Multi-term fractional diffusion equations can be regarded as a generalisation of fractional diffusion equations. In this paper, we develop an efficient meshless method for solving the multi-term time-space fractional diffusion equation. First, we use the Laplace transform method to deal with the multi-term time fractional operator, we transform the time into complex frequency domain by Laplace transform. The properties of the Laplace transform with respect to fractional-order operators are exploited to deal with multi-term time fractional-order operators, overcoming the dependence of fractional-order operators with respect to time and giving better results. Second, we proposed a meshless method to deal with space fractional operators on convex region based on quintic Hermite spline functions based on the theory of polynomial functions dense theorem. Meanwhile, the approximate solution of the equation is obtained through theory of the minimum residual approximate solution, and the error analysis are provided. Third, we obtain the numerical solution of the diffusion equation by inverse Laplace transform. Finally, we first experimented with a single space-time fractional-order diffusion equation to verify the validity of our method, and then experimented with a multi-term time equation with different parameters and regions and compared it with the previous method to illustrate the accuracy of our method.
Citation: Zihan Yue, Wei Jiang, Boying Wu, Biao Zhang. A meshless method based on the Laplace transform for multi-term time-space fractional diffusion equation[J]. AIMS Mathematics, 2024, 9(3): 7040-7062. doi: 10.3934/math.2024343
Multi-term fractional diffusion equations can be regarded as a generalisation of fractional diffusion equations. In this paper, we develop an efficient meshless method for solving the multi-term time-space fractional diffusion equation. First, we use the Laplace transform method to deal with the multi-term time fractional operator, we transform the time into complex frequency domain by Laplace transform. The properties of the Laplace transform with respect to fractional-order operators are exploited to deal with multi-term time fractional-order operators, overcoming the dependence of fractional-order operators with respect to time and giving better results. Second, we proposed a meshless method to deal with space fractional operators on convex region based on quintic Hermite spline functions based on the theory of polynomial functions dense theorem. Meanwhile, the approximate solution of the equation is obtained through theory of the minimum residual approximate solution, and the error analysis are provided. Third, we obtain the numerical solution of the diffusion equation by inverse Laplace transform. Finally, we first experimented with a single space-time fractional-order diffusion equation to verify the validity of our method, and then experimented with a multi-term time equation with different parameters and regions and compared it with the previous method to illustrate the accuracy of our method.
[1] | O. Nave, Modification of semi-analytical method applied system of ODE, Mod. Appl. Sci., 14 (2020), 75–81. https://doi.org/10.5539/mas.v14n6p75 doi: 10.5539/mas.v14n6p75 |
[2] | F. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. Chu, Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations, Fractals, 30 (2022), 2240051. https://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515 |
[3] | M. Alqhtani, K. M. Owolabi, K. M. Saad, E. Pindza, Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology, Chaos Solitons Fract., 161 (2022), 112394. https://doi.org/10.1016/j.chaos.2022.112394 doi: 10.1016/j.chaos.2022.112394 |
[4] | M. A. Akbar, F. A. Abdullah, M. M. Khatun, Diverse geometric shape solutions of the time-fractional nonlinear model used in communication engineering, Alex. Eng. J., 68 (2023), 281–290. https://doi.org/10.1016/j.aej.2023.01.019 doi: 10.1016/j.aej.2023.01.019 |
[5] | H. Du, X. Yang, Z. Chen, Meshless method of solving multi-term time-fractional integro-differential equation, Appl. Math. Lett., 141 (2023), 108619. https://doi.org/10.1016/j.aml.2023.108619 doi: 10.1016/j.aml.2023.108619 |
[6] | A. Raheem, A. Afreen, A. Khatoon, Multi-term time-fractional stochastic system with multiple delays in control, Chaos Solitons Fract., 167 (2023), 112979. https://doi.org/10.1016/j.chaos.2022.112979 doi: 10.1016/j.chaos.2022.112979 |
[7] | S. Qin, F. Liu, I. Turner, V. Vegh, Q. Yu, Q. Yang, Multi-term time-fractional Bloch equations and application in magnetic resonance imaging, J. Comput. Appl. Math., 319 (2017), 308–319. https://doi.org/10.1016/j.cam.2017.01.018 doi: 10.1016/j.cam.2017.01.018 |
[8] | V. Srivastava, K. N. Rai, A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues, Math. Comput. Modell., 51 (2010), 616–624. https://doi.org/10.1016/j.mcm.2009.11.002 doi: 10.1016/j.mcm.2009.11.002 |
[9] | H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain, Comput. Math. Appl., 64 (2012), 3377–3388. https://doi.org/10.1016/j.camwa.2012.02.042 doi: 10.1016/j.camwa.2012.02.042 |
[10] | N. Kopteva, M. Stynes, A posteriori error analysis for variable-coefficient multiterm time-fractional subdiffusion equations, J. Sci. Comput., 92 (2022), 73. https://doi.org/10.1007/s10915-022-01936-2 doi: 10.1007/s10915-022-01936-2 |
[11] | A. S. Joujehi, M. H. Derakhshan, H. R. Marasi, An efficient hybrid numerical method for multi-term time fractional partial differential equations in fluid mechanics with convergence and error analysis, Commun. Nonlinear Sci. Numer. Simul., 114 (2022), 106620. https://doi.org/10.1016/j.cnsns.2022.106620 doi: 10.1016/j.cnsns.2022.106620 |
[12] | A. Ghafoor, N. Khan, M. Hussain, R. Ullah, A hybrid collocation method for the computational study of multi-term time fractional partial differential equations, Comput. Math. Appl., 128 (2022), 130–144. https://doi.org/10.1016/j.camwa.2022.10.005 doi: 10.1016/j.camwa.2022.10.005 |
[13] | W. Qiu, Optimal error estimate of an accurate second-order scheme for Volterra integrodifferential equations with tempered multi-term kernels, Adv. Comput. Math., 49 (2023), 43. https://doi.org/10.1007/s10444-023-10050-2 doi: 10.1007/s10444-023-10050-2 |
[14] | S. Hu, W. Qiu, H. Chen, A backward Euler difference scheme for the integro-differential equations with the multi-term kernels, Int. J. Comput. Math., 97 (2020), 1254–1267. https://doi.org/10.1080/00207160.2019.1613529 doi: 10.1080/00207160.2019.1613529 |
[15] | T. Guo, O. Nikan, Z. Avazzadeh, W. Qiu, Efficient alternating direction implicit numerical approaches for multi-dimensional distributed-order fractional integro differential problems, Comput. Appl. Math., 41 (2022), 236. https://doi.org/10.1007/s40314-022-01934-y doi: 10.1007/s40314-022-01934-y |
[16] | S. Guo, Y. Chen, L. Mei, Y. Song, Finite difference/generalized Hermite spectral method for the distributed-order time-fractional reaction-diffusion equation on multi-dimensional unbounded domains, Comput. Math. Appl., 93 (2021), 1–19. https://doi.org/10.1016/j.camwa.2021.04.002 doi: 10.1016/j.camwa.2021.04.002 |
[17] | W. M. Abd-Elhameed, Y. H. Youssri, A. K. Amin, A. G. Atta, Eighth-kind Chebyshev polynomials collocation algorithm for the nonlinear time-fractional generalized Kawahara equation, Fractal Fract., 7 (2023), 652. https://doi.org/10.3390/fractalfract7090652 doi: 10.3390/fractalfract7090652 |
[18] | M. Moustafa, Y. H. Youssri, A. G. Atta, Explicit Chebyshev Petrov-Galerkin scheme for time-fractional fourth-order uniform Euler-Bernoulli pinned-pinned beam equation, Nonlinear Eng., 12 (2023), 0308. https://doi.org/10.1515/nleng-2022-0308 doi: 10.1515/nleng-2022-0308 |
[19] | X. Peng, D. Xu, W. Qiu, Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers' equation, Math. Comput. Simul., 208 (2023), 702–726. https://doi.org/10.1016/j.matcom.2023.02.004 doi: 10.1016/j.matcom.2023.02.004 |
[20] | H. R. Marasi, M. H. Derakhshan, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model based on an efficient hybrid numerical method with stability and convergence analysis, Math. Comput. Simul., 205 (2023), 368–389. https://doi.org/10.1016/j.matcom.2022.09.020 doi: 10.1016/j.matcom.2022.09.020 |
[21] | M. Hussain, S. Haq, A. Ghafoor, Meshless spectral method for solution of time-fractional coupled KdV equations, Appl. Math. Comput., 341 (2019), 321–334. https://doi.org/10.1016/j.amc.2018.09.001 doi: 10.1016/j.amc.2018.09.001 |
[22] | J. Lin, J. Bai, S. Reutskiy, J. Lu, A novel RBF-based meshless method for solving time-fractional transport equations in 2D and 3D arbitrary domains, Eng. Comput., 39 (2022), 1905–1922. https://doi.org/10.1007/s00366-022-01601-0 doi: 10.1007/s00366-022-01601-0 |
[23] | H. Du, Z. Chen, Adaptive meshless numerical method of solving 2D variable order time fractional mobile-immobile advection-diffusion equations, Comput. Math. Appl., 124 (2022), 42–51. https://doi.org/10.1016/j.camwa.2022.08.003 doi: 10.1016/j.camwa.2022.08.003 |
[24] | G. Kerr, G. González-Parra, M. Sherman, A new method based on the Laplace transform and Fourier series for solving linear neutral delay differential equations, Appl. Math. Comput., 420 (2022), 126914. https://doi.org/10.1016/j.amc.2021.126914 doi: 10.1016/j.amc.2021.126914 |
[25] | A. Burqan, A. El-Ajou, R. Saadeh, M. Al-Smadi, A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations, Alex. Eng. J., 61 (2022), 1069–1077. https://doi.org/10.1016/j.aej.2021.07.020 doi: 10.1016/j.aej.2021.07.020 |
[26] | R. A. Adams, J. J. F. Fournier, Sobolev spaces, Academic Press, 2002. |
[27] | M. Uddin, K. Kamran, M. Usman, A. Ali, On the Laplace-transformed-based local meshless method for fractional-order diffusion equation, Int. J. Comput. Methods Eng. Sci. Mech., 19 (2018), 221–225. https://doi.org/10.1080/15502287.2018.1472150 doi: 10.1080/15502287.2018.1472150 |
[28] | H. Du, Z. Chen, A new meshless method of solving 2D fractional diffusion-wave equations, Appl. Math. Lett., 130 (2022), 108004. https://doi.org/10.1016/j.aml.2022.108004 doi: 10.1016/j.aml.2022.108004 |
[29] | J. A. C. Weideman, L. N. Trefethen, Parabolic and hyperbolic contours for computing the bromwich integral, Math. Comput., 76 (2007), 1341–1356. https://doi.org/10.1090/S0025-5718-07-01945-X doi: 10.1090/S0025-5718-07-01945-X |
[30] | R. E Carlson, C. A. Hall, Error bounds for bicubic spline interpolation, J. Approx. Theory, 7 (1973), 41–47. https://doi.org/10.1016/0021-9045(73)90050-6 doi: 10.1016/0021-9045(73)90050-6 |
[31] | W. Bu, S. Shu, X. Yue, A. Xiao, W. Zeng, Space-time finite element method for the multi-term time-space fractional diffusion equation on a two-dimensional domain, Comput. Math. Appl., 78 (2019), 1367–1379. https://doi.org/10.1016/j.camwa.2018.11.033 doi: 10.1016/j.camwa.2018.11.033 |