighborhood of the equilibrium under the specified conditions.

|z1| ≤

√
2C̄
α0

+ 2
[
V(0) −

C̄
α0

]
e−α0t. (3.100)

4. Numerical examples

To assess the efficacy of the control strategy introduced in this research, we explore a particular
scenario: An output feedback nonlinear system characterized by unmodeled dynamics and quantized
input delays. Through detailed analysis of this system, we aim to comprehensively evaluate the
performance of the proposed control approach in real-world settings.

ζ̇ = −2ζ + y sin t + 0.5
ẋ1 = x2 + x1e−0.5x1 + 0.5x1ζ sin (x1t)

ẋ2 = x1x2
2 + (3 − cos (x1x2)) q(v(t − τ)) + 0.1ζ2 cos (0.5x2t)

y = x1

. (4.1)

Select the desired signal as
yd = 0.5 sin(t) + 0.5 sin(0.5t). (4.2)

The design of k filter is as follows

Υ̇1 = −l1Υ1 + Υ2 + l1y
Υ̇2 = −l2Υ1 + l2y
Ξ̇1 =

[
−l1 1

]
Ξ +

[
φT

1 (y) 01×M1

]
Ξ̇2 =

[
−l2 0

]
Ξ +

[
01×M2 φT

1 (y)
]

λ̇1 = −l1λ1 + λ2

λ̇2 = −l2λ1 + q(v(t − τ))

. (4.3)

The auxiliary system is described as follows:{ ˙̄λ1 =λ̄2 − c1λ̄1
˙̄λ2 = −c2λ̄2 + q(v(t − τ)) − q(v)

. (4.4)

The coordinate change design is as follows:{
z1 = y − yd −λ̄1

z2 = vm,2 − ω2 − ˆ̄λ2
. (4.5)

AIMS Mathematics Volume 9, Issue 11, 31553–31580.



31574

A virtual control law α1 is designed as follows:

α1 = −
b̂m

b̂2
m + β

(
(k1 + 3) z1 + Υ2 +$T Θ̂ +

‖ψ1 (X1)‖2 z1θ̂1

2a2
1

)
. (4.6)

The control law v is designed as follows:

v = − (k2 + 3) z2 − v0,2 + l2v0,1 −
‖ψ2 (X2)‖2 z2θ̂2

2a2
2

. (4.7)

The adaptive law of design parameters is as follows:

˙̂θ1 =
‖ψ1 (X1)‖2 z2

1

2a2
1

− σ1θ̂1. (4.8)

˙̂bm = z1α1 − γ1b̂m. (4.9)

˙̂Θ = $z1 − γ2Θ̂. (4.10)

˙̂θ2 =
‖ψ2 (X2)‖2 z2

2

2a2
2

− σ2θ̂2. (4.11)

In this study, we examine two dynamic systems X1 =
[
z1, yd, ẏd, λ1, λ2, r

]T and X2 =
[
z2, y2, λ2

]T .
The dynamic signal of the system is given by the following equation:

ṙ = −r + 1.5x4
1 + 0.8. (4.12)

For the simulation and analysis of the system, we set a series of initial conditions and parameter
values. The initial state is set to: x1(0) = 0.1, x2(0) = 0.1, θ̂1(0) = 0, θ̂2(0) = 0, ω2(0) = 0.1, r(0) = 0.1,
λ1(0) = 0, λ2(0) = 0, ζ1(0) = 0.1, ζ2(0) = 0.1, Ξ(1)(0) = 0,Ξ(2)(0) = 0, λ1(0) = λ2(0) = 0. The design
parameters are selected as follows: a1 = a2 = 1, σ1 = σ2 = 0.001, τ2 = 0.25, γ1 = γ2 = 0.001,
q = 0.6, n1 = n2 = 10, l1 = l2 = 10, β = 0.3, c1 = 3.8, c2 = 2, p = 3

17 , b̂m(0) = 3, vmin = 0.2, vth = v10
1−δ ,

δ =
1−p
1+p , vmin = p1−ivmin, i = 1, 2, · · · ,∞, k1 = 15, k2 = 30.

The simulation results depicted in Figures 1–4 demonstrate various aspects of the system’s
performance. Figure 1 shows the actual output y (solid line) closely mirroring the desired trajectory
yd (dotted line), with slight discrepancies indicating the system’s capability to approximate the target
trajectory effectively. In Figure 2, we compare the original control signal v(t − τ) (dotted line) against
its quantized version q(v(t− τ)) (solid line), where the quantized signal reveals notable abrupt changes,
underscoring the effects of quantization. Figure 3 displays the tracking error e1, which fluctuates
around zero, suggesting competent tracking despite transient peaks. Last, Figure 4 illustrates the raw,
unquantized control signal v(t − τ), characterized by intense fluctuations and spikes, indicative of the
system’s responsiveness to dynamic changes and corrective actions in real-time.
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Figure 1. Output y (solid line) and expected trajectory yd (dotted line).
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Figure 2. Control signal v(t− τ) (dotted line) Quantizes control signal q(v(t− τ)) (solid line).
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Figure 3. Tracking signal e1.
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Figure 4. Control signal v(t − τ).
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5. Conclusions

We introduce a novel adaptive dynamic surface control approach designed for nonlinear systems
with complex attributes such as unmodeled dynamics, quantized input delays, and dynamic
uncertainties. We integrate dynamic signal processing methods to tackle the unmodeled dynamics,
thus enhancing the adaptability and robustness of our control strategy. Furthermore, the incorporation
of Young’s inequality and neural networks into our strategy bolsters its ability to manage inequality
constraints and adapt to dynamic uncertainties effectively. An auxiliary function has also been
introduced to mitigate the effects of quantized delays, thereby maintaining system performance.
Theoretical analysis alongside simulation results affirm that our control strategy ensures all signals
remain within bounded limits, showcasing robust control performance amidst complex dynamics.
Looking ahead, we plan to extend our research by exploring the integration of more advanced
filtering techniques and enhancing the neural network models to increase the control strategy’s
efficiency and reliability.
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