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Abstract: Multi-term fractional diffusion equations can be regarded as a generalisation of fractional
diffusion equations. In this paper, we develop an efficient meshless method for solving the multi-
term time-space fractional diffusion equation. First, we use the Laplace transform method to deal
with the multi-term time fractional operator, we transform the time into complex frequency domain by
Laplace transform. The properties of the Laplace transform with respect to fractional-order operators
are exploited to deal with multi-term time fractional-order operators, overcoming the dependence
of fractional-order operators with respect to time and giving better results. Second, we proposed a
meshless method to deal with space fractional operators on convex region based on quintic Hermite
spline functions based on the theory of polynomial functions dense theorem. Meanwhile, the
approximate solution of the equation is obtained through theory of the minimum residual approximate
solution, and the error analysis are provided. Third, we obtain the numerical solution of the diffusion
equation by inverse Laplace transform. Finally, we first experimented with a single space-time
fractional-order diffusion equation to verify the validity of our method, and then experimented with
a multi-term time equation with different parameters and regions and compared it with the previous
method to illustrate the accuracy of our method.
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1. Introduction

Many natural phenomena can be modeled mathematically to obtain approximate models [1].
Compared to the classical diffusion equation, the fractional diffusion equation may be more suitable
for modelling anomalously slow transport processes with memory and inheritance. In recent years,
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fractional calculus has found widespread applications in many fields including turbulence, wave
propagation, signal processing, porous media, and anomalous diffusion [2–4].

Considering that the single-term time fractional derivative cannot adequately describe many
complex physical or biological processes, recently, a multi-term time and time distributed order
fractional equations have been developed. The time distribution order equation is also a generalisation
of the multi-term time equation. Therefore, the study of multi-term time fractional differential
equations becomes very important and useful in various applications [5, 6]. For example, multi-term
fractional diffusion equation has simplified the modelling of phenomena such as diffusion processes,
viscoelastic damping materials, oxygen delivery through capillaries and anomalous relaxation of
magnetic resonance imaging signal magnitude [7–9]. Because the numerical solution is the most
important in practice, a great deal of research has been done in the study of numerical solutions of
multi-term fractional diffusion equations [10–12]. Qiu has analyzed numerical solutions for the
Volterra integrodifferential equations with tempered multi-term kernels [13]. Hu et al. have
formulated a backward Euler difference scheme for the integro-differential equations with the
multi-term kernels [14]. Guo et al. have proposed the alternating direction implicit numerical
approaches for computing the solution of multi-dimensional distributed order fractional
integrodifferential problems [15]. Guo et al. have developed an efficient finite difference/generalized
Hermite spectral method for the distributed-order time-fractional reaction-diffusion equation on one-,
two-, and three-dimensional unbounded domains [16].

In general, exact solutions of the fractional diffusion equation are rarely obtained in practical
applications. Therefore, it is necessary to develop some effective numerical methods to solve the
multi-term time-space fractional equations. A large number of numerical methods have been
developed for two-dimensional time-space fractional order diffusion equations with a single time
fractional order derivative as a special case of multi-term time-space fractional equations.
Abd-Elhameed et al. have introduced a new set of orthogonal polynomials to effectively obtain
numerical solutions of the nonlinear time-fractional generalized Kawahara equation by using the
collocation algorithm [17]. Moustafa et al. have created Chebyshev polynomials for the time
fractional fourth-order Euler-Bernoulli pinned-pinned beam based on the Petrov-Galerkin [18]. Peng
et al. have developed a novel fourth-order compact difference scheme for the mixed-type
time-fractional Burgers equation, using the L1 discretization formula and a nonlinear compact
difference operator [19]. Marasi and Derakhshan have proposed a hybrid numerical method based on
the weighted finite difference and the quintic Hermite collocation methods for the for solving the
variable-order time fractional mobile-immobile advection-dispersion model [20].

It is well known that meshless methods are a type of point set based numerical method that considers
a set of scattered and uniform data points. Due to this property, the meshless method can be applied to
high-dimensional models with irregular and complex domains [21–23]. However, due to the singularity
of the spatial fractional operators, we only deal with problems on convex domains. A meshless method
with Hermite splines of order five is used to discretize the Riesz fractional operator in the spatial
direction, which gives higher accuracy with fewer points.

From the last few decades, there are many methods to solve the single time fractional diffusion
equations, for instance the finite difference method, interpolation, implicit stepping methods, etc. The
Laplace transform is one of the powerful tools for solving differential equations in engineering and
other scientific disciplines. However, solving differential equations with the Laplace transform
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sometimes results in solutions in the Laplace domain that are not easily invertible to the real domain
by analytical methods. Therefore, we use numerical inversion methods to transform the obtained
solutions from the Laplace domain to the real domain [24, 25]. The Laplace transform overcomes the
memory effect arising from the convolution integral expressions of the time fractional derivative term,
and better results can be obtained in the case of more general smoothness.

The remaining sections of our paper are organised as follows. Some important preliminary,
definitions and lemmas are given in Section 2. The introduction of the model and the time
discretization based on the Laplace transform are given in Section 3. The simplification and
approximation theory of the equation is given in Section 4. The basis construction, the meshless
method for solving the simplified space fractional equation and convergence analysis of the quintic
Hermite spline are presented in Section 5. Meanwhile, numerical examples are given in Section 6.
Section 7 explains the analysis and the results of the research. Finally, a brief conclusion is given in
Section 8.

2. Preliminary concepts and properties

In this section we will introduce some concepts and properties. Let Ω satisfy segment conditions of
the form [26], let Υ be a rectangular domain containing Ω, let the symbol ·|Ω stand for restriction to Ω,
and let Υ = [a, b] × [c, d] ⊇ Ω.

Definition 2.1. The left and right Caputo fractional derivational of order α on [a, b] is defined by

C
xD
α

L f (x) =
1

Γ(n − α)

∫ x

a
(x − η)n−α−1∂

n f (η)
∂ηn dη,

C
xD
α

R f (x) =
1

Γ(n − α)

∫ b

x
(t − η)n−α−1∂

n f (η)
∂ηn dη,

where n − 1 < α ≤ n, and n = ⌈α⌉.

Definition 2.2. The left and right Riemann-Liouvile fractional derivatives operator with respect to
order α on [a, b] is defined by

RL
x DαL f (x) =

1
Γ(n − α)

∂n

∂xn

∫ x

a
(x − η)n−α−1 f (η)dη,

RL
x DαR f (x) =

(−1)n

Γ(n − α)
∂n

∂xn

∫ b

x
(η − x)n−α−1 f (η)dη,

where n − 1 < α ≤ n, and n = ⌈α⌉.

Definition 2.3. Let α > 0, m = ⌈α⌉, the connection between Riemann-Liouville derivatives and Caputo
derivatives is

C
xD
α

L f (t) = RL
x DαL f (t) −

m−1∑
k=0

f (k)(a)
Γ(k − α + 1)

(t − a)k−α,

C
xD
α

R f (t) = RL
x DαR f (t) −

m−1∑
k=0

f (k)(b)
Γ(k − α + 1)

(b − t)k−α.
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Definition 2.4. The Riesz fractional derivative with order α > 0 on a finite interval [a, b] is defined by
∂α

∂|x|α
f (x) = −cα

(
RL
x DαL f (x) + RL

x DαR f (x)
)
,

where
cα =

1
2 cos(απ/2)

,

α , 2k + 1, k = 0, 1, · · · , and for n − 1 ≤ α ≤ n, n ∈ N.

Definition 2.5. For given v: [0,∞]→ R, the definition of Laplace transform is

L{v(t)} = V(s) =
∫ ∞

0
e−stv(t)dt.

Lemma 2.1. ([27, Lemma 1.2.]) Suppose that v(t) ∈ Cp[0,∞), the Laplace transform of Caputo
fractional derivative about v(t) is

L{∂αt v(t)} = sαV(s) −
p−1∑
i=0

sα−i−1v(i)(0), p − 1 < α < p ∈ Z+.

We introduce some definitions of spaces. Let Ω be a domain in Rn,

C[a, b] = {u(x)|u(x)is a continuous function on[a, b]} ,

Cm[a, b] =
{
u(x)|u(m)(x)is a continuous function on[a, b]

}
,

∥u∥C2(Ω) = max{∥u(k,l)∥C(Ω), k, l ∈ N, k + l ≤ 2},

S 5,2(π) =
{
ϕ ∈ C2[a, b] : ϕ|k j ∈ P5, j = 1, 2, 3, · · · , n

}
,

where P5 is the set of polynomial functions with order not greater than 5 over k j.

Definition 2.6. For any nonnegative integer m let Cm(Ω) denote the vector space consisting of all
functions f which, together with all their partial derivatives Dα f of orders α ≤ m, are continuous on
Ω. We abbreviate C0(Ω) ≡ Ω. Let

C∞ = ∩∞m=0(Ω).

The subspaces C0(Ω) and C∞0 (Ω) consist of all those functions in C(Ω) and C∞(Ω), respectively, that
have compact support in Ω.

Definition 2.7. Give a positive integer τ and a real number r(1 ≤ r < ∞). The Sobolev spaceWτ,r is
defined by

Wτ,r(Ω) = {u ∈ Lr(Ω),

the weak derivative Dθu ∈ Lr(Ω) for 0 ≤ |θ| ≤ τ}, with norm

∥u∥Wτ,r =

 ∑
0≤|θ|≤τ

∥Dθu∥rLr(Ω)


1
r

,

where θ = (θ1, θ2), |θ| = θ1 + θ2 and θ1, θ2 are non-negative integers.

Definition 2.8. ([26]) For ∀y ∈ ∂Ω, there exists a nonzero vector oy and a neighborhood Uy such that
if z ∈ Ω̄

⋂
Uy, then z + toy ∈ Ω for 0 < t < 1, and call that Ω satisfies the segment condition.

Lemma 2.2. ([26]) If Ω satisfies the condition of Definition 2.8, then the set of restrictions to Ω of
functions in C∞0 (R2) is dense inWτ,r(Ω).
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3. Time discretization for multi-term time-space fractional diffusion equations

3.1. Multi-term time-space fractional diffusion equations

We consider the multi-term time-space fractional diffusion equations of the following form

r∑
q=0

aq(C
0Dαq

t )u(x, y, t) = ∆β,γu(x, y, t) + f (x, y, t), (x, y) ∈ Ω, 0 < t ≤ T, (3.1)

subject to

u(x, y, 0) = ϕ(x, y), (x, y) ∈ Ω, u(x, y, t)|∂Ω = 0, t ∈ (0,T ], (3.2)

where 0 < αq < · · · < α1 < α0 < 1 is the time fractional order, C
0Dαq

t is the Caputo fractional derivative
with αq order given by Definition 2.1,

r∑
q=0

aq = 1, q = 0, 1, · · · , r

are the coefficients, and Ω ⊂ R2 is bounded convex domain.
The spatial operator ∆β,γ, 1 < β, γ < 2 is a Riesz fractional order operator given by Definition 2.4,

∆β,γu(x, y, t) := Kx
∂βu(x, y, t)
∂|x|β

+ Ky
∂γu(x, y, t)
∂|y|γ

= Kxcβ
(

RL
x DβLu(x, y, t) + RL

x DβRu(x, y, t)
)
+ Kycγ

(
RL
y DγLu(x, y, t) + RL

y DγRu(x, y, t)
)
,

where the constants Kx > 0,Ky > 0 are diffusion coefficients. And the left side and right side Riemann-
Liouville derivatives on x, y direction, respectively, are defined by Definition 2.2,

RL
x DβLu(x, y, t) =

1
Γ(2 − β)

∂2

∂x2

∫ x

a
(x − v)1−βu(v, y, t)dv,

RL
x DβRu(x, y, t) =

1
Γ(2 − β)

∂2

∂x2

∫ b

x
(v − x)1−βu(v, y, t)dv,

RL
y DγLu(x, y, t) =

1
Γ(2 − γ)

∂2

∂y2

∫ y

c
(y − v)1−γu(x, v, t)dv,

RL
y DγRu(x, y, t) =

1
Γ(2 − γ)

∂2

∂y2

∫ d

y
(v − y)1−γu(x, v, t)dv.

3.2. Time discretization based on Laplace transform technique

Suppose that u(x, y, t) ∈ C1(Ω) , using the Laplace transform on Eq (3.1) and owing to the property
of Lemma 2.1, we have

Lu(x, y, t) = U(x, y, s), L f (x, y, t) = F (x, y, s),

LC
0Dαq

t u(x, y, t) = sαqU(x, y, s) − sαq−1u(x, y, 0)
= sαqU(x, y, s) − sαq−1ϕ(x, y).
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So this equation could be

r∑
q=0

aq(sαqU(x, y, s) − sαq−1ϕ(x, y)) = ∆β,γU(x, y, s) + F (x, y, s), (x, y) ∈ Ω. (3.3)

Equation (3.2) becomes with the boundary conditions

U(x, y, s)|∂Ω = 0, s ∈ C. (3.4)

Then the methods for the inverse Laplace transform methods are based on numerical integration of
the Bromwich complex contour integral. From [27, 29], using the strategy of Talbot, the Bromwich
line can be transformed into a contour that starts and ends in the left half plane,

u(x, y, t) = L−1U(x, y, s) =
1

2πi

∫ σ+i∞

σ−i∞
estU(x, y, s)ds, σ > σ0,

where σ0 is the convergence abscissa. Two simpler types of contours have mainly been proposed
mainly:

• Parabolic path: s = µ(1 + iz)2, z = γ + ic, where c > 0,−∞ < γ < ∞, then,

s(γ) = µ((1 − c)2 − γ2) + 2iµγ(1 − c).

• Hyperbolic path:
s(γ) = ω + λ(1 − sin(δ − iγ))

for −∞ < γ < ∞.

On either of the above contours, the Bromwich integral becomes

u(x, y, t) =
1

2πi

∫ ∞

−∞

es(z)tU(x, y, s(z))s′(z)ds ≈
ι

2πi

L∑
l=−L

ezltU(x, y, s(zl))s′(zl), zl = l ∗ ι. (3.5)

4. Simplify equation and approximation theory

4.1. Simplify equation

Let operator ∆β,γu(x, y, t) on Υ = [a, b] × [c, d], using the Laplace transform, it becomes as follows:

∆β,γU(x, y, s) =Kxcβ{CxD
β

LU(x, y, s) +
U′(a, y, s)
Γ(2 − β)

(x − a)1−β + C
xD
β

RU(x, y, s) +
U′(b, y, s)
Γ(2 − β)

(b − x)1−β}

+ Kycγ{CyDγ
L
U(x, y, s) +

U′(x, c, s)
Γ(2 − γ)

(y − c)1−γ + C
yDγ

R
U(x, y, s) +

U′(x, d, s)
Γ(2 − γ)

(d − y)1−γ}.

To avoid the singularity of the operator ∆β,γ, let

A(x, y) = (x − a)β−1(b − x)β−1(y − c)γ−1(d − y)γ−1,
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for sαq

l ∈ C, the Eq (3.3) becomes

A(x, y)(
r∑

q=0

aqsαq

l U(x, y, sl) − ∆β,γU(x, y, sl)) = A(x, y)(
r∑

q=0

aq(sαq−1
l ϕ(x, y)) + F (x, y, sl)),

then expand the sl and denote

G = (G1,G2)T, W = (W1,W2)T,

G1U (x, y, sl) ≜ A(x, y)

 r∑
q=0

aq

(
Re

(
sαq

l

)
Re (U(x, y, sl)) − Im

(
sαq

l

)
Im (U(x, y, sl))

)
− ∆β,γRe (U(x, y, sl))


= A(x, y)

 r∑
q=0

aqRe
(
sαq−1

l

)
ϕ(x, y) + Re (F (x, y, sl))


≜W1(x, y, sl),

G2U(x, y, sl) ≜ A(x, y)

 r∑
q=0

aq

(
Re

(
sαq

l

)
Im (U(x, y, sl)) + Im

(
sαq

l

)
Re (U(x, y, sl))

)
− ∆β,γIm (U(x, y, sl))


= A(x, y)

 r∑
q=0

aqIm
(
sαq−1

l

)
ϕ(x, y) + Im (F (x, y, sl))


≜W2(x, y, sl),

where Re (U(x, y, sl)) stands the real part of U, Im (U(x, y, sl)) stands the imaginary part of U. Then
the Eq (3.3) becomes

GU(x, y, sl) =W(x, y, sl). (4.1)

Meanwhile, the Eq (3.4) becomes Re (U(x, y, sl)) |∂Ω = 0,
Im (U(x, y, sl)) |∂Ω = 0.

(4.2)

4.2. Approximation theory

Let Ωr be rectangular domains containing Ω. Denote by S the set of 2-dimension polynomial
functions.

Lemma 4.1. ([28, Theorem 2.2]) C∞0 (R2)|Ω is dense in C2(Ω).

Lemma 4.2. ([6, Lemma 2.1]) S is dense in C∞(Ωr) with the norm ∥ · ∥C2(Ωr).

If Ω is bounded and closed, then Ω contains the segment condition, so according the Lemmas 2.2, 4.1
and 4.2, we can obtain the theorem.

Lemma 4.3. Assume that the closed domain Ω is bounded, then S is dense in C2(Ω).

According to Lemma 4.3, we can obtain the polynomial dense theory.

Remark 4.1. Let Ω ⊂ Υ be an arbitrary domain. Then the set of restrictions to Ω of functions in
S 5,2(Π1) × S 5,2(Π2) is dense in C2(Ω), which leads to the set of restrictions to Ω of functions in(
S 5,2(Π1) × S 5,2(Π2)

)2 is dense in
(
C2(Ω)

)2
.
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5. Meshless method based on quintic Hermite spline functions

5.1. Quintic Hermite spline functions

Let Π1 = [a, b], then the division is

Π1 : a = x0 ≤ x1 ≤ · · · ≤ xN = b,

h is the max length of the division. S i(x),Vi(x) and Wi(x) denote the Hermite splines of

S i(x) =


[ xi+1−x

xi+1−xi
]3(6( xi+1−x

xi+1−xi
)2 − 15( xi+1−x

xi+1−xi
)5 + 10), x ∈ [xi, xi+1],

[ x−xi−1
xi−xi−1

]3(6( x−xi−1
xi−xi−1

)2 − 15( x−xi−1
xi−xi−1

)5 + 10), x ∈ [xi−1, xi],
0, else where,

Vi(x) =


3(xi+1−x)5

(xi+1−xi)4 −
7(xi+1−x)4

(xi+1−xi)4 +
4(xi+1−x)3

(xi+1−xi)2 , x ∈ [xi, xi+1],
−3(x−xi−1)5

(xi−xi−1)4 +
7(x−xi−1)4

(xi−xi−1)3 −
4(x−xi−1)3

(xi−xi−1)2 , x ∈ [xi−1, xi],

0, else where,

Wi(x) =


0.5(xi+1−x)5

(xi+1−xi)3 −
(xi+1−x)4

(xi+1−xi)2 +
0.5(xi+1−x)3

(xi+1−xi)
, x ∈ [xi, xi+1],

0.5(x−xi−1)5

(xi−xi−1)3 −
(x−xi−1)4

(xi−xi−1)2 +
0.5(x−xi−1)3

(xi−xi−1) , x ∈ [xi−1, xi],

0, else where.

For S i(x),Vi(x) and Wi(x) from above, we have the following properties:

S i(xk) = δik, S ′i(xk) = 0, S ′′i (xk) = 0,
Vi(xk) = 0, V ′i (xk) = δik, V ′′i (xk) = 0,
Wi(xk) = 0, W ′

i (xk) = 0, W ′′
i (xi) = δik.

Remark 5.1. Hermite bases are derived from segmented Hermite interpolating basis functions by the
division Π1. On the kth divisions [xk, xk+1], k = 0, · · · ,N − 1, it satisfies

P(i)(xk) = f (i)(xk), i = 0, 1, 2; k = 0, · · · ,N,

where P(x) is the interpolation polynomial and f (x) is the interpolated function, then the number of
interpolating basis functions 6 is obtained. Thus, the total number of basis functions 6N on Π1 is
obtained. The number of Hermite spline functions 3(N + 1) is obtained from the definition of
S i(x),Vi(x),Wi(x) above, and at the interior points S i(x),Vi(x) and Wi(x) is a function with two
segments and at the endpoints is only a function with one segment. The following theorem will prove
that S i(x),Vi(x) and Wi(x) are the bases.

Theorem 5.1.
{Hi(x)}3N+2

i=0 = {S i(x)}Ni=0 ∪ {Vi(x)}Ni=0 ∪ {Wi(x)}Ni=0

is linearly independent and is the base of S 5,2(Π1).
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Proof. First, we will show that S i(x),Vi(x) and Wi(x) is linearly independent. Assume that,

N∑
i=0

ciS i(x) +
N∑

i=0

diVi(x) +
N∑

i=0

eiWi(x) = 0.

Due to the properties of the Hermite splines, when x = xk, ck = 0, k = 0, 1, · · · ,N, then take the
derivative of the above

N∑
i=0

diV ′i (x) +
N∑

i=0

eiW ′
i (x) = 0,

when x = xk, dk = 0, k = 0, 1, · · · ,N, then take the derivative of the above

N∑
i=0

eiW ′′
i (x) = 0,

when x = xk, ek = 0, k = 0, 1, · · · ,N, so S k(xi),Vk(xi) and Wk(xi) are linearly independent.
Next, we will verify that it is a base of S 5,2(Π1). Due to the definition of the S 5,2(Π1), so S i(x), Vi(x),

Wi(x) ∈ C2[a, b]. On the other hand, S i(x),Vi(x) and Wi(x) are a piecewise quintic polynomial. Thus,
S i(x), Vi(x), Wi(x) ∈ S 5,2(Π1).

Since
dim S 5,2(Π1) = 6N − 3(N − 1) = 3N + 3

and
dim{S i(x),Vi(x),Wi(x)} = 3(N + 1),

so, {S i(x),Vi(x),Wi(x)} is a base of S 5,2(Π1). □

Then according to Theorem 5.1 and Remark 4.1, it yields a new base

Sxy ≜ H(x) × H(y)

on Υ is dense on Ω. So,

U(x, y, sl) ≈
3N+2∑
i=0

3N+2∑
j=0

di jlHi(x) × H j(y) ≜ UN(x, y, sl), (x, y) ∈ Ω, (5.1)

then, using the inverse Laplace transform based the Talbots strategy from Eq (3.5), we could obtain the
numerical solution uN(x, y, t).

5.2. Meshless method

Definition 5.1. For any ε > 0, if

∥GU(x, y, sl) −W(x, y, sl)∥(C(Ω))2 = max
(x,y)∈Ω

|GU(x, y, sl) −W(x, y, sl)| < ε,

then,U(x, y, sl) is an ε-approximate solution for Eq (4.1).
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We will provide the method of obtaining the ε-approximate solution. First, the minimum bounding
rectangle

Υ = [a, b] × [c, d]

containing Ω is given. Subsequently, we will calculate residuals of two parts:

(1) The residual inside Ω is defined as

L1U(x, y, sl) ≜ ∥GU(x, y, sl) −W(x, y, sl)∥(C(Ω))2

=

2∑
j=1

∥G jU(x, y, sl) −W j(x, y, sl)∥C(Ω).

(2) The residual on the boundary ∂Ω is defined as

L2U(x, y, sl) ≜
(
∥ReU(x, y, sl)∥C(Υ∩∂Ω) + ∥ImU(x, y, sl)∥C(Υ∩∂Ω)

)
.

For any ε > 0, if there existsUN(x, y, sl) such that

LUN(x, y, sl) = (L1 + L2)(UN(x, y, sl)) ≤ ε,

so,UN(x, y, sl) is residual approximate solution of Eq (4.1) on Ω. If

L(U∗N(x, y, sl)) = min
UN (x,y,sl)

(L1 + L2)(UN(x, y, sl)) ≤ ε, (5.2)

thenU∗N(x, y, sl) is called the best ε-approximate solution.

Lemma 5.1. G: (C2(Υ))2 → (C(Υ))2 is a bounded operator.

Proof. For sl = (κl + iωl), and denoted thatU(x, y, sl) ≜ Ul(x, y),∥∥∥C
xD
β
LU(x, y, sl)

∥∥∥
(C)2 =

∥∥∥∥∥∥ 1
Γ(2 − β)

∫ x

a
(x − v)1−β∂

2U(v, y, sl)
∂x2 dv

∥∥∥∥∥∥
(C)2

≤
1

Γ(2 − β)

∥∥∥∥∥∫ x

a
(x − v)1−β ∥Ul∥(C2)2 dv

∥∥∥∥∥
(C)2
≤ θ1 ∥Ul∥(C2)2 ,

where θ1 is constants, and it could be similarly obtained that∥∥∥C
xD
β
RU(x, y, sl)

∥∥∥
(C)2 ≤ θ2 ∥Ul∥(C2)2 ,∥∥∥C

yDγLU(x, y, sl)
∥∥∥

(C)2 ≤ θ3 ∥Ul∥(C2)2

and ∥∥∥C
yDγRU(x, y, sl)

∥∥∥
(C)2 ≤ θ4 ∥Ul∥(C2)2 .

A(x, y)∆β,γUl(x, y) =Kxcβ

{
A(x, y)

(
C
xD
β
LUl(x, y) + C

xD
β
RUl(x, y)

)
+
U′l (a, y)
Γ(2 − β)

(b − x)β−1(y − c)γ−1(d − y)γ−1

+
U′l (b, y)
Γ(2 − β)

(x − a)β−1(y − c)γ−1(d − y)γ−1
}
+ Kycγ

{
U′l (x, c)
Γ(2 − γ)

(x − a)β−1(b − x)β−1(d − y)γ−1

+
U′l (x, d)
Γ(2 − γ)

(x − a)β−1(b − x)β−1(y − c)γ−1 + A(x, y)
(

C
yDγLUl(x, y) + C

yDγRUl(x, y)
)}
.
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Since A(x, y), (x − a)β−1, (b − x)β−1, (y − c)γ−1, (d − y)γ−1 is continuous, it has

∥∥∥A(x, y)∆β,γU(x, y, sl)
∥∥∥

(C)2 ≤ Kxcβ
∥∥∥∥∥U′(a, y, sl)
Γ(2 − β)

(b − x)β−1(y − c)γ−1(d − y)γ−1

+A(x, y)C
x DβLU(x, y, sl)

∥∥∥
(C)2 + Kxcβ

∥∥∥∥∥A(x, y)C
x DβRU(x, y, sl) +

U′(b, y, sl)
Γ(2 − β)

(x − a)β−1(y − c)γ−1(d − y)γ−1
∥∥∥∥∥

(C)2

+ Kycγ
∥∥∥∥∥A(x, y)C

y DγLU(x, y, sl) +
U′(x, c, sl)
Γ(2 − γ)

(x − a)β−1(b − x)β−1(d − y)γ−1
∥∥∥∥∥

(C)2

+ Kycγ
∥∥∥∥∥A(x, y)C

y DγRU(x, y, sl) +
U′(x, d, sl)
Γ(2 − γ)

(x − a)β−1(b − x)β−1(y − c)γ−1
∥∥∥∥∥

(C)2

≤ θ5∥Ul∥(C2)2 ,

∥∥∥Re(sαq

l U(x, y, sl))
∥∥∥

C
≤ ∥Re(sαq

l )∥C∥Re(U(x, y, sl))∥C ≤ θ6∥Ul∥C2 ,∥∥∥Im(sαq

l U(x, y, sl))
∥∥∥

C
≤ θ7∥Ul∥C2

and
r∑

q=0

aq = 1,

∥G1Ul(x, y)∥C ≤ ∥A(x, y)∥C
r∑

q=0

aq
(
θ6∥Ul∥C2 + θ7

)
+ θ8∥ReUl∥C2 ≤ θ9∥Ul∥C2(Υ),

similarly,
∥G2Ul(x, y)∥C ≤ θ10∥Ul∥C2 ,

hence,
∥GU(x, y, sl)∥(C)2 ≤ θ∥Ul∥(C2)2 ,

so G is bounded. □

Theorem 5.2. LetU(x, y, sl) be the exact solution of Eq (4.1) on Ω,U∗N(x, y, sl) be the ε-approximate
solution. For every ε > 0, there exists N1, when N ≥ N1, coefficients d∗i jl of U∗N1

(x, y, sl) from Eq (5.1)
satisfy Eq (5.2).

Proof. U(x, y, sl) could be approximated by U∗N1
(x, y, sl) on Υ ∩ Ω. For each fixed ε > 0, there exists

N1 such that the residual L(U∗N1
(x, y, sl)) satisfies Eq (5.2).

LetUN1(x, y, sl) be residual approximate solutions, taking min { ε4∥G∥ ,
ε
4 }, in which ∥G∥ is defined by

∥G∥ = sup{∥Gu∥ : u ∈ (C2)2, ∥u∥(C2)2 ≤ 1},

there exists N1 such that the following two parts hold. Inside Ω, we suppose that

∥UN1(x, y, sl) −U(x, y, sl)∥C2(Ω) ≤
ε

4∥G∥
,
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when (x, y) ∈ Ω,

L1UN1(x, y, sl) =
2∑

j=1

∥G j(UN1(x, y, sl) −U(x, y, sl))∥C(Ω)

≤

2∑
j=1

∥G j∥∥UN1(x, y, sl) −U(x, y, sl)∥C2(Ω)

≤
ε

2
.

On the ∂Ω, from the boundary conditionU(x, y, sl) = 0, we suppose that

∥UN1(x, y, sl) −U(x, y, sl)∥C(Υ∩∂Ω) ≤ ∥UN1(x, y, sl) −U(x, y, sl)∥C2(Υ∩∂Ω)

≤
ε

4
,

hence, when (x, y) on the ∂Ω,

L2UN1(x, y, sl) = (∥Re(UN1(x, y, sl) −U(x, y, sl))∥C(Υ∩∂Ω) + ∥Im(UN1(x, y, sl) −U(x, y, sl))∥C(Υ∩∂Ω))

≤
ε

2
.

so,
LUN1(x, y, sl) = (L1 + L2)UN1(x, y, sl) ≤ ε

and
LU∗N1

(x, y, sl) = min
UN1 (x,y,sl)

L(UN1(x, y, sl)) ≤ ε,

so the theorem holds. □

Theorem 5.3. If Eq (4.1) is well-posed, then U∗N1
(x, y, sl) obtained from Theorem 5.2 is the

approximate solution of Eq (4.1) on Ω.

Proof. SinceU∗N1
(x, y, sl) is the ε-approximate solution, for every ε > 0, it yields,

∥U∗N1
(x, y, sl) −U(x, y, sl)∥(C(Ω))2 ≤ ∥G−1∥C(Ω)∥GU

∗
N1

(x, y, sl) − GU(x, y, sl)∥(C(Ω))2

≤ ∥G−1∥C(Ω)∥GU
∗
N1

(x, y, sl) −W(x, y, sl)∥(C(Ω))2

≤ ∥G−1∥C(Ω)ε,

where G is bounded. It implies thatU∗N1
(x, y, sl) is the approximate solution of Eq (4.1) on Ω. □

5.3. Error analysis of meshless method

Let S 5,2(Π1) and S 5,2(Π2) be two quintic spline space with partition

Π1 : a = x0 < x1 < · · · < xn = b,

Π2 : c = y0 < y1 < · · · < ym = d

and
Π1 × Π2 = [a, b] × [c, d].

The quintic spline bases have the following properties.
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Theorem 5.4. Let u(x) ∈ Cm[a, b], 1 ≤ m ≤ 5, then there exists z(x) ∈ S 5,2(Π1), such that∥∥∥(z(x) − u(x))(k)
∥∥∥

C[a,b]
≤ K ∥u∥Cm[a,b] hm+1−k, k = 0, 1, 2,

which h is the partition of the spline space, and K is the constant.

Proof. The division of [a, b] is

: a = x0 < x1 < · · · < x j < x j+1 < · · · < xN = b,

h is the max length of the division, and set subinterval

π j = [x j, x j+1], j = 0, 1, · · · ,N − 1.

l jk(x), l̄ jk(x), ¯̄l jk(x) be Hermite interpolation polynomials, j = 0, 1, · · · ,N, k = 0, 1, and satisfy

1∑
k=0

l jk(x) = 1, l jk(xi) = δik, l′jk(xi) = 0, l′′j (xi) = 0, l̄ jk(xi) = 0,

l̄′jk(xi) = δik, l̄′′jk(xi) = 0, ¯̄l jk(xi) = 0, ¯̄l′jk(xi) = 0, ¯̄l′′jk(xi) = δik.

First, on [x j, x j+1], we prove

1∑
k=0

l jk(x)(x jk − x)p +

1∑
k=0

l̄ jk(x)p(x jk − x)p−1 +

1∑
k=0

¯̄l jk(x)p(p − 1)(x jk − x)p−2 = 0,

1 ≤ p ≤ d ≤ 5, x j0 = x j, x j1 = x j+1, when p = 1, it has

1∑
k=0

¯̄l jk(x)p(p − 1)(x jk − x)p−2 = 0.

Consider that, u(y) = (y − x)p, it could be interpolated as follows:

(y − x)p =

1∑
k=0

l jk(y)(x jk − x)p +

1∑
k=0

l̄ jk(y)p(x jk − x)p−1 +

1∑
k=0

¯̄l jk(y)p(p − 1)(x jk − x)p−2.

Setting y = x, we obtain that

1∑
k=0

l jk(x)(x jk − x)p +

1∑
k=0

l̄ jk(x)p(x jk − x)p−1 +

1∑
k=0

¯̄l jk(x)p(p − 1)(x jk − x)p−2 = 0.

Next, due to property of the Hermite interpolation polynomial,

1∑
k=0

∥l̄ jk(x)∥C(π j) =

1∑
k=0

∥l̄ jk(x) − l̄ jk(xi)∥C(π j) =

1∑
k=0

∥l̄′jk(ξ)(xi − x)∥C(π j) ≤ K0h.
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Similarly,

1∑
k=0

∥ ¯̄l jk(x)∥C(π j) =

1∑
k=0

∥ ¯̄l jk(x) − 0 − 0∥C(π j)

=

1∑
k=0

∥ ¯̄l jk(x) − ¯̄l jk(xi) − ¯̄l′jk(xi)(x − xi)∥C(π j)

≤

1∑
k=0

∥
1
2

¯̄l′′jk(ξ)(x − xi)2∥C(π j)

≤ K1h2.

For any u ∈ Cm[a, b], there has z(x) ∈ S 5,2(π), suppose that

z(x j) = u(x j), z′(x j) = u′(x j), z′′(x j) = u′′(x j),

so,

∥z(x) − u(x)∥C[a,b] =

N−1∑
j=0

∥∥∥∥∥∥∥
1∑

k=0

l jk(x)u(x jk) +
1∑

k=0

l̄ jk(x)u′(x jk) +
1∑

k=0

¯̄l jk(x)u′′(x jk)

−

 m∑
p=0

1
p!
∂pu(x)
∂xp

 1∑
k=0

l jk(x)(x jk − x)p +

1∑
k=0

l̄ jk(x)p(x jk − x)p−1 +

1∑
k=0

¯̄l jk(x)p(p − 1)(x jk − x)p−2



∥∥∥∥∥∥∥

C(π j)

≤

N−1∑
j=0

1∑
k=0

∥∥∥l jk(x)
∥∥∥

C(π j)

∥∥∥∥∥∥∥u(x jk) −
m∑

p=0

1
p!
∂pu(x)
∂xp (x jk − x)p

∥∥∥∥∥∥∥
C(π j)

+

1∑
k=0

∥∥∥l̄ jk(x)
∥∥∥

C(π j)

∥∥∥∥∥∥∥u′(x jk) −
m∑

p=0

1
(p − 1)!

∂pu(x)
∂xp (x jk − x)p−1

∥∥∥∥∥∥∥
C(π j)

+

1∑
k=0

∥ ¯̄l jk(x)∥C(π j)

∥∥∥∥∥∥∥u′′(x jk) −
m∑

p=0

1
(p − 2)!

∂pu(x)
∂xp (x jk − x)p−2

∥∥∥∥∥∥∥
C(π j)

≤

1∑
k=0

∥∥∥l jk(x)
∥∥∥

C(π j)

1
(m + 1)!

∥∥∥∥∥∥∂m+1u(x)
∂xm+1 (x jk − x)m+1

∥∥∥∥∥∥
C(π j)

+

1∑
k=0

∥∥∥l̄ jk(x)
∥∥∥

C(π j)

1
m!

∥∥∥∥∥∥∂m+1u(x)
∂xm+1 (x jk − x)m

∥∥∥∥∥∥
C(π j)

+

∑1
k=0

∥∥∥∥ ¯̄l jk(x)
∥∥∥∥

C(π j)

(m − 1)!

∥∥∥∥∥∥∂m+1u(x)
∂xm+1 (x jk − x)m−1

∥∥∥∥∥∥
C(π j)

≤
M1

(m + 1)!

∥∥∥u(m+1)
∥∥∥

C[a,b]
hm+1 +

M2

(m)!

∥∥∥u(m+1)
∥∥∥

C[a,b]
hm+1 +

M3

(m − 1)!

∥∥∥u(m+1)
∥∥∥

C[a,b]
hm+1

≤ K2

∥∥∥u(m+1)
∥∥∥

C[a,b]
hm+1.

Then, on π j set
z(i)(x jk) = u(i)(x jk), k = 0, 1; i = 0, 1, 2,
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let
w(x) = u(x) − z(x),

so
w(x jk) = 0, k = 0, 1; w′(x jk) = w′′(x jk) = 0, k = 0, 1,

then let
g(x) = w′(x),

so
∃ξ ∈ [x j, x j+1],

such that g(ξ) = 0, and
g(x jk) = g′(x jk) = 0, k = 0, 1.

Due to z′(x) ∈ P4, so z′(x) is the polynomial interpolation of u′(x) at the point
(ξ, u′(ξ)), (x jk, u′(x jk)), (x jk, u′′(x jk)), k = 0, 1, so

∥z′(x) − u′(x)∥C[a,b] ≤

N−1∑
j=0

∥z′(x) − u′(x)∥C(π j) ≤ K3hm
∥∥∥u(m+1)

∥∥∥
C[a,b]
.

Then, let
h(x) = w′′(x),

so
h(x jk) = 0, k = 0, 1;

∃η1 ∈ (x j, ξ), η2 ∈ (ξ, x j+1), such that

h(η1) = g′(η1) = 0, h(η2) = g′(η2) = 0,

due to z′′ ∈ P3, so z′′(x) is the cubic polynomial interpolation of z′′(x), so

∥z′′(x) − u′′(x)∥C[a,b] ≤

N−1∑
j=0

∥z′′(x) − u′′(x)∥C(π j) ≤ K4hm−1
∥∥∥u(m+1)

∥∥∥
C[a,b]
.

Finally, ∥∥∥D(k)(z(x) − u(x))
∥∥∥

C[a,b]
≤ K

∥∥∥u(m+1)
∥∥∥

C[a,b]
hm+1−k, k = 0, 1, 2.

□

According to [30], the following lemma is given.

Lemma 5.2. Let u(x, y) ∈ Cm(Ω), 2 ≤ m ≤ 6, then there exists

z(x, y) ∈ S 5,2(Π1) × S 5,2(Π2),

such that

∥(z − u)(k,l)(x, y)∥C(Ω) ≤ λ∥u(m+1,m+1)∥Cm(Ω)hm−(k+l), k, l = 0, 1, 2,

which h is the partition of the space, and λ is the constant.
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According to Theorem 5.4 and Lemma 5.2, we can infer that:

Remark 5.2. Let u(x, y) ∈ C4(Ω), then there exists

z(x, y) ∈ S 5,2(Π1) × S 5,2(Π2),

such that

∥z(x, y) − u(x, y)∥C2(Ω) ≤ λ∥u∥C4(Ω)h2,

which h is the partition of the space, and λ is the constant.

Theorem 5.5. The numerical solution ŨN(x, y, sl) obtained from the proposed meshless method
converges to the exact solutionU(x, y, sl).

Proof. Owing to Theorem 5.1, Hi(x) is the base of S 5,2(π), so numerical solution UN,l(x, y) obtained
from Eq (5.1) belongs to S 5,2(π) × S 5,2(π). From the Remark 5.2 and Theorem 5.3, we have

∥GŨN(x, y, sl) −W(x, y, sl)∥(C)2 ≤ λ1∥Ul∥C2h
2, ∥ŨN(x, y, sl)∥(C(∂Ω))2 ≤ λ2∥Ul∥C2h

2.

Assume that
GŨN(x, y, sl) =W∗(x, y, sl), ŨN(x, y, sl)|∂Ω = w∗(x, y, sl),

so
∥W∗(x, y, sl) −W(x, y, sl)∥(C)2 ≤ λ1∥Ul∥C2h

2, ∥w∗(x, y, sl)∥(C(∂Ω))2 ≤ λ2∥Ul∥C2h
2.

Then ∃N, such that

∥ŨN(x, y, sl) −U(x, y, sl)∥C2 ≤ λ3∥Ul∥C2h
2,

where λ1, λ2, λ3 are constants.
□

6. Numerical examples

In this section we give two examples to demonstrate the effectiveness of our theoretical analysis.
The examples will discuss a single time fractional term and a multiple time fractional term on different
domains, respectively. Calculate the

L∞(t) = max
N
|u(x, y, t) − uN(x, y, t)|

and

E(t) = ∥u(x, y, t) − uN(x, y, t)∥L2
=

(∫
Ω

(u(x, y, t) − uN(x, y, t))2 dΩ
)1/2

,

where u(x, y, t) is the exact solution, uN(x, y, t) is the approximate solution by our method. If t = 1, L∞ =
L∞(1). Meanwhile, let the L = 10 of Bromwich be integrated by the inverse Laplace transform. The
node

n ≜ N + 1

from Eq (5.1).
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Example 6.1. Consider the single term form Eq (3.1), where r = 1,Kx = Ky = 1,

C
0Dαt u(x, y, t) =

∂βu(x, y, t)
∂|x|β

+
∂γu(x, y, t)
∂|y|γ

+ f (x, y, t), (x, y) ∈ Ω, 0 < t ≤ 1,

with
u(x, y, t)|∂Ω = 0, u(x, y, 0) = 0.

Let α = 2/3, β = 3/2, γ = 5/4. L∞ of Example 6.1 on rectangular domain and circular domain are
shown in Table 1.

Table 1. L∞ on difference domains for Example 6.1.

Node n L∞ in (1) of Example 6.1 L∞ in (2) of Example 6.1

2 × 2 3.95185 × 10−9 1.54171 × 10−8

3 × 3 3.95185 × 10−9 1.56203 × 10−8

4 × 4 3.95184 × 10−9 1.58076 × 10−8

It can be concluded that our method is valid in a verifiable way and that it gives better results in the
general case of smoother time solutions.

(1)When (x, y) on rectangular domains, Ω = [0, 1] × [0, 1], the true solution is

u(x, y, t) = x2(1 − x)2y2(1 − y)2t
4
5 .

The error figure is shown in the Figure 1a at n = 3 × 3. And the error L∞ are shown in Table 1.

(2)When (x, y) on circular domains Ω,

Ω = {(x, y)|(x, y) ∈ (x − 1/2)2 + (y − 1/2)2 ≤ 1/4},

the true solution is
u(x, y, t) = (x − 1/2)2(y − 1/2)2t

4
5 .

The figure of error u(x, y, t) − uN(x, y, t) when t = 1 at n = 3 × 3 is shown in the Figure 1b. And the
error L∞ are shown in Table 1.

(a) L∞ for (1) of Example 6.1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

Error

(b) Absolute error for (2) of Example 6.1

0

5.0×10-9

1.0×10-8

1.5×10-8

Figure 1. Error for Example 6.1, when α = 2/3, β = 3/2, γ = 5/4, t = 1.
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With the above two numerical examples we find that our method gets high accuracy on different
regions, showing that our method can handle arbitrary convex regions. Our error convergence is
second-order, and since the solution of u with respect to the space is x2(1 − x)2y2(1 − y)2 or (x −
1/2)2(y − 1/2)2, we have fewer points to get a high accuracy error, which is in accordance with the
theory. At the same time, the solution of u with respect to the time is t

4
5 , Laplace transform can be used

to deal with lower order smooth solutions.

Example 6.2. [31] Consider the multi-term from Eq (3.1), where r = 4,Kx = Ky = 1

4∑
q=0

aq

(
C
0Dαq

t

)
u(x, y, t) =

∂βu(x, y, t)
∂|x|β

+
∂γu(x, y, t)
∂|y|γ

+ f (x, y, t), (x, y) ∈ Ω, 0 < t ≤ 1,

with
u(x, y, t)|∂Ω = 0, u(x, y, 0) = 0,

f (x, y, t) =
4∑

i=0

ait
α0+1

2 −αi E1, α0+1
2 −αi+1(t)x2(1 − x)2y2(1 − y)2

+
t
α0+1

2 E1, α0+1
2 +1(t)y2(1 − y)2

cos(βπ/2)

{
2

x2−β + (1 − x)2−β

Γ(3 − β)
− 12

x3−β + (1 − x)3−β

Γ(4 − β)
+ 24

x4−β + (1 − x)4−β

Γ(5 − β)

}

+
t
α0+1

2 E1, α0+1
2 +1(t)x2(1 − x)2

cos(γπ/2)

{
2

y2−γ + (1 − y)2−γ

Γ(3 − γ)
− 12

y3−γ + (1 − y)3−γ

Γ(4 − γ)
+ 24

y42−γ + (1 − y)4−γ

Γ(5 − γ)

}
where

Ea,b(t) :=
∞∑

i=0

ti

Γ(ai + b)
.

Then the exact solution is

u(x, y, t) = t
α0+1

2 E1, α0+1
2 +1(t)x2(1 − x)2y2(1 − y)2.

(1) When (x, y) on rectangular domains,

Ω = [0, 1] × [0, 1].

When

α = (0.05, 0.08, 0.1, 0.15, 0.2), a = (3/10, 1/10, 3/20, 1/5, 1/4), β = 1.6, γ = 1.6.

We calculate the error E(T ) and compare it with [31] in Table 2 at T = 1.

Table 2. Error E(T ) when T = 1 for (1) of Example 6.2.

Mesh length h [31] Node n E(T )

1/8 1.3862 × 10−4 2 × 2 1.44824 × 10−6

1/16 3.1353 × 10−5 3 × 3 1.44824 × 10−6

1/24 1.3203 × 10−5 4 × 4 1.44824 × 10−6
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(2) When (x, y) on circular domains, the

Ω = {(x, y)|(x − 1/2)2 + (y − 1/2)2 ≤ 1/4}.

When
α = (0.35, 0.45, 0.6, 0.7, 0.8), a = (3/10, 1/5, 4/30, 1/6, 1/5),

where β = 1.02, γ = 1.02.
The numerical solution and the absolute errors when t = 1 at n = 3 × 3 are shown in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

Error

-3.5×10-6

-3.0×10-6

-2.5×10-6

-2.0×10-6

-1.5×10-6

-1.0×10-6

-5.0×10-7

0

Figure 2. Numerical solution(left) and absolute errors(right), when t = 1, n = 3.

We calculated the L2 error E(T ) on the rectangular domain and compared it with [31]. It can be seen
that we obtain higher accuracy with fewer points, which proves the high efficiency of our method. We
also carry out experiments with different parameters α, a and β, γ on the circular domain and calculate
the absolute errors at the n = 3.

From Figure 2, it can be seen that our method also achieves high error accuracy, indicating the
applicability of our method. The high error accuracies obtained by our method in different regions and
also with different parameters show the stability and efficiency of our method. Because of the high
smoothness of u with respect to x, y, we get high error accuracy with fewer points, which is consistent
with our theoretical analysis.

7. Conclusions and discussion

In this paper, we proposed a meshless method of solving the minimum residual approximate
solution for Eq (3.1). Different from previous methods, we use the Laplace transform method to deal
with the multi-term time fractional operator, we transform the time into complex frequency domain
by Laplace transform, Eq (3.1) is transformed into complex equation Eq (3.3). Then, on the spatial
direction, we proposed a quintic Hermite meshless method to deal with space fractional operators on
arbitrary convex region based on the theory of polynomial functions dense theorem. The approximate
accuracies become higher by increasing number of Quintic Hermite spline functions. The minimum
residual approximate solution of Eq (4.1) is obtained by Theorems 5.3 under the condition of

AIMS Mathematics Volume 9, Issue 3, 7040–7062.
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well-posed equations. Meanwhile, using Theorem 5.4 and Lemma 5.2, it infers Remark 5.2, which is
the convergence of the biquintic spline function. Then by using Remark 5.2 and Theorem 5.3, we can
obtain Theorem 5.5 to show the convergence of the method in the spatial direction. We use numerical
inversion methods to transform the obtained the minimum residual approximate solution from the
Laplace domain to the real domain by using the strategy of Talbot through parabolic path.

In Numerical examples, we fix the L = 10 in Eq (3.5) by parabolic path to get the numerical
solution. First, we handle the single term time-space fractional diffusion equations, we can deduce
that the method can deal with time fractions that are not sufficiently smooth, and we can get higher
precision with fewer nodes in arbitrary convex region from Table 1 and Figure 1. This also proves
that Laplace transform is effective for dealing with insufficiently smooth time-fractional operators.
Then, we solve the multi-term time-space fractional diffusion equations with 4 terms. These results
are compared with [31], and it is found that our method achieves better accuracy with fewer points.
At the same time, we found that the accuracy of the single term is better than that of the multi-term.
In addition, the accuracy is higher on rectangular areas than on circular areas. These experimental
results are consistent with theoretical expectations and demonstrate the effectiveness and efficiency of
our method.

In this paper, the use of the extension theorem allows the meshless method to be applied to arbitrary
convex regions in two dimensions, and the use of the Laplace transform allows to deal with multi-term
low-order time solutions. In the future, through the study of spatial Riesz operators, we will investigate
meshless methods for solving equations in arbitrary regions of higher dimensions. In addition, this
method can also be used to study equations of time-distributed order.
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