This article focuses on the synchronization problem for two classes of complex networks with subchannel losses and generalized fractional derivatives. Initially, a new stability theorem for generalized fractional nonlinear system is formulated using the properties of generalized fractional calculus and the generalized Laplace transform. This result is also true for classical fractional cases. Subsequently, synchronization criteria for the generalized fractional complex networks are attained by the proposed stability theorem and the state layered method. Lastly, two numerical examples with some new kernel functions are given to validate the synchronization results.
Citation: Changping Dai, Weiyuan Ma, Ling Guo. Synchronization of generalized fractional complex networks with partial subchannel losses[J]. AIMS Mathematics, 2024, 9(3): 7063-7083. doi: 10.3934/math.2024344
This article focuses on the synchronization problem for two classes of complex networks with subchannel losses and generalized fractional derivatives. Initially, a new stability theorem for generalized fractional nonlinear system is formulated using the properties of generalized fractional calculus and the generalized Laplace transform. This result is also true for classical fractional cases. Subsequently, synchronization criteria for the generalized fractional complex networks are attained by the proposed stability theorem and the state layered method. Lastly, two numerical examples with some new kernel functions are given to validate the synchronization results.
[1] | H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, The large-scale organization of metabolic networks, Nature, 407 (2000), 651–654. https://doi.org/10.1038/35036627 doi: 10.1038/35036627 |
[2] | R. Albert, H. Jeong, A. L. Barabsi, Diameter of the world-wide web, Nature, 401 (1999), 130–131. https://doi.org/10.1038/43601 doi: 10.1038/43601 |
[3] | D. Knoke, S. Yang, Social network analysis, London: SAGE Publications, 2020. https://doi.org/10.4135/9781506389332 |
[4] | D. Lohr, P. Venkov, J. Zlatanova, Transcriptional regulation in the yeast GAL gene family: A complex genetic network, Faseb. J., 9 (1995), 777–787. https://doi.org/10.1096/fasebj.9.9.7601342 doi: 10.1096/fasebj.9.9.7601342 |
[5] | S. Strogatz, Exploring complex network, Nature, 410 (2001), 268–276. https://doi.org/10.1038/35065725 |
[6] | W. Y. Ma, Z. M. Li, N. R. Ma, Synchronization of discrete fractional-order complex networks with and without unknown topology, Chaos, 32 (2022), 013112. https://doi.org/10.1063/5.0072207 doi: 10.1063/5.0072207 |
[7] | H. Zhang, T. Ma, G. B. Huang, Z. Wang, Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control, IEEE Trans. Syst. Man. Cybern. B, 40 (2009), 831–844. https://doi.org/10.1109/TSMCB.2009.2030506 doi: 10.1109/TSMCB.2009.2030506 |
[8] | T. Yang, Y. Niu, J. Yu, Clock synchronization in wireless sensor networks based on bayesian estimation, IEEE Access, 8 (2020), 69683–69694. https://doi.org/10.1109/ACCESS.2020.2984785 doi: 10.1109/ACCESS.2020.2984785 |
[9] | H. Zhang, D. Liu, Y. Luo, D. Wang, Adaptive dynamic programming for control-algorithms and stability, London: Springer, 2013. https://doi.org/10.1007/978-1-4471-4757-2 |
[10] | M. Wu, N. Xiong, A. V. Vasilakos, V. C. Leung, RNN-K: A reinforced newton method for consensus-based distributed optimization and control over multiagent systems, IEEE Trans. Cybern., 52 (2022), 4012–4026. https://doi.org/10.1109/TCYB.2020.3011819 doi: 10.1109/TCYB.2020.3011819 |
[11] | I. Podlubny, Fractional differential equations, Cambridge: Academic Press, 1999. |
[12] | V. V. Uchaikin, Fractional derivatives for physicists and engineers, Berlin: Springer, 2013. https://doi.org/10.1007/978-3-642-33911-0 |
[13] | W. Y. Ma, N. R. Ma, C. P. Dai, Y. Q. Chen, X. Wang, Fractional modeling and optimal control strategies for mutated COVID-$19$ pandemic, Math. Method. Appl. Sci., 2023, 1–25. https://doi.org/10.1002/mma.9313 |
[14] | L. Ma, B. W. Wu, On the fractional Lyapunov exponent for Hadamard-type fractional differential system, Chaos, 33 (2023), 013117. https://doi.org/10.1063/5.0131661 doi: 10.1063/5.0131661 |
[15] | H. J. Li, J. D. Cao, Event-triggered group consensus for one-sided Lipschitz multi-agent systems with input saturation, Commun. Nonlinear Sci., 121 (2023), 107234. https://doi.org/10.1016/j.cnsns.2023.107234 doi: 10.1016/j.cnsns.2023.107234 |
[16] | C. P. Li, W. H. Deng, Remarks on fractional derivatives, Appl. Math. Comput., 187 (2007), 777–784. https://doi.org/10.1016/j.amc.2006.08.163 doi: 10.1016/j.amc.2006.08.163 |
[17] | N. G. N'Gbo, J. Tang, On the bounds of Lyapunov exponents for fractional differential systems with an exponential kernel, Int. J. Bifurcat. Chaos, 32 (2022), 2250188. https://doi.org/10.1142/S0218127422501887 doi: 10.1142/S0218127422501887 |
[18] | J. Hadamard, Essai sur l'étude des fonctions donnes par leur développement de Taylor, J. Math. Pure. Appl., 8 (1892), 101–186. |
[19] | F. Jarad, D. Baleanu, A. Abdeljawad, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 1–8. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142 |
[20] | T. J. Osler, The fractional derivatives of a composite function, SIAM J. Math. Anal., 1 (1970), 288–293. https://doi.org/10.1137/0501026 doi: 10.1137/0501026 |
[21] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1007/s11868-021-00421-y doi: 10.1007/s11868-021-00421-y |
[22] | W. Ma, C. Dai, X. Li, X. Bao, On the kinetics of $\psi$-fractional differential equations, Fract. Calc. Appl. Anal., 2023. https://doi.org/10.1007/s13540-023-00210-y |
[23] | G. Mahmoud, M. Ahmed, T. Abed-Elhameed, Active control technique of fractional-order chaotic complex systems, Eur. Phys. J. Plus, 131 (2016), 1–11. https://doi.org/10.1140/epjp/i2016-16200-x doi: 10.1140/epjp/i2016-16200-x |
[24] | W. Zheng, Y. Q. Chen, X. Wang, M. Lin, A neural network-based design method of the fractional order PID controller for a class of motion control systems, Asian J. Control, 24 (2022), 3378–3393. https://doi.org/10.1002/asjc.2727 doi: 10.1002/asjc.2727 |
[25] | X. Yang, J. Cao, Finite-time stochastic synchronization of complex networks, Appl. Math. Model., 34 (2010), 3631–3641. https://doi.org/10.1016/j.apm.2010.03.012 doi: 10.1016/j.apm.2010.03.012 |
[26] | L. Duan, J. Li, Fixed-time synchronization of fuzzy neutral-type BAM memristive inertial neural networks with proportional delays, Inf. Sci., 576 (2021), 522–541. https://doi.org/10.1016/j.ins.2021.06.093 doi: 10.1016/j.ins.2021.06.093 |
[27] | W. Zhang, C. Li, X. He, H. Li, Finite-time synchronization of complex networks with non-identical nodes and impulsive disturbances, Mod. Phys. Lett. B, 32 (2018), 1850002. https://doi.org/10.1142/S0217984918500021 doi: 10.1142/S0217984918500021 |
[28] | Y. Wang, X. He, T. Li, Asymptotic and pinning synchronization of fractional-order nonidentical complex dynamical networks with uncertain parameters, Fractal Fract., 7 (2023), 571. https://doi.org/10.3390/fractalfract7080571 doi: 10.3390/fractalfract7080571 |
[29] | P. F. Xia, S. L. Zhou, G. B. Giannakis, Adaptive MIMO-OFDM based on partial channel state information, IEEE Trans. Signal. Process., 52 (2004), 202–213. https://doi.org/10.1109/TSP.2003.819986 doi: 10.1109/TSP.2003.819986 |
[30] | C. Huang, D. W. C. Ho, J. Lu, Partial-information-based distributed filtering in two-targets tracking sensor networks, IEEE Trans. Circ. Syst. I, 59 (2012), 820–832. https://doi.org/10.1109/TCSI.2011.2169912 doi: 10.1109/TCSI.2011.2169912 |
[31] | Q. Wu, H. Zhang, L. Xu, Q. Yan, Finite-time synchronization of general complex dynamical networks, Asian J. Control, 17 (2015), 1643–1653. https://doi.org/10.1002/asjc.985 doi: 10.1002/asjc.985 |
[32] | C. Zhou, L. Zemanová, G. Zamora-Lopez, Structure-function relationship in complex brain networks expressed by hierarchical synchronization, New J. Phys., 9 (2007), 178. https://doi.org/10.1088/1367-2630/9/6/178 doi: 10.1088/1367-2630/9/6/178 |
[33] | L. Li, X. Liu, W. Huang, Event-based bipartite multi-agent consensus with partial information transmission and communication delays under antagonistic interactions, Sci. China Inf. Sci., 63 (2020), 150204. https://doi.org/10.1007/s11432-019-2693-x doi: 10.1007/s11432-019-2693-x |
[34] | Y. Li, J. Zhang, J. Lu, J. Lou, Finite-time synchronization of complex networks with partial communication channels failure, Inf. Sci., 634 (2023), 539–549. https://doi.org/10.1016/j.ins.2023.03.077 doi: 10.1016/j.ins.2023.03.077 |
[35] | Q. Fan, G. C. Wu, H. Fu, A note on function space and boundedness of the general fractional integral in continuous time random walk, J. Nonlinear Math. Phys., 29 (2022), 95–102. https://doi.org/10.1007/s44198-021-00021-w doi: 10.1007/s44198-021-00021-w |
[36] | R. Almeida, A. B. Malinowska, T. Odzijewicz, On systems of fractional differential equations with the $\psi$-Caputo derivative and their applications, Math. Methods Appl. Sci., 44 (2021), 8026–8041. https://doi.org/10.1002/mma.5678 doi: 10.1002/mma.5678 |
[37] | F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn. S, 13 (2020), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039 |
[38] | A. Ahmadova, N. Mahmudov, Asymptotic stability analysis of Riemann-Liouville fractional stochastic neutral differential equations, Miskolc Math. Notes, 22 (2021), 503–520. https://doi.org/10.18514/MMN.2021.3600 doi: 10.18514/MMN.2021.3600 |
[39] | B. K. Lenka, S. N. Bora, Lyapunov stability theorems for $\psi$-Caputo derivative systems, Fract. Calc. Appl. Anal., 26 (2023), 220–236. https://doi.org/10.1007/s13540-022-00114-3 doi: 10.1007/s13540-022-00114-3 |
[40] | S. Liu, W. Jiang, X. Li, X. F. Zhou, Lyapunov stability analysis of fractional nonlinear systems, Appl. Math. Lett., 51 (2016), 13–19. https://doi.org/10.1016/j.aml.2015.06.018 doi: 10.1016/j.aml.2015.06.018 |
[41] | W. Yu, G. Chen, J. Lü, On pinning synchronization of complex dynamical networks, Automatica, 45 (2009), 429–435. https://doi.org/10.1016/j.automatica.2008.07.016 doi: 10.1016/j.automatica.2008.07.016 |