In the present paper, we focus on the study of the asymptotic behaviors of solutions for the Cauchy problem of time-space fractional superdiffusion and subdiffusion equations with integral initial conditions, where the Riemann-Liouville derivative is used in the temporal direction and the integral fractional Laplacian is applied in the spatial variables. The fundamental solutions of the considered equations, which can be represented in terms of the Fox $ H $-function, are constructed and investigated by using asymptotic expansions of the Fox $ H $-function. Then, we obtain the asymptotic behaviors of solutions in the sense of $ L^{p}(\mathbb{R}^{d}) $ and $ L^{p, \infty}(\mathbb{R}^{d}) $ norms, where Young's inequality for convolution plays a very important role. Finally, gradient estimates and large time behaviors of solutions are also provided. In particular, we derive the optimal $ L^{2} $- decay estimate for the subdiffusion equation.
Citation: Zhiqiang Li, Yanzhe Fan. On asymptotics of solutions for superdiffusion and subdiffusion equations with the Riemann-Liouville fractional derivative[J]. AIMS Mathematics, 2023, 8(8): 19210-19239. doi: 10.3934/math.2023980
In the present paper, we focus on the study of the asymptotic behaviors of solutions for the Cauchy problem of time-space fractional superdiffusion and subdiffusion equations with integral initial conditions, where the Riemann-Liouville derivative is used in the temporal direction and the integral fractional Laplacian is applied in the spatial variables. The fundamental solutions of the considered equations, which can be represented in terms of the Fox $ H $-function, are constructed and investigated by using asymptotic expansions of the Fox $ H $-function. Then, we obtain the asymptotic behaviors of solutions in the sense of $ L^{p}(\mathbb{R}^{d}) $ and $ L^{p, \infty}(\mathbb{R}^{d}) $ norms, where Young's inequality for convolution plays a very important role. Finally, gradient estimates and large time behaviors of solutions are also provided. In particular, we derive the optimal $ L^{2} $- decay estimate for the subdiffusion equation.
[1] | E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J. Math. Anal. Appl., 325 (2007), 542–553. https://doi.org/10.1016/j.jmaa.2006.01.087 doi: 10.1016/j.jmaa.2006.01.087 |
[2] | B. L. J. Braaksma, Asymptotic expansions and analytical continuations for a class of Barnes integrals, Compos. Math., 15 (1962), 239–341. |
[3] | D. Baleanu, G. C. Wu, Some further results of the Laplace transform for variable-order fractional difference equations, Fract. Calc. Appl. Anal., 22 (2019), 1641–1654. https://doi.org/10.1515/fca-2019-0084 doi: 10.1515/fca-2019-0084 |
[4] | W. C. Chen, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos Solitons Fract., 36 (2008), 1305–1314. https://doi.org/10.1016/j.chaos.2006.07.051 doi: 10.1016/j.chaos.2006.07.051 |
[5] | B. Davies, Integral transform and their applications, New York: Springer, 2002. https://doi.org/10.1007/978-1-4684-9283-5 |
[6] | J. S. Duan, Time- and space-fractional partial differential equations, J. Math. Phys., 46 (2005), 13504–13511. https://doi.org/10.1063/1.1819524 doi: 10.1063/1.1819524 |
[7] | J. D. Djida, A. Fernandez, I. Area, Well-posedness results for fractional semi-linear wave equations, Discrete Contin. Dyn. Syst. B, 25 (2020), 569–597. https://doi.org/10.3934/dcdsb.2019255 doi: 10.3934/dcdsb.2019255 |
[8] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[9] | K. Diethelm, V. Kiryakova, Y. Luchko, J. A. T. Machado, V. E. Tarasov, Trends, directions for further research, and some open problems of fractional calculus, Nonlinear Dyn., 107 (2022), 3245–3270. https://doi.org/10.1007/s11071-021-07158-9 doi: 10.1007/s11071-021-07158-9 |
[10] | S. D. Eidelman, A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differ. Equ., 199 (2004), 221–255. https://doi.org/10.1016/j.jde.2003.12.002 doi: 10.1016/j.jde.2003.12.002 |
[11] | L. Grafakos, Classical and modern Fourier analysis, Pearson Education, 2004. |
[12] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[13] | B. T. Jin, Fractional differential equations, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-76043-4 |
[14] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006. |
[15] | A. A. Kilbas, M. Saigo, $H$-transforms: theory and applications, Boca Raton: CRC Press, 2004. https://doi.org/10.1201/9780203487372 |
[16] | K. H. Kim, S. Lim, Asymptotic behaviors of fundamental solution and its derivatives to fractional diffusion-wave equations, J. Korean Math. Soc., 53 (2016), 929–967. https://doi.org/10.4134/JKMS.j150343 doi: 10.4134/JKMS.j150343 |
[17] | J. Kemppainen, J. Siljander, V. Vergara, R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in $\mathbb{R}^{d}$, Math. Ann., 366 (2016), 941–979. https://doi.org/10.1007/s00208-015-1356-z doi: 10.1007/s00208-015-1356-z |
[18] | J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differ. Equ., 263 (2017), 149–201. http://dx.doi.org/10.1016/j.jde.2017.02.030 doi: 10.1016/j.jde.2017.02.030 |
[19] | C. P. Li, M. Cai, Theory and numerical approximations of fractional integrals and derivatives, Philadelphia: SIAM, 2019. https://doi.org/10.1137/1.9781611975888 |
[20] | C. P. Li, Z. Q. Li, Asymptotic behaviors of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian, Int. J. Comput. Math., 98 (2021), 305–339. https://doi.org/10.1080/00207160.2020.1744574 doi: 10.1080/00207160.2020.1744574 |
[21] | C. P. Li, Z. Q. Li, Asymptotic behaviors of solution to partial differential equation with Caputo-Hadamard derivative and fractional Laplacian: Hyperbolic case, Discrete Contin. Dyn. Syst. S, 14 (2021), 3659–3683. https://doi.org/10.3934/dcdss.2021023 doi: 10.3934/dcdss.2021023 |
[22] | Z. Q. Li, Asymptotics and large time behaviors of fractional evolution equations with temporal $\psi$-Caputo derivative, Math. Comput. Simul., 196 (2022), 210–231. https://doi.org/10.1016/j.matcom.2022.01.023 doi: 10.1016/j.matcom.2022.01.023 |
[23] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, Singapore: Imperial College Press, 2010. https://doi.org/10.1142/p614 |
[24] | R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3 |
[25] | Y. T. Ma, F. R. Zhang, C. P. Li, The asymptotics of the solutions to the anomalous diffusion equations, Comput. Math. Appl., 66 (2013), 682–692. https://doi.org/10.1016/j.camwa.2013.01.032 doi: 10.1016/j.camwa.2013.01.032 |
[26] | C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Y. Xue, V. Feliu, Fractional-order systems and controls: fundamentals and applications, London: Springer, 2010. https://doi.org/10.1007/978-1-84996-335-0 |
[27] | L. Ma, B. W. Wu, Finite-time stability of Hadamard fractional differential equations in weighted Banach spaces, Nonlinear Dyn., 107 (2022), 3749–3766. https://doi.org/10.1007/s11071-021-07138-z doi: 10.1007/s11071-021-07138-z |
[28] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
[29] | A. V. Pskhu, On the real zeros of functions of Mittag-Leffler type, Math. Notes, 77 (2005), 546–552. https://doi.org/10.1007/s11006-005-0054-7 doi: 10.1007/s11006-005-0054-7 |
[30] | H. M. Srivastava, K. C. Gupta, S. P. Goyal, The $H$-functions of one and two variables with applications, New Delhi: South Asian Publishers, 1982. |
[31] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus, Dordrecht: Springer, 2007. https://doi.org/10.1007/978-1-4020-6042-7 |
[32] | V. Vergara, R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47 (2015), 210–239. https://doi.org/10.1137/130941900 doi: 10.1137/130941900 |
[33] | A. Yacine, L. Ma, On criteria of existence for nonlinear Katugampola fractional differential equations with $p$-Laplacian operator, Fract. Differ. Calc., 11 (2021), 51–68. https://doi.org/10.7153/fdc-2021-11-04 doi: 10.7153/fdc-2021-11-04 |