Let $ n $ be an integer greater than $ 1 $. In this paper, we obtained the stability of the multivariable Cauchy-Jensen functional equation
$ nf\bigg(x_1+{\cdots}+x_n, \frac {y_1+{\cdots}+y_n}n\bigg) = \sum\limits_{1\le i, j\le n}f(x_i, y_j) $
in Banach spaces, quasi-Banach spaces, and normed $ 2 $-Banach spaces.
Citation: Jae-Hyeong Bae, Won-Gil Park. Approximate solution of a multivariable Cauchy-Jensen functional equation[J]. AIMS Mathematics, 2024, 9(3): 7084-7094. doi: 10.3934/math.2024345
Let $ n $ be an integer greater than $ 1 $. In this paper, we obtained the stability of the multivariable Cauchy-Jensen functional equation
$ nf\bigg(x_1+{\cdots}+x_n, \frac {y_1+{\cdots}+y_n}n\bigg) = \sum\limits_{1\le i, j\le n}f(x_i, y_j) $
in Banach spaces, quasi-Banach spaces, and normed $ 2 $-Banach spaces.
[1] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.2307/2042795 doi: 10.2307/2042795 |
[2] | W. G. Park, J. H. Bae, On a Cauchy-Jensen functional equation and its stability, J. Math. Anal. Appl., 323 (2006), 634–643. https://doi.org/10.1016/j.jmaa.2005.09.028 doi: 10.1016/j.jmaa.2005.09.028 |
[3] | A. Bahyrycz, J. Olko, On stability and hyperstability of an equation characterizing multi-Cauchy-Jensen mappings, Results Math., 73 (2018), 55. https://doi.org/10.1007/s00025-018-0815-8 doi: 10.1007/s00025-018-0815-8 |
[4] | K. W. Jun, J. R. Lee, Y. H. Lee, On the generalized Hyers-Ulam stability of the Cauchy-Jensen functional equation II, Pure Appl. Math., 16 (2009), 167–178. |
[5] | Y. H. Lee, On the Hyers-Ulam-Rassias stability of a Cauchy-Jensen functional equation, J. Chungcheong. Math. Soc., 20 (2007), 163–172. |
[6] | J. H. Bae, W. G. Park, A fixed point approach to the stability of a Cauchy-Jensen functional equation, Abstract Appl. Anal., 2012 (2012), 205160. https://doi.org/10.1155/2012/205160 doi: 10.1155/2012/205160 |
[7] | W. G. Park, Approximate additive mappings in $2$-Banach spaces and related topics, J. Math. Anal. Appl., 376 (2011), 193–202. https://doi.org/10.1016/j.jmaa.2010.10.004 doi: 10.1016/j.jmaa.2010.10.004 |
[8] | S. Yun, Approximate additive mappings in $2$-Banach spaces and related topics: revisited, Korean J. Math., 23 (2015), 393–399. https://doi.org/10.11568/kjm.2015.23.3.393 doi: 10.11568/kjm.2015.23.3.393 |
[9] | Y. Benyamini, J. Lindenstrauss, Geometric nonlinear functional analysis, American Mathematical Socity, 2000. |
[10] | N. Kalton, Quasi-Banach spaces In: Handbook of the geometry of Banach spaces, 2003. https://doi.org/10.1016/S1874-5849(03)80032-3 |
[11] | S. Rolewicz, Metric linear spaces, 1985. |
[12] | A. Najati, M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399–415. https://doi.org/10.1016/j.jmaa.2007.03.104 doi: 10.1016/j.jmaa.2007.03.104 |
[13] | S. Gähler, $2$-metrische Räume und ihre topologische Struktur, Math. Nachr., 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109 doi: 10.1002/mana.19630260109 |
[14] | S. Gähler, Lineare $2$-normierte Räumen, Math. Nachr., 28 (1964), 1–43. https://doi.org/10.1002/mana.19640280102 doi: 10.1002/mana.19640280102 |
[15] | A. White, $2$-Banach spaces, Math. Nachr., 42 (1969), 43–60. https://doi.org/10.1002/mana.19690420104 |