Research article Special Issues

Numerical analysis of the frequency-dependent Jiles-Atherton hysteresis model using the example of Terfenol-D material

  • Received: 18 September 2024 Revised: 30 October 2024 Accepted: 31 October 2024 Published: 06 November 2024
  • MSC : 34A34, 34C55, 65L03, 65L05, 74N30

  • The Jiles-Atherton model has been widely used in describing the hysteretic property of a magnetic material or device. However, the calculation errors are not so easily discovered. With a complex expression, the frequency-dependent Jiles-Atherton model should be solved numerically with appropriate settings. This paper proposes an effective solving method for this model and describes some necessary analysis built on the numerical results. In the numerical method proposed in this manuscript, the anhysteretic magnetization was calculated by the secant method, and the trapezoidal rule was utilized to form the implicit function, which can be calculated by the fixed-point iteration. Compared to the other common methods, the proposed one has a friendly expression and fast computation speed. The Terfenol-D material was taken as an example for the numerical analysis. The feasible region was determined and the commonly used approximation that neglects the term of the magnetic field when calculating the magnetic induction intensity was tested. At last, the required number of sampling points per period was reached to guarantee high precision from analyzing its influence on the computation precision. The proposed numerical method is helpful for high-precision solutions of the frequency-dependent Jiles-Atherton model. The results from the numerical analysis can also help users avoid some incorrect calculations when employing this hysteresis model.

    Citation: Cheng Zhang, Guangming Xue. Numerical analysis of the frequency-dependent Jiles-Atherton hysteresis model using the example of Terfenol-D material[J]. AIMS Mathematics, 2024, 9(11): 31532-31552. doi: 10.3934/math.20241517

    Related Papers:

  • The Jiles-Atherton model has been widely used in describing the hysteretic property of a magnetic material or device. However, the calculation errors are not so easily discovered. With a complex expression, the frequency-dependent Jiles-Atherton model should be solved numerically with appropriate settings. This paper proposes an effective solving method for this model and describes some necessary analysis built on the numerical results. In the numerical method proposed in this manuscript, the anhysteretic magnetization was calculated by the secant method, and the trapezoidal rule was utilized to form the implicit function, which can be calculated by the fixed-point iteration. Compared to the other common methods, the proposed one has a friendly expression and fast computation speed. The Terfenol-D material was taken as an example for the numerical analysis. The feasible region was determined and the commonly used approximation that neglects the term of the magnetic field when calculating the magnetic induction intensity was tested. At last, the required number of sampling points per period was reached to guarantee high precision from analyzing its influence on the computation precision. The proposed numerical method is helpful for high-precision solutions of the frequency-dependent Jiles-Atherton model. The results from the numerical analysis can also help users avoid some incorrect calculations when employing this hysteresis model.



    加载中


    [1] A. G. Maslovskaya, L. I. Moroz, A. Y. Chebotarev, A. E. Kovtanyuk, Theoretical and numerical analysis of the Landau-Khalatnikov model of ferroelectric hysteresis, Commun. Nonlinear Sci., 93 (2021), 105524. https://doi.org/10.1016/j.cnsns.2020.105524 doi: 10.1016/j.cnsns.2020.105524
    [2] A. Chandra, B. Daniels, M. Curti, K. Tiels, E. A. Lomonova, D. M. Tartakovsky, Discovery of sparse hysteresis models for piezoelectric materials, Appl. Phys. Lett., 122 (2023), 214101. https://doi.org/10.1063/5.0146134 doi: 10.1063/5.0146134
    [3] L. Chen, Y. Feng, R. Li, X. Chen, H. Jiang, Jiles-Atherton based hysteresis identification of shape memory alloy-actuating compliant mechanism via modified particle swarm optimization algorithm, Complexity, 2019 (2019), 7465461. https://doi.org/10.1155/2019/7465461 doi: 10.1155/2019/7465461
    [4] E. Abreu, A. Bustos, P. Ferraz, W. Lambert, A relaxation projection analytical-numerical approach in hysteretic two-phase flows in porous media, J. Sci. Comput., 79 (2019), 1936–1980. https://doi.org/10.1007/s10915-019-00923-4 doi: 10.1007/s10915-019-00923-4
    [5] G. Quaranta, W. Lacarbonara, S. F. Masri, A review on computational intelligence for identification of nonlinear dynamical systems, Nonlinear Dyn., 99 (2020), 1709–1761. https://doi.org/10.1007/s11071-019-05430-7 doi: 10.1007/s11071-019-05430-7
    [6] P. Folhento, M. Braz-César, R. Barros, Cyclic response of a reinforced concrete frame: Comparison of experimental results with different hysteretic models, AIMS Mater. Sci., 8 (2021), 917–931. https://doi.org/10.3934/matersci.2021056 doi: 10.3934/matersci.2021056
    [7] V. D. Santis, A. D. Francesco, A. G. D'Aloia, A numerical comparison between Preisach, J-A and D-D-D hysteresis models in computational electromagnetics, Appl. Sci., 13 (2023), 5181. https://doi.org/10.3390/app13085181 doi: 10.3390/app13085181
    [8] D. C. Jiles, D. L. Atherton, Theory of ferromagnetic hysteresis, J. Magn. Magn. Mater., 61 (1986), 48–60. https://doi.org/10.1016/0304-8853(86)90066-1 doi: 10.1016/0304-8853(86)90066-1
    [9] B. Upadhaya, P. Rasilo, L. Perkki, P. Handgruber, A. Benabou, A. Belahcen, et al., Alternating and rotational loss prediction accuracy of vector Jiles-Atherton model, J. Magn. Magn. Mater., 527 (2021), 167690. https://doi.org/10.1016/j.jmmm.2020.167690 doi: 10.1016/j.jmmm.2020.167690
    [10] M. Brokate, On the moving Preisach model, Math. Method. Appl. Sci., 15 (1992), 145–157. https://doi.org/10.1002/mma.1670150302 doi: 10.1002/mma.1670150302
    [11] M. X. Tian, H. C. Li, H. Y. Zhang, Neural network model for magnetization characteristics of ferromagnetic materials, IEEE Access, 9 (2021), 71236–71243. https://doi.org/10.1109/access.2021.3078554 doi: 10.1109/access.2021.3078554
    [12] Y. Yang, S. Wang, B. Zhu, R. Wang, Y. Lu, L. Jiang, et al., A method to study the influence of background magnetic field on magnetic cores: measurement, parameter identification and discussion, Measurement, 220 (2023), 113329. https://doi.org/10.1016/j.measurement.2023.113329 doi: 10.1016/j.measurement.2023.113329
    [13] D. C. Jiles, D. L. Atherton, Theory of ferromagnetic hysteresis, J. Appl. Phys., 55 (1984), 2115–2120. https://doi.org/10.1063/1.333582 doi: 10.1063/1.333582
    [14] D. C. Jiles, D. L. Atherton, Ferromagnetic hysteresis, IEEE Trans. Magn., 19 (1983), 2183–2185. https://doi.org/10.1109/TMAG.1983.1062594 doi: 10.1109/TMAG.1983.1062594
    [15] D. C. Jiles, Modelling the effects of eddy current losses on frequency dependent hysteresis in electrically conducting media, IEEE Trans. Magn., 30 (1994), 4326–4328. https://doi.org/10.1109/20.334076 doi: 10.1109/20.334076
    [16] B. Upadhaya, P. Rasilo, L. Perkkiö, P. Handgruber, A. Belahcen, A. Arkkio, Comparison of anisotropic energy-based and Jiles-Atherton models of ferromagnetic hysteresis, IEEE Trans. Magn., 56 (2020), 7300307. https://doi.org/10.1109/tmag.2020.2964745 doi: 10.1109/tmag.2020.2964745
    [17] X. Hu, Y. Bu, J. Zhang, A nonlinear magneto-elastoplastic coupling model based on Jiles-Atherton theory of ferromagnetic materials, J. Phys. D: Appl. Phys., 55 (2022), 165005. https://doi.org/10.1088/1361-6463/ac42f9 doi: 10.1088/1361-6463/ac42f9
    [18] J. Ji, Z. Zhao, Hysteresis characteristics prediction method of amorphous materials based on static Jiles-Atherton hysteresis model and Maxwell's equation, J. Magn. Magn. Mater., 588 (2023), 171460. https://doi.org/10.1016/j.jmmm.2023.171460 doi: 10.1016/j.jmmm.2023.171460
    [19] Y. Zhan, C. Lin, A constitutive model of coupled magneto-thermo-mechanical hysteresis behavior for giant magnetostrictive materials, Mech. Mater., 148 (2020), 103477. https://doi.org/10.1016/j.mechmat.2020.103477 doi: 10.1016/j.mechmat.2020.103477
    [20] X. J. Zheng, X. E. Liu, A nonlinear constitutive model for Terfenol-D rods, J. Appl. Phys., 97 (2005), 053901. https://doi.org/10.1063/1.1850618 doi: 10.1063/1.1850618
    [21] B. Zidaric, M. Zagirnyak, K. Lenasi, D. Miljavec, Hysteresis losses in soft magnetic composite materials, COMPEL, 25 (2006), 157–168. https://doi.org/10.1108/03321640610634416 doi: 10.1108/03321640610634416
    [22] B. Upadhaya, P. Rasilo, P. Handgruber, A. Belahcen, A. Arkkio, Finite element level validation of an anisotropic hysteresis model for non-oriented electrical steel sheets, J. Magn. Magn. Mater., 564 (2022), 169978. https://doi.org/10.1016/j.jmmm.2022.169978 doi: 10.1016/j.jmmm.2022.169978
    [23] R. Szewczyk, Application of Jiles-Atherton model for modelling magnetization characteristics of textured electrical steel magnetized in easy or hard axis, In: Progress in automation, robotics and measuring techniques, Cham: Springer, 2015,293–302.https://doi.org/10.1007/978-3-319-15796-2_30
    [24] A. H. S. Atyia, A. M. Ghanim, Limitations of Jiles-Atherton models to study the effect of hysteresis in electrical steels under different excitation regimes, COMPEL, 43 (2024), 66–79. https://doi.org/10.1108/compel-02-2023-0061 doi: 10.1108/compel-02-2023-0061
    [25] Y. Z. Ren, Y. H. Wang, C. C. Liu, Low-frequency electromagnetic transient modeling of shell-type transformers based on dynamic Jiles-Atherton hysteresis model, IEEE Trans. Magn., 60 (2024), 7300905. https://doi.org/10.1109/tmag.2024.3417021 doi: 10.1109/tmag.2024.3417021
    [26] R. A. Naghizadeh, B. Vahidi, S. H. Hosseinian, An adaptive approach for simulation of inrush current in three-phase transformers considering hysteresis effects, Electr. Pow. Compo. Syst., 44 (2016), 673–682. https://doi.org/10.1080/15325008.2015.1122102 doi: 10.1080/15325008.2015.1122102
    [27] M. Birsan, Simulation of a ship's deperming process using the Jiles-Atherton model, IEEE Trans. Magn., 57 (2021), 7300407. https://doi.org/10.1109/tmag.2021.3068555 doi: 10.1109/tmag.2021.3068555
    [28] J. Q. Chen, H. D. Shang, D. Xia, S. Wang, T. Peng, C. Y. Zang, A modified vector Jiles-Atherton hysteresis model for the design of hysteresis devices, IEEE Trans. Energy Conver., 38 (2023), 1827–1835. https://doi.org/10.1109/tec.2023.3243101 doi: 10.1109/tec.2023.3243101
    [29] U. Rupnik, A. Alic, D. Miljavec, Harmonization and validation of Jiles-Atherton static hysteresis models, Energies, 15 (2022), 6760. https://doi.org/10.3390/en15186760 doi: 10.3390/en15186760
    [30] H. Singh, S. D. Sudhoff, Reconsideration of energy balance in Jiles-Atherton model for accurate prediction of B-H trajectories in ferrites, IEEE Trans. Magn., 56 (2020), 7300608. https://doi.org/10.1109/tmag.2020.2994022 doi: 10.1109/tmag.2020.2994022
    [31] K. Chwastek, Modelling of dynamic hysteresis loops using the Jiles-Atherton approach, Math. Comp. Model. Dyn., 15 (2009), 95–105. https://doi.org/10.1080/13873950802432016 doi: 10.1080/13873950802432016
    [32] I. Belgasmi, M. Hamimid, Accurate hysteresis loops calculation under the frequency effect using the inverse Jiles-Atherton model, Adv. Electromagn., 9 (2020), 93–98. https://doi.org/10.7716/aem.v9i2.1515 doi: 10.7716/aem.v9i2.1515
    [33] H. Wu, G. Xue, H. Bai, Z. Ren, A new modeling methodology for frequency-dependent hysteresis from the perspective of phase lag and amplitude attenuation, Nonlinear Dyn., in press. https://doi.org/10.1007/s11071-024-10531-z
    [34] R. Szewczyk, Progress in development of Jiles-Atherton model of magnetic hysteresis, AIP Conf. Proc., 2131 (2019), 020045. https://doi.org/10.1063/1.5119498 doi: 10.1063/1.5119498
    [35] R. Malczyk, J. Izydorczyk, The frequency-dependent Jiles-Atherton hysteresis model, Physica B, 463 (2015), 68–75. https://doi.org/10.1016/j.physb.2015.01.034 doi: 10.1016/j.physb.2015.01.034
    [36] M. Nowicki, R. Szewczyk, T. Charubin, A. Marusenkov, A. Nosenko, V. Kyrylchuk, Modeling the hysteresis loop of ultra-high permeability amorphous alloy for space applications, Materials, 11 (2018), 2079. https://doi.org/10.3390/ma11112079 doi: 10.3390/ma11112079
    [37] Y. Li, P. Zhang, Z. He, G. Xue, D. Wu, S. Li, et al., A simple magnetization model for giant magnetostrictive actuator used on an electronic controlled injector, J. Magn. Magn. Mater., 472 (2019), 59–65. https://doi.org/10.1016/j.jmmm.2018.09.126 doi: 10.1016/j.jmmm.2018.09.126
    [38] G. Xue, H. Bai, T. Li, Z. Ren, Z. Wu, A new hysteresis model based on Weibull cumulative distribution function and Jiles-Atherton hysteresis model, Nonlinear Dyn., 112 (2024), 6403–6420. https://doi.org/10.1007/s11071-024-09394-1 doi: 10.1007/s11071-024-09394-1
    [39] G. Xue, H. Bai, T. Li, Z. Ren, X. Liu, C. Lu, Numerical solving method for Jiles-Atherton model and influence analysis of the initial magnetic field on hysteresis, Mathematics, 10 (2022), 4431. https://doi.org/doi:10.3390/math10234431 doi: 10.3390/math10234431
    [40] G. Xue, P. Zhang, Z. He, D. Li, Z. Yang, Z. Zhao, Modification and numerical method for the Jiles-Atherton hysteresis model, Commun. Comput. Phys., 21 (2017), 763–781. https://doi.org/10.4208/cicp.050615.300816a doi: 10.4208/cicp.050615.300816a
    [41] S. Azzaoui, K. Srairi, M. E. H. Benbouzid, Non linear magnetic hysteresis modelling by finite volume method for Jiles-Atherton model optimizing by a genetic algorithm, Journal of Electromagnetic Analysis and Applications, 3 (2011), 5351. https://doi.org/10.4236/jemaa.2011.36032 doi: 10.4236/jemaa.2011.36032
    [42] L. Perkkiö, B. Upadhaya, A. Hannukainen, P. Rasilo, Stable adaptive method to solve FEM coupled with Jiles-Atherton hysteresis model, IEEE Trans. Magn., 54 (2018), 7400208. https://doi.org/10.1109/TMAG.2017.2782214 doi: 10.1109/TMAG.2017.2782214
    [43] M. d'Aquino, G. Rubinacci, A. Tamburrino, S. Ventre, Three-dimensional computation of magnetic fields in hysteretic media with time-periodic sources, IEEE Trans. Magn., 50 (2014), 7001104. https://doi.org/10.1109/TMAG.2013.2284339 doi: 10.1109/TMAG.2013.2284339
    [44] B. Ducharne, J. Juuti, Y. Bai, A simulation model for narrow band gap ferroelectric materials, Adv. Theor. Simul., 3 (2020). https://doi.org/10.1002/adts.202000052 doi: 10.1002/adts.202000052
    [45] J. Chen, H. Zhang, T. Zhu, S. Pan, Trajectory tracking control of a manipulator based on an immune algorithm-optimized neural network in the presence of unknown backlash-like hysteresis, Appl. Math. Comput., 470 (2024), 128552. https://doi.org/10.1016/j.amc.2024.128552 doi: 10.1016/j.amc.2024.128552
    [46] X. Zhang, Y. Tan, M. Su, Modeling of hysteresis in piezoelectric actuators using neural networks, Mech. Syst. Signal Proc., 23 (2009), 2699–2711. https://doi.org/10.1016/j.ymssp.2009.05.002 doi: 10.1016/j.ymssp.2009.05.002
    [47] M. R. Zakerzadeh, S. Naseri, P. Naseri, Modelling hysteresis in shape memory alloys using LSTM recurrent neural network, J. Appl. Math., 2024 (2024), 1174438. https://doi.org/10.1155/2024/1174438 doi: 10.1155/2024/1174438
    [48] M. Chiampi, D. Chiarabaglio, M. Repetto, A Jiles-Atherton and fixed-point combined technique for time periodic magnetic field problems with hysteresis, IEEE Trans. Magn., 31 (1995), 4306–4311. https://doi.org/10.1109/20.488295 doi: 10.1109/20.488295
    [49] M. E. Mathekga, R. A. McMahon, A. M. Knight, Application of the fixed point method for solution in time stepping finite element analysis using the inverse vector Jiles-Atherton model, IEEE Trans. Magn., 47 (2011), 3048–3051. https://doi.org/10.1109/tmag.2011.2141655 doi: 10.1109/tmag.2011.2141655
    [50] L. Coelho, V. C. Mariani, J. V. Leite, Solution of Jiles-Atherton vector hysteresis parameters estimation by modified differential evolution approaches, Expert Syst. Appl., 39 (2012), 2021–2025. https://doi.org/10.1016/j.eswa.2011.08.035 doi: 10.1016/j.eswa.2011.08.035
    [51] E. Kokornaczyk, M. W. Gutowski, Anhysteretic functions for the Jiles-Atherton model, IEEE Trans. Magn., 51 (2015), 7300305. https://doi.org/10.1109/TMAG.2014.2354315 doi: 10.1109/TMAG.2014.2354315
    [52] A. Grunwald, A. G. Olabi, Design of a magnetostrictive (MS) actuator, Sensor. Actuat. A-Phys., 144 (2008), 161–175. https://doi.org/10.1016/j.sna.2007.12.034 doi: 10.1016/j.sna.2007.12.034
    [53] F. Braghin, S. Cinquemani, F. Resta, A low frequency magnetostrictive inertial actuator for vibration control, Sensor. Actuat. A-Phys., 180 (2012), 67–74. https://doi.org/10.1016/j.sna.2012.03.015 doi: 10.1016/j.sna.2012.03.015
    [54] M. Hamel, A. Nait Ouslimane, F. Hocini, A study of Jiles-Atherton and the modified arctangent models for the description of dynamic hysteresis curves, Physica B, 638 (2022), 413930. https://doi.org/10.1016/j.physb.2022.413930 doi: 10.1016/j.physb.2022.413930
    [55] S. Gans, J. Molnár, D. Kovác, Estimation of Jiles-Atherton parameters of toroid cores using Matlab/simulink, Acta Phys. Pol. A, 143 (2023), 389–399. https://doi.org/10.12693/APhysPolA.143.389 doi: 10.12693/APhysPolA.143.389
    [56] D. C. Jiles, Frequency dependence of hysteresis curves in conducting magnetic materials, J. Appl. Phys., 76 (1994), 5849–5855. https://doi.org/10.1063/1.358399 doi: 10.1063/1.358399
    [57] K. Chwastek, Frequency behaviour of the modified Jiles-Atherton model, Physica B, 403 (2008), 2484–2487. https://doi.org/10.1016/j.physb.2008.01.010 doi: 10.1016/j.physb.2008.01.010
    [58] Y. Li, J. G. Zhu, L. H. Zhu, Y. J. Li, G. Lei, A dynamic magnetostriction model of grain-oriented sheet steels based on Becker-Doring crystal magnetization model and Jiles-Atherton theory of magnetic hysteresis, IEEE Trans. Magn., 56 (2020), 7511405. https://doi.org/10.1109/tmag.2019.2953887 doi: 10.1109/tmag.2019.2953887
    [59] Y. Liu, X. Gao, Y. Li, Giant magnetostrictive actuator nonlinear dynamic Jiles-Atherton model, Sensor. Actuat. A-Phys., 250 (2016), 7–14. https://doi.org/10.1016/j.sna.2016.09.009 doi: 10.1016/j.sna.2016.09.009
    [60] P. Shi, Magneto-elastoplastic coupling model of ferromagnetic material with plastic deformation under applied stress and magnetic fields, J. Magn. Magn. Mater., 512 (2020), 166980. https://doi.org/10.1016/j.jmmm.2020.166980 doi: 10.1016/j.jmmm.2020.166980
    [61] Z. Jia, H. Liu, F. Wang, C. Ge, Research on a novel force sensor based on giant magnetostrictive material and its model, J. Alloy. Compd., 509 (2011), 1760–1767. https://doi.org/10.1016/j.jallcom.2010.10.035 doi: 10.1016/j.jallcom.2010.10.035
    [62] K. Chwastek, J. Szczyglowski, M. Najgebauer, A direct search algorithm for estimation of Jiles-Atherton hysteresis model parameters, Mat. Sci. Eng. B, 131 (2006), 22–26. https://doi.org/10.1016/j.mseb.2005.11.030 doi: 10.1016/j.mseb.2005.11.030
    [63] V. Recupero, Sobolev and strict continuity of general hysteresis operators, Math. Method. Appl. Sci., 32 (2009), 2003–2018. https://doi.org/10.1002/mma.1124 doi: 10.1002/mma.1124
    [64] S. Hussain, D. A. Lowther, Prediction of iron losses using Jiles-Atherton model with interpolated parameters under the conditions of frequency and compressible stress, IEEE Trans. Magn., 52 (2016), 7300404. https://doi.org/10.1109/TMAG.2015.2487975 doi: 10.1109/TMAG.2015.2487975
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(119) PDF downloads(31) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog