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Abstract: In the present paper, we focus on the study of the asymptotic behaviors of solutions for the
Cauchy problem of time-space fractional superdiffusion and subdiffusion equations with integral initial
conditions, where the Riemann-Liouville derivative is used in the temporal direction and the integral
fractional Laplacian is applied in the spatial variables. The fundamental solutions of the considered
equations, which can be represented in terms of the Fox H-function, are constructed and investigated
by using asymptotic expansions of the Fox H-function. Then, we obtain the asymptotic behaviors of
solutions in the sense of Lp(Rd) and Lp,∞(Rd) norms, where Young’s inequality for convolution plays a
very important role. Finally, gradient estimates and large time behaviors of solutions are also provided.
In particular, we derive the optimal L2- decay estimate for the subdiffusion equation.
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1. Introduction

The aim of this paper is to consider asymptotic behaviors of solutions for the following time-space
fractional superdiffusion equation with integral initial conditions and α ∈ (1, 2):

RLDα
0,tu(x, t) + (−∆)su(x, t) = f (x, t), x ∈ Rd, t > 0,

RLDα−2
0,t u(x, 0) = φ(x), x ∈ Rd,

RLDα−1
0,t u(x, 0) = ψ(x), x ∈ Rd,

(1.1)

and subdiffusion equation with integral initial condition and α ∈ (0, 1):RLDα
0,tu(x, t) + (−∆)su(x, t) = g(x, t), x ∈ Rd, t > 0,

RLDα−1
0,t u(x, 0) = ϕ(x), x ∈ Rd,

(1.2)
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where RLDα
0,tu is the Riemann-Liouville derivative of u, (−∆)s denotes the integral fractional Laplace

operator with s ∈ (0, 1), and φ(x), ψ(x), ϕ(x), f (x, t), and g(x, t) are given functions. Moreover, the
symbols RLDα−2

0,t in Eq (1.1) and RLDα−1
0,t in Eq (1.2) are Riemann-Liouville integral operators, and the

symbol RLDα−1
0,t in Eq (1.1) is Riemann-Liouville derivative operator.

It is well known [14, 19, 28] that the Riemann-Liouville fractional integral of a function f (t) ∈
L1[a, b] (−∞ < a < b < +∞) can be defined by

RLD−αa,t f (t) =
1
Γ(α)

∫ t

a
(t − τ)α−1 f (τ)dτ, α > 0, a < t < b, (1.3)

and the Riemann-Liouville fractional derivative may be represented in the form

RLDα
a,t f (t) =

dn

dtn

(
RLD−(n−α)

a,t f (t)
)

=
1

Γ(n − α)
dn

dtn

∫ t

a
(t − τ)n−α−1 f (τ)dτ, a < t < b, (1.4)

where n − 1 < α < n ∈ N and f (t) ∈ ACn[a, b], here ACn[a, b] denotes the set of functions with an
absolutely continuous (n − 1)st derivative.

For a function v(x) ∈ H2s(Rd) = {v ∈ S(Rd) | (−∆)sv ∈ L2(Rd), s ∈ (0, 1)} with S(Rd) being the
Schwartz space, the integral fractional Laplacian of the function v(x) is given by [8]

(−∆)sv(x) = C(d, s) P.V.
∫
Rd

v(x) − v(y)
|x − y|d+2s dy, x ∈ Rd, (1.5)

where P.V. denotes the Cauchy principal value and C(d, s) is a dimensional constant

C(d, s) =
( ∫
Rd

1 − cos y1

|y|d+2s dy
)−1
, y = (y1, y2, · · · , yd) ∈ Rd.

Superdiffusion and subdiffusion equations in the forms of Eqs (1.1) and (1.2) have drawn much
interest in developing existence, uniqueness, stability as well as asymptotics of the solutions, due to
their excellent modelling capability for various applications such as theory of viscoelasticity [23],
signal and image processing [31], anomalous diffusion [24], control theory [26], epidemic phenomena
in biology [1], economics [4], etc. For more widespread applications on fractional differential
equations we refer the reader to other works [3, 9, 10, 12, 14, 19, 27, 28, 33] and the references cited
therein.

As far as the asymptotic behaviors of solutions of fractional partial differential equations is
concerned, we review some results on this topic in the current literatures. For the fractional
superdiffusion (or call diffusion-wave) equation, the authors in [25] first studied the asymptotics of
solutions in the sense of L∞ norm, where time derivatives are the Riemann-Liouville and Caputo
ones respectively and spatial derivative is the standard Laplace operator. After that, the article [7]
investigated the asymptotic estimates of solution under Lp norm with 1 ≤ p ≤ ∞, where the Riemann-
Liouville derivative replaced by Caputo derivative in Eq (1.1) and the initial conditions are written
as u(x, 0) = u0(x) and ut(x, 0) = u1(x). Recently, Li and Li [21, 22] discussed the same problem as
above and derived similar asymptotic behaviors, in which the temporal derivative are taken as Caputo-
Hadamard and ψ-Caputo fractional ones.
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On the other hand, concerning the fractional subdiffusion equation, Ma et al. [25] considered the
asymptotic properties of such equation in the cases of the Riemann-Liouville and Caputo derivatives
for Eq (1.2) when the force term is equal to zero, where the spatial direction is the standard Laplacian
and the initial value is u(x, 0) = u0(x). Subsequently, the paper [17] generalized these conclusions
of [25] and they established the asymptotic analysis of solution in terms of Lp norm in which the
Caputo derivative is used as temporal one. Shortly after, the results in [17] are further extended to time-
space fractional subdiffusion equation [18] with the Caputo derivative and integral fractional Laplacian.
Very recently, Li et al. [20, 22] devoted to asymptotic properties of solution of Eq (1.2), where the
Caputo-Hadamard and ψ-Caputo derivatives substituted for the Riemann-Liouville one. For other
related studies we refer the reader to [16, 32]. However, to the best of our knowledge, the asymptotic
behaviors of solutions for Eqs (1.1) and (1.2) with the Riemann-Liouville derivative have been less
studied and the literature [25] only considered very special cases for which the results obtained there
can also be further improved.

Based on the above reasons and existing research works, the goal of this paper is to study the
asymptotic behaviors of solutions of Eqs (1.1) and (1.2) in the sense of more general Lp or weak
Lp norms. Specifically, we first investigate asymptotic estimates of the solution to Eq (1.1). Using
the technique of integral transforms the solution of convolutional form of Eq (1.1) is constructed and
the fundamental solutions are also explicitly expressed by the Fox H-function. Then we estimate
the fundamental solutions by means of asymptotic expansions of the H-function and further obtain
the asymptotics of solution with the help of Young’s inequality for convolution. By applying similar
argument we can derive gradient estimates and large time behaviors of solution to Eq (1.1). For the
subdiffusion Eq (1.2), we likewise discuss the asymptotic properties, gradient estimates and large time
behaviors of solution. In particular we obtain the optimal decay rate in the sense of L2 norm. We find
that these results with the Riemann-Liouville derivative in time are different from the Caputo case, for
example, see Theorem 3.1 of this paper and Proposition 5.7 in [18].

The remaining part of this article is organized as follows. In Section 2, the asymptotic behaviors
of solution of the fractional superdiffusion Eq (1.1) are studied by means of Young’s inequality for
convolution. Further, the gradient estimates and large time behaviors of the solution are also presented.
By using the almost same methods, Section 3 discusses decay estimates of the solution for the fractional
subdiffusion Eq (1.2) and the optimal L2-decay rate is particularly derived. Some conclusions and
remarks are presented in Section 4. At last, the Appendix recalls several integral transforms and
concept of the Fox H-function. Throughout the paper we denote by C a generic positive constant
whose value may vary from line to line.

2. Asymptotic estimates of solution for Eq (1.1)

In this section, we shall study asymptotic analysis of the solution to Eq (1.1). First, the solution of
convolutional form for Eq (1.1) is constructed in terms of Fourier and Laplace transforms, where the
fundamental solutions are written via the Fox H-functions. We subsequently investigate asymptotic
behaviors and estimations of Lp-norm for the fundamental solutions. Then, the asymptotic estimates
of solution of Eq (1.1) are established by means of Young’s inequality for convolution. Finally, we
present gradient estimates and large time behaviors of the solution to Eq (1.1) by using the almost
same argument.
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2.1. Asymptotic behaviors of the solution

We first deduce the fundamental solutions and solution of Eq (1.1) by using integral transforms.
Making use of the standard Laplace transform for temporal variable t and the Fourier transform for
spatial variable x, and taking the formulas (A2) and (A4) into account, it follows that

λαû(ω, λ) − λφ̂(ω) − ψ̂(ω) + |ω|2sû(ω, λ) = f̂ (ω, λ). (2.1)

Furthermore,
û(ω, λ) = Ĝφ(ω, λ)φ̂(ω) + Ĝψ(ω, λ)ψ̂(ω) + Ĝ f (ω, λ) f̂ (ω, λ), (2.2)

where Ĝφ(ω, λ) =
λ

λα + |ω|2s and Ĝψ(ω, λ) = Ĝ f (ω, λ) =
1

λα + |ω|2s .

Applying the inverse Fourier transform and inverse Laplace transform to the identity (2.2) we obtain

u(x, t) =Gφ(x, t) ∗ φ(x) +Gψ(x, t) ∗ ψ(x) +G f (x, t) ⋆ f (x, t)

=

∫
Rd

Gφ(x − y, t)φ(y)dy +
∫
Rd

Gψ(x − y, t)ψ(y)dy

+

∫ t

0

∫
Rd

G f (x − y, t − τ) f (y, τ)dydτ, (2.3)

where the character ∗ denotes the standard convolution with respect to spatial variable, and the
symbol ⋆ is used as a convolution in time and space directions.

In the following part, we present the explicit expressions of fundamental solutions Gφ(x, t), Gψ(x, t),
and G f (x, t) in (2.3). In terms of the relation (A3) for Laplace and Mellin transforms, one has

˜̂Gφ(ω, ξ) =M [Ĝφ(ω, t), ξ] =
1

Γ(1 − ξ)
M [L [Ĝφ(ω, t), λ], 1 − ξ]

=
1

Γ(1 − ξ)
M [Ĝφ(ω, λ), 1 − ξ]

=
1

Γ(1 − ξ)
M

[
λ

λα + |ω|2s , 1 − ξ
]

=
1

αΓ(1 − ξ)
(|ω|2s)

2−ξ
α −1Γ

(2 − ξ
α

)
Γ
(
1 −

2 − ξ
α

)
.

The inverse Fourier transform of the above equality yields

G̃φ(x, ξ) =
1

(2π)d

∫
Rd

˜̂Gφ(ω, ξ)e−iω·xdω

=
1

(2π)d

1
αΓ(1 − ξ)

Γ
(2 − ξ
α

)
Γ
(
1 −

2 − ξ
α

) ∫
Rd

(|ω|2s)
2−ξ
α −1e−iω·xdω

=
1

(2π)d

1
αΓ(1 − ξ)

Γ
(2 − ξ
α

)
Γ
(
1 −

2 − ξ
α

) (2π)
d
2

|x|
d−2

2

×

∫ ∞

0
(ρ2s)

2−ξ
α −1ρ

d
2 J d

2−1(ρ|x|)dρ,

where J d
2−1(ρ|x|) is the first kind of Bessel function, see [14] for related definition and property.

Observing that the formula (2.6.4) in [15], one has
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∫ ∞

0
(ρ2s)

2−ξ
α −1ρ

d
2 J d

2−1(ρ|x|)dρ =
∫ ∞

0
ρ

d
2+( 2−ξ

α −1)2sJ d
2−1(ρ|x|)dρ

=|x|−
d
2−( 2−ξ

α −1)2s−1 2
d
2+( 2−ξ

α −1)2sΓ(d
2 + ( 2−ξ

α
− 1)s)

Γ(−( 2−ξ
α
− 1)s)

.

Therefore, we arrive at

G̃φ(x, ξ) =
|x|(1−

2−ξ
α )2s

α|x|dπ
d
2 2(1− 2−ξ

α )2s

Γ( 2−ξ
α

)Γ(1 − 2−ξ
α

)Γ( d
2 − s(1 − 2−ξ

α
))

Γ(−( 2−ξ
α
− 1)s)Γ(1 − ξ)

.

Finally, it follows from the inverse Mellin transform that

Gφ(x, t) =
1

2πi

∫ c+i∞

c−i∞
G̃φ(x, ξ)t−ξdξ

=
1

|x|dπ
d
2

1
2πi

∫ c+i∞

c−i∞

Γ( 2−ξ
α

)Γ(1 − 2−ξ
α

)Γ( d
2 − s(1 − 2−ξ

α
))

Γ(−( 2−ξ
α
− 1)s)Γ(1 − ξ)

×

(
|x|2s

22s

)1− 2−ξ
α

t−ξd
(
1 −

2 − ξ
α

)

= −
tα−2

|x|dπ
d
2

1
2πi

∫ c+i∞

c−i∞

Γ( d
2 + s( 2−ξ

α
− 1))Γ(1 + (2−ξ

α
− 1))Γ(1 − 1 − ( 2−ξ

α
− 1))

Γ(α − 1 + α(2−ξ
α
− 1))Γ(1 − 1 − s(2−ξ

α
− 1))

×

(
|x|2s

22stα

)−( 2−ξ
α −1)

d
(
2 − ξ
α
− 1

)
=

tα−2

|x|dπ
d
2

H21
23

(
|x|2s

22stα

∣∣∣∣∣ (1, 1); (α − 1, α)
(1, 1), (d

2 , s); (1, s)

)
,

that is,

Gφ(x, t) =
tα−2

|x|dπ
d
2

H21
23

(
|x|2s

22stα

∣∣∣∣∣ (1, 1); (α − 1, α)
(1, 1), (d

2 , s); (1, s)

)
. (2.4)

Similarly, we can derive the expression of fundamental solutions Gψ(x, t) = G f (x, t) in the form

Gψ(x, t) = G f (x, t) =
tα−1

|x|dπ
d
2

H21
23

(
|x|2s

22stα

∣∣∣∣∣ (1, 1); (α, α)
(1, 1), (d

2 , s); (1, s)

)
. (2.5)

By using asymptotic expansions of the Fox H-function at infinity and zero [15], we can prove the
following lemma on the fundamental solutions Gφ(x, t) in (2.4) and Gψ(x, t) = G f (x, t) in (2.5).

Lemma 2.1. Let d ∈ N, 1 < α < 2 and 0 < s < 1. Suppose R = t−α|x|2s. For the fundamental solutions
Gφ(x, t) in (2.4) and Gψ(x, t) = G f (x, t) in (2.5), the following asymptotic behaviors hold.
(1) If R > 1, then

|Gφ(x, t)| ≤ Ct2α−2|x|−d−2s, (2.6)

and if R ≤ 1, then

|Gφ(x, t)| ≤


Ct−α−2|x|−d+4s, d > 4s,

Ct−α−2
(
1 +

∣∣∣∣log
(
(|x|/2)2st−α

)∣∣∣∣) , d = 4s,

Ctα−2− αd
2s , d < 4s.

(2.7)
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(2) If R > 1, then

|Gψ(x, t)| = |G f (x, t)| ≤ Ct2α−1|x|−d−2s, (2.8)

and if R ≤ 1, then

|Gψ(x, t)| = |G f (x, t)| ≤


Ct−α−1|x|−d+4s, d > 4s,

Ct−α−1
(
1 +

∣∣∣∣log
(
(|x|/2)2st−α

)∣∣∣∣) , d = 4s,

Ctα−1− αd
2s , d < 4s.

(2.9)

Proof. (1) For the fundamental solution Gφ(x, t) given by (2.4), we need to estimate asymptotic
expansions of the H-function H21

23

(
|x|2s

22stα

)
which is the most important step. Noting that

H21
23

(
|x|2s

22stα

)
= H21

23

(
|x|2s

22stα

∣∣∣∣∣ (1, 1); (α − 1, α)
(1, 1), ( d

2 , s); (1, s)

)
, x , 0,

then we find that a∗ = 2 − α > 0.
We first prove (2.6) for R > 1. Using Theorems 1.4 and 1.7 in [15] gives

H21
23

(
|x|2s

22stα

)
=

1∑
l=1

∞∑
k=0

hlk

(
|x|2s

22stα

) 1−1−k
1

=

∞∑
k=0

h1k

(
|x|2s

22stα

)−k

,

where

h10 =
Γ(1)Γ( d

2 )
Γ(α − 1)Γ(0)

= 0, h11 = −
Γ(2)Γ(d

2 + s)
Γ(2α − 1)Γ(−s)

> 0.

Hence, one get

H21
23

(
|x|2s

22stα

)
= h11

(
|x|2s

22stα

)−1

+ o
[(
|x|2s

22stα

)−1]
,
|x|2s

22stα
→ ∞.

Furthermore, there holds

|Gφ(x, t)| ≤ Cπ−
d
2 |x|−dtα−2h11

(
|x|2s

22stα

)−1

≤ Ct2α−2|x|−d−2s, R→ ∞.

This illustrates that there is a positive constant M satisfying

|Gφ(x, t)| ≤ Ct2α−2|x|−d−2s, R > M. (2.10)

In light of analyticity of the H-function H21
23

(
|x|2s

22stα

)
, we find that it is bounded for 1 < R ≤ M. Hence,

|Gφ(x, t)| ≤ Cπ−
d
2 |x|−dtα−2 = C

(
|x|2s

tα

)
t2α−2|x|−d−2s

≤ CMt2α−2|x|−d−2s ≤ Ct2α−2|x|−d−2s, 1 < R ≤ M. (2.11)

Combining (2.10) and (2.11) we obtain

|Gφ(x, t)| ≤ Ct2α−2|x|−d−2s.
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Next, we show (2.7) with R ≤ 1. If d > 4s, then b1σ = −
1+σ

1 = −(σ + 1) and b2k = −
d/2+k

s for
σ, k = 0, 1, 2, . . . . Therefore, b10 is a simple pole and Theorems 1.3 and 1.11 in [15] implies

H21
23

(
|x|2s

22stα

)
=

∞∑
l=0

h∗1l

(
|x|2s

22stα

)1+l

.

Since

h∗10 =
Γ( d

2 − s)Γ(1)
Γ(−1)Γ(s)

= 0, h∗11 = −
Γ( d

2 − 2s)Γ(2)
Γ(−α − 1)Γ(2s)

> 0,

then it follows that

H21
23

(
|x|2s

22stα

)
= h∗11

(
|x|2s

22stα

)2

+ o

( |x|2s

22stα

)2 , |x|2s

22stα
→ 0,

which indicates

|Gφ(x, t)| ≤ Cπ−
d
2 |x|−dtα−2h∗11

(
|x|2s

22stα

)2

≤ Ct−α−2|x|−d+4s, R→ 0.

Consequently, there exists a positive constant δ such that

|Gφ(x, t)| ≤ Ct−α−2|x|−d+4s, R < δ. (2.12)

Exploiting again analyticity of the H-function H21
23

(
|x|2s

22stα

)
we get

|Gφ(x, t)| ≤ Cπ−
d
2 |x|−dtα−2 = C

(
|x|2s

tα

)−2

t−α−2|x|−d+4s

=
C
R2 t−α−2|x|−d+4s ≤ Ct−α−2|x|−d+4s, δ ≤ R ≤ 1. (2.13)

Using (2.12) and (2.13) yields
|Gφ(x, t)| ≤ Ct−α−2|x|−d+4s

for d > 4s, and which is the first inequality in (2.7).
If d = 4s, then the poles b10 is simple and the poles b11 = b20 = −2 are coincided. In view of

Theorems 1.5 and 1.12 in [15] we have

H21
23

(
|x|2s

22stα

)
= H∗201

(
|x|2s

22stα

)2

log
(
|x|2s

22stα

)
+ o

[ (
|x|2s

22stα

)2

log
(
|x|2s

22stα

) ]
,
|x|2s

22stα
→ 0,

where H∗201 =
Γ(2)

sΓ(−α−1)Γ(2s) , 0. As a result,

|Gφ(x, t)| ≤ Cπ−
d
2 |x|−dtα−2|H∗201|

(
|x|2s

22stα

)2 ∣∣∣∣∣ log
(
|x|2s

22stα

) ∣∣∣∣∣
≤ Ct−α−2

∣∣∣∣∣∣log
(
|x|2s

22stα

)∣∣∣∣∣∣ , R→ 0.
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That is to say that there exists a positive constant δ1 such that

|Gφ(x, t)| ≤ Ct−α−2

∣∣∣∣∣∣log
(
|x|2s

22stα

)∣∣∣∣∣∣ , R < δ1.

We further derive

|Gφ(x, t)| ≤ Ct−α−2
(
1 +

∣∣∣∣∣∣log
(
|x|2s

22stα

)∣∣∣∣∣∣
)

for d = 4s, and the second inequality in (2.7) is proved.
Finally, we show that the third inequality in (2.7) holds when d < 4s. To do this, we consider three

cases respectively. If d = 2s, then the poles b10 = −1 and b20 = −
d
2s are coincide, but the coefficients

H∗100 = H∗101 = 0 by a direct calculation in terms of Theorems 1.5 and 1.12 in [15]. If d > 2s, then
b10 = −1 is a simple pole, but we find h∗10 = 0 in this case. If d < 2s, then b20 = −

d
2s is a simple pole,

by using Theorem 1.11 in [15] one has

h∗2 =
Γ(1 − d

2s )Γ( d
2s )

sΓ(α − 1 − αd
2s )Γ(d

2 )
> 0.

In either case, we can obtain

H21
23

(
|x|2s

22stα

)
= h∗2

(
|x|2s

22stα

) d
2s

+ o

( |x|2s

22stα

) d
2s
 , |x|2s

22stα
→ 0.

Consequently,

|Gφ(x, t)| ≤ Cπ−
d
2 |x|−dtα−2|h∗2|

(
|x|2s

22stα

) d
2s

≤ Ctα−2− αd
2s , R→ 0.

Furthermore it holds that
|Gφ(x, t)| ≤ Ctα−2− αd

2s

for d < 4s, and the third inequality holds.
Similarly, we can prove (2.8) and (2.9) by using the same technique as the above (1) and omit them.

The proof is now completed. □

In our further consideration, || · ||p and || · ||p,∞ are used to simplify || · ||Lp(Rd) and || · ||Lp,∞(Rd) respectively,
where Lp,∞(Rd) means weak Lp(Rd) space on Rd, for example, see [11]. We can also introduce

κ(d, s) =
{ d

d−4s , d > 4s,
∞, d ≤ 4s,

and

κ∗(d, s) =
{ d

d+1−4s , d + 2 > 4s,
∞, d + 2 ≤ 4s.

The following estimates of the fundamental solution Gφ(x, t) and Gψ(x, t) = G f (x, t) in Lp(Rd) and
Lp,∞(Rd) norms are crucial in proving the asymptotic behaviors of the solution of Eq (1.1).
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Lemma 2.2. Let d ∈ N, 1 < α < 2 and 0 < s < 1. Then for any t > 0, it holds that Gφ(x, t) ∈ Lp(Rd)
and

||Gφ(x, t)||p ≤ Ctα−2− αd
2s (1− 1

p ), (2.14)

for every 1 ≤ p < κ(d, s). Moreover, if p = d
d−4s for d > 4s, we have Gφ(x, t) ∈ L

d
d−4s ,∞(Rd) and

||Gφ(x, t)|| d
d−4s ,∞

≤ Ct−α−2. (2.15)

Proof. Firstly, we prove (2.14). Note that

||Gφ(x, t)||pp =
∫

R>1
|Gφ(x, t)|pdx +

∫
R≤1
|Gφ(x, t)|pdx.

From (2.6) one can get ∫
R>1
|Gφ(x, t)|pdx ≤ C

∫
R>1

t(2α−2)p|x|−dp−2spdx

≤ Ct(2α−2)p
∫ ∞

t
α
2s

ρ−dp−2spρd−1dρ

≤ Ctαp−2p− αd
2s (p−1),

namely, ( ∫
R>1
|Gφ(x, t)|pdx

) 1
p
≤ Ctα−2− αd

2s (1− 1
p ), 1 ≤ p < ∞. (2.16)

On the other hand, when d > 4s and 1 ≤ p < κ(d, s), it follows from the first inequality in (2.7) that∫
R≤1
|Gφ(x, t)|pdx ≤ C

∫
R≤1

t(−α−2)p|x|−dp+4spdx

≤ Ct(−α−2)p
∫ t

α
2s

0
ρ(4s−d)pρd−1dρ

≤ Ctαp−2p− αd
2s (p−1),

i.e., ( ∫
R≤1
|Gφ(x, t)|pdx

) 1
p
≤ Ctα−2− αd

2s (1− 1
p ), 1 ≤ p < κ(d, s). (2.17)

If d = 4s, applying the second inequality in (2.7) we obtain∫
R≤1
|Gφ(x, t)|pdx ≤ C

∫
R≤1

t(−α−2)p
(
1 + | log(|x|/2)2st−α|

)p
dx

≤ Ct(−α−2)p+2α
∫ 1

22s

0
η(1 + | log η|)pdη

≤ Ct(−α−2)p+2α

for 1 ≤ p < ∞. Consequently,( ∫
R≤1
|Gφ(x, t)|pdx

) 1
p
≤ Ct−α−2+ 2α

p ≤ Ctα−2− αd
2s (1− 1

p ), 1 ≤ p < ∞. (2.18)
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For d < 4s, we use the third inequality in (2.7) to derive∫
R≤1
|Gφ(x, t)|pdx ≤ C

∫
R≤1

tαp−2p− αd
2s pdx ≤ C

∫ t
α
2s

0
tαp−2p− αd

2s pdx ≤ Ctαp−2p− αd
2s p+ αd

2s

for 1 ≤ p < ∞, which leads to( ∫
R≤1
|Gφ(x, t)|pdx

) 1
p
≤ Ctα−2− αd

2s (1− 1
p ), 1 ≤ p < ∞. (2.19)

Collecting the above estimates (2.16)–(2.19), it follows that

||Gφ(x, t)||p ≤
( ∫

R>1
|Gφ(x, t)|pdx

) 1
p
+

( ∫
R≤1
|Gφ(x, t)|pdx

) 1
p
≤ Ctα−2− αd

2s (1− 1
p )

for 1 ≤ p < κ(d, s) with d ≥ 1 and 0 < s < 1.
We next show (2.15). Let R = t−α|x|2s and p = d

d−4s for d > 4s. Due to the fact

||Gφ(x, t)||p,∞ = (||Gφ(x, t)χ{R>1}(t) +Gφ(x, t)χ{R≤1}(t)||p,∞)
≤ 2(||Gφ(x, t)χ{R>1}(t)||p,∞ + ||Gφ(x, t)χ{R≤1}(t)||p,∞),

where χ{E}(t) means the characteristic function of the set E. In terms of (2.16), there holds

||Gφ(x, t)χ{R>1}(t)||p,∞ ≤ ||Gφ(x, t)χ{R>1}(t)||p ≤ Ctα−2− αd
2s (1− 1

p ) = Ct−α−2. (2.20)

To estimate ||Gφ(x, t)χ{R≤1}(t)||p,∞, we may use the first inequality in (2.7) to obtain

dGφ(x,t)χ{R≤1}(t)(γ) = ϱ({x ∈ Rd : |Gφ(x, t)| > γ and R ≤ 1})

≤ ϱ
({

x ∈ Rd : γ < Ct−α−2|x|4s−d
})

≤ C
(
t−α−2γ−1

)p
,

where ϱ stands for the measure on Rd. Thus we have

γ(dGφ(x,t)χ{R≤1}(t)(γ))
1
p ≤ Ct−α−2.

That is
||Gφ(x, t)χ{R≤1}(t)||p,∞ ≤ Ct−α−2. (2.21)

Therefore the required result follows by using (2.20) and (2.21) and the proof is thus completed. □

Remark 2.1. If d < 4s, we infer from the third inequality of (2.7) in Lemma 2.1 that Gφ(·, t) ∈ L∞(Rd)
and ||Gφ(x, t)||∞ ≤ Ctα−2− αd

2s for all t > 0.

Lemma 2.3. Let d ∈ N, 1 < α < 2 and 0 < s < 1. If 1 ≤ p < κ(d, s), then Gψ(x, t) = G f (x, t) ∈ Lp(Rd)
for any t > 0 and

||Gψ(x, t)||p = ||G f (x, t)||p ≤ Ctα−1− αd
2s (1− 1

p ), t > 0. (2.22)

Moreover, if p = d
d−4s and d > 4s, then Gψ(x, t) = G f (x, t) ∈ L

d
d−4s ,∞(Rd) for any t > 0 and

||Gψ(x, t)|| d
d−4s ,∞

= ||G f (x, t)|| d
d−4s ,∞

≤ Ct−α−1, t > 0. (2.23)
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Proof. The proof is similar to that of Lemma 2.2 above. □

Remark 2.2. For the case d < 4s, it follows from the third inequality of (2.9) in Lemma 2.1 that
Gψ(·, t) = G f (·, t) ∈ L∞(Rd) and ||Gψ(x, t)||∞ = ||G f (x, t)||∞ ≤ Ctα−1− αd

2s for any t > 0.

Let us now turn our attention to the asymptotic estimates of the solution to Eq (1.1) when the force
term f ≡ 0 and the initial values φ = ψ = 0, respectively.

Theorem 2.1. Let d ∈ N, 1 < α < 2 and 0 < s < 1. Suppose f ≡ 0. Then the solution u(x, t) =
Gφ(x, t) ∗ φ(x) + Gψ(x, t) ∗ ψ(x) to Eq (1.1), where φ, ψ ∈ Lq(Rd) for 1 ≤ q ≤ ∞, has the following
asymptotic estimates:
(1) If q = ∞, then

||u(x, t)||∞ ≤ Ctα−2||φ(x)||∞ +Ctα−1||ψ(x)||∞, t > 0. (2.24)

(2) If 1 ≤ q < ∞, then

||u(x, t)||r ≤ Ctα−2− αd
2s ( 1

q−
1
r )
||φ(x)||q +Ctα−1− αd

2s ( 1
q−

1
r )
||ψ(x)||q, t > 0, (2.25)

for any 
r ∈

[
q,

dq
d − 4sq

)
, if d > 4sq,

r ∈ [q,∞), if d = 4sq,

r ∈ [q,∞], if d < 4sq.

Moreover, it holds that

||u(x, t)|| dq
d−4sq ,∞

≤ Ct−α−2||φ(x)||q +Ct−α−1||ψ(x)||q, t > 0, (2.26)

if d > 4sq.

Proof. Let 1 ≤ p, q, r ≤ ∞ satisfy the relation

1 +
1
r
=

1
p
+

1
q
. (2.27)

In view of Young’s inequality for convolution, see (57) in [21], we get

||u(x, t)||r ≤ ||Gφ(x, t)||p||φ(x)||q + ||Gψ(x, t)||p||ψ(x)||q. (2.28)

(1) If q = ∞, then r = ∞ and p = 1 by (2.27). Observe that (2.14) in Lemma 2.2 and (2.22) in
Lemma 2.3 for p = 1, one has

||Gφ(x, t)||1 ≤ Ctα−2, t > 0,

and
||Gψ(x, t)||1 ≤ Ctα−1, t > 0,

which together with (2.28) yields

||u(x, t)||∞ ≤ Ctα−2||φ(x)||∞ +Ctα−1||ψ(x)||∞, t > 0.
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(2) If 1 ≤ q < ∞, then for r ∈
[
q, dq

d−4sq

)
when d > 4sq, we have 1 ≤ p < d

d−4s when d > 4s.
Therefore, substituting (2.14) and (2.22) into (2.28) there holds

||u(x, t)||r ≤ Ctα−2− αd
2s ( 1

q−
1
r )
||φ(x)||q +Ctα−1− αd

2s ( 1
q−

1
r )
||ψ(x)||q, t > 0,

as required (2.25). Similarly, we can prove (2.25) for r ∈ [q,∞) if d = 4sq and r ∈ [q,∞] if d < 4sq.
Finally we show (2.26) for d > 4sq. Recalling that Young’s inequality for weak Lp-norm, see (58)

in [21], combining (2.15), (2.23) and (2.27), it follows that

||u(x, t)|| dq
d−4sq ,∞

≤Ct−α−2||φ(x)||q +Ct−α−1||ψ(x)||q, t > 0,

which is expected inequality (2.26) and the proof is thus complete. □

Theorem 2.2. Let d ∈ N, 1 < α < 2 and 0 < s < 1. And let 1 ≤ q < ∞. Assume that f (·, t) ∈ Lq(Rd)
for any t > 0 and there exists some γ > 0 such that

|| f (x, t)||q ≤ C(1 + t)−γ, t > 0. (2.29)

Then for every r ∈
[
q,

dq
d − 2sq

)
, for 1 ≤ q < ∞ and d > 2sq,

r ∈ [q,∞), for 1 < q < ∞ and d ≤ 2sq,

the solution u(x, t) = G f (x, t) ⋆ f (x, t) has the following estimates:

||u(x, t)||r ≤ Ctα−min{1,γ}− αd
2s ( 1

q−
1
r ), t > 0,

if γ , 1, and
||u(x, t)||r ≤ Ctα−1− αd

2s ( 1
q−

1
r ) log (1 + t) , t > 0,

if γ = 1.

Proof. The proof of this theorem can be referred to that of Proposition 5.15 in [18] or Theorem 3.9
in [20]. □

2.2. Gradient estimates and large time behaviors

This subsection will develop gradient estimates and large time behaviors of the solution for Eq (1.1).
Let us start with estimates of the derivatives for the fundamental solutions.

Lemma 2.4. Let d ∈ N, 1 < α < 2 and 0 < s < 1. Suppose R = t−α|x|2s. Then the spatial derivatives
of Gφ(x, t) and Gψ(x, t) and the temporal derivatives of G f (x, t) have the following estimates:
(1) If R > 1, then

|∇Gφ(x, t)| ≤ Ct2α−2|x|−(d+1)−2s, (2.30)

and if R ≤ 1, then

|∇Gφ(x, t)| ≤


Ct−α−2|x|−(d+1)+4s, d + 2 > 4s,

Ct−α−2|x|
(
1 +

∣∣∣∣log
(
(|x|/2)2st−α

)∣∣∣∣) , d + 2 = 4s,

Ctα−2− α(d+2)
2s |x|, d + 2 < 4s.

(2.31)
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(2) If R > 1, then

|∇Gψ(x, t)| ≤ Ct2α−1|x|−(d+1)−2s, (2.32)

and if R ≤ 1, then

|∇Gψ(x, t)| ≤


Ct−α−1|x|−(d+1)+4s, d + 2 > 4s,

Ct−α−1|x|
(
1 +

∣∣∣∣log
(
(|x|/2)2st−α

)∣∣∣∣) , d + 2 = 4s,

Ctα−1− α(d+2)
2s |x|, d + 2 < 4s.

(2.33)

(3) If R > 1, then

|∂tG f (x, t)| ≤ Ct2α−2|x|−d−2s, (2.34)

and if R ≤ 1, then

|∂tG f (x, t)| ≤


Ct−α−2|x|−d+4s, d > 4s,

Ct−α−2|x|
(
1 +

∣∣∣∣log
(
(|x|/2)2st−α

)∣∣∣∣) , d = 4s,

Ctα−2− αd
2s , d < 4s.

(2.35)

Proof. We only give the proof of (1), while (2) and (3) can be handled by similar method. Recalling
that Property 2.8 in [15] results in

∇Gφ(x, t)

=
−tα−2

|x|d+1π
d
2

H31
34

(
|x|2s

22stα

∣∣∣∣∣ (1, 1); (α − 1, α), (d, 2s)
(d + 1, 2s), (1, 1), ( d

2 , s); (1, s)

)( x1

|x|
,

x2

|x|
, · · · ,

xd

|x|

)
=
−tα−2

|x|d+1π
d
2

H31
34

(
|x|2s

22stα

∣∣∣∣∣ (1, 1); (α − 1, α), (d, 2s)
(1, 1), ( d

2 , s), (d + 1, 2s); (1, s)

)( x1

|x|
,

x2

|x|
, · · · ,

xd

|x|

)
, x , 0.

Thus the modulus of ∇Gφ(x, t) is

|∇Gφ(x, t)| =
tα−2

|x|d+1π
d
2

∣∣∣∣∣H31
34

(
|x|2s

22stα

∣∣∣∣∣ (1, 1); (α − 1, α), (d, 2s)
(1, 1), ( d

2 , s), (d + 1, 2s); (1, s)

)∣∣∣∣∣, x , 0. (2.36)

First of all, we prove (2.30). By means of Theorems 1.4 and 1.7 in [15] we find that

H31
34

(
|x|2s

22stα

)
=

∞∑
k=0

h1k

(
|x|2s

22stα

)−k

,

where

h10 =
Γ(1)Γ(d + 1)Γ(d

2 )
Γ(α − 1)Γ(d)Γ(0)

= 0, h11 = −
Γ(2)Γ( d

2 + s)Γ(d + 1 + 2s)
Γ(2α − 1)Γ(d + 2s)Γ(−s)

> 0.

Hence, it follows that

H31
34

(
|x|2s

22stα

)
= h11

(
|x|2s

22stα

)−1

+ o

( |x|2s

22stα

)−1 , |x|2s

22stα
→ ∞,
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from which one has

|∇Gφ(x, t)| ≤ Cπ−
d
2 |x|−d−1tα−2h11

(
|x|2s

22stα

)−1

≤ Ct2α−2|x|−(d+1)−2s, R→ ∞.

Using this inequality and the analyticity of the H-function H31
34

(
|x|2s

22stα

)
, we conclude that there exists a

positive constant C such that
|∇Gφ(x, t)| ≤ Ct2α−2|x|−(d+1)−2s

for R > 1 and which gives (2.30).
Next we show (2.31). According to Theorems 1.3 and 1.11 in [15], we find h∗10 = h∗20 = h∗30 = 0.

Hence, b11 = −2 is a simple pole when d + 2 > 4s and

H31
34

(
|x|2s

22stα

)
= h∗11

(
|x|2s

22stα

)2

+ o

( |x|2s

22stα

)2 , |x|2s

22stα
→ 0,

where

h∗11 = −
Γ( d

2 − 2s)Γ(d + 1 − 4s)Γ(2)
Γ(−α − 1)Γ(d − 4s)Γ(2s)

.

Thus there is a positive constant C such that

|∇Gφ(x, t)| ≤ Cπ−
d
2 |x|−d−1tα−2|h∗11|

(
|x|2s

22stα

)2

≤ Ct−α−2|x|−(d+1)+4s, R→ 0.

We further obtain

|∇Gφ(x, t)| ≤ Ct−α−2|x|−(d+1)+4s (2.37)

for R ≤ 1 and d + 2 > 4s.
If d + 2 = 4s, we see that the poles b11 = b21 = b31 = −2 are coincided, then

H31
34

(
|x|2s

22stα

)
= H∗111

(
|x|2s

22stα

)2

log
(
|x|2s

22stα

)
+ o

[ (
|x|2s

22stα

)2

log
(
|x|2s

22stα

) ]
,
|x|2s

22stα
→ 0,

where H∗111 , 0. Then one gets

|∇Gφ(x, t)| ≤
Ctα−2

|x|d+1π
d
2

|H∗111|

(
|x|2s

22stα

)2 ∣∣∣∣∣∣log
(
|x|2s

22stα

)∣∣∣∣∣∣ ≤ Ct−α−2|x|

∣∣∣∣∣∣log
(
|x|2s

22stα

)∣∣∣∣∣∣ , R→ 0.

Furthermore, it follows that

|∇Gφ(x, t)| ≤ Ct−α−2|x|
(
1 +

∣∣∣∣log
(
(|x|/2)2st−α

)∣∣∣∣) (2.38)

for R ≤ 1 and d + 2 = 4s.
It remains to show the case d + 2 < 4s. Since the poles b21 = b31 = −

d+2
2s are coincided, then

H31
34

(
|x|2s

22stα

)
= H∗210

(
|x|2s

22stα

) d+2
2s

+ o

( |x|2s

22stα

) d+2
2s

 , |x|2s

22stα
→ 0,
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with H∗210 , 0, which leads to

|∇Gφ(x, t)| ≤
Ctα−2

|x|d+1π
d
2

|H∗210|

(
|x|2s

22stα

) d+2
2s

≤ Ctα−2− α(d+2)
2s |x|, R→ 0.

So we have

|∇Gφ(x, t)| ≤ Ctα−2− α(d+2)
2s |x| (2.39)

for R ≤ 1 and d + 2 < 4s.
Based on (2.37)–(2.39), the desired assertion (2.31) is obtained and the proof is now completed. □

According to Lemma 2.4, we can establish estimates of ||∇Gφ(x, t)||p, ||∇Gψ(x, t)||p, and ||∇G f (x, t)||p
and further derive asymptotic properties of ∇u(x, t) to Eq (1.1), whose proofs are very similar to those
of counterparts in the previous subsection and omitted.

Lemma 2.5. Let d ∈ N, 1 < α < 2 and 0 < s < 1. Assume that 1 ≤ p < κ∗(d, s). Then it holds that
∇Gφ(x, t) ∈ Lp(Rd;Rd) for any t > 0 and

||∇Gφ(x, t)||p ≤ Ctα−2− α
2s−

αd
2s (1− 1

p ), t > 0. (2.40)

Moreover, if p = d
d+1−4s for d + 2 > 4s, then ∇Gφ(x, t) ∈ L

d
d+1−4s ,∞(Rd;Rd) for all t > 0 and

||∇Gφ(x, t)|| d
d+1−4s ,∞

≤ Ct−α−2, t > 0. (2.41)

Lemma 2.6. Let d ∈ N, 1 < α < 2 and 0 < s < 1. Assume that 1 ≤ p < κ∗(d, s). Then it holds that
∇Gψ(x, t) = ∇G f (x, t) ∈ Lp(Rd;Rd) for all t > 0 and

||∇Gψ(x, t)||p = ||∇G f (x, t)||p ≤ Ctα−1− α
2s−

αd
2s (1− 1

p ), t > 0. (2.42)

Moreover, if p = d
d+1−4s for d + 2 > 4s, then ∇Gψ(x, t) = ∇G f (x, t) ∈ L

d
d+1−4s ,∞(Rd;Rd) for all t > 0 and

||∇Gψ(x, t)|| d
d+1−4s ,∞

= ||∇G f (x, t)|| d
d+1−4s ,∞

≤ Ct−α−1, t > 0. (2.43)

Theorem 2.3. Let d ∈ N, 1 < α < 2 and 0 < s < 1. Suppose that 1 ≤ q ≤ ∞ and f ≡ 0. Then the
following estimates hold on the gradient of solution ∇u(x, t) = ∇Gφ(x, t) ∗ φ(x) + ∇Gψ(x, t) ∗ ψ(x) with
φ, ψ ∈ Lq(Rd).
(1) If q = ∞, then

||∇u(x, t)||∞ ≤ Ctα−2− α
2s ||φ(x)||∞ +Ctα−1− α

2s ||ψ(x)||∞, t > 0.

(2) If 1 ≤ q < ∞, then for anyr ∈
[
q,

dq
d − (4s − 1)q

)
, if d > (4s − 1)q,

r ∈ [q,∞), if d ≤ (4s − 1)q,

one has

||∇u(x, t)||r ≤ Ctα−2− α
2s−

αd
2s ( 1

q−
1
r )
||φ(x)||q +Ctα−1− α

2s−
αd
2s ( 1

q−
1
r )
||ψ(x)||q, t > 0.

Moreover, if d > (4s − 1)q, then

||∇u(x, t)|| dq
d−(4s−1)q ,∞

≤ Ct−α−2||φ(x)||q +Ct−α−1||ψ(x)||q, t > 0.
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Theorem 2.4. Let d ∈ N, 1 < α < 2 and 0 < s < 1. Let 1 ≤ q < ∞ and the condition (2.29) be
satisfied. Then for everyr ∈

[
q,

dq
d − (4s − 1)q

)
, for 1 ≤ q < ∞ and d > (4s − 1)q,

r ∈ [q,∞), for 1 < q < ∞ and d ≤ (4s − 1)q,

the gradient of solution ∇u(x, t) = ∇G f (x, t) ⋆ f (x, t) has the following relations:

||∇u(x, t)||r ≤ Ctα−min{1,γ}− α
2s−

αd
2s ( 1

q−
1
r ), t > 0, (2.44)

if γ , 1, and
||∇u(x, t)||r ≤ Ctα−1− α

2s−
αd
2s ( 1

q−
1
r ) log (1 + t) , t > 0, (2.45)

if γ = 1.

The last two theorems present the large time behavior of the solution u(x, t) for Eq (1.1).

Theorem 2.5. Let d ∈ N, 1 < α < 2 and 0 < s < 1. Denote Mφ =
∫
Rd φ(x)dx and Mψ =

∫
Rd ψ(x)dx

with φ, ψ ∈ L1(Rd). Assume that f ≡ 0 and 1 ≤ p < κ∗(d, s). Then we have the following results.
(1) If || |x|φ(x)||1 < ∞ and || |x|ψ(x)||1 < ∞, then

t
αd
2s (1− 1

p )+1−α
||u(x, t) − MφGφ(x, t) − MψGψ(x, t)||p ≤ Ct−

α
2s−1 +Ct−

α
2s (2.46)

for any t > 0. Moreover, when p = d
d+1−4s , one gets

t
α(4s−1)

2s +1−α||u(x, t) − MφGφ(x, t) − MψGψ(x, t)|| d
d+1−4s ,∞

≤ Ct−
α
2s−1 +Ct−

α
2s (2.47)

for any t > 0.
(2) It follows that

t
αd
2s (1− 1

p )+1−α
||u(x, t) − MφGφ(x, t) − MψGψ(x, t)||p → 0 (2.48)

as t → ∞.

Proof. (1) Note that the conditions φ, ψ ∈ L1(Rd) and || |x|φ(x)||1 < ∞ and || |x|ψ(x)||1 < ∞. It follows
from the decomposition lemma ( see Lemma 8.4 [18]) that there exists functions Φ,Ψ ∈ L1(Rd;Rd)
such that

φ = Mφδφ + divΦ, ψ = Mψδψ + divΨ,

where ||Φ||1 ≤ C|| |x|φ(x)||1 and ||Ψ||1 ≤ C|| |x|ψ(x)||1. Therefore we find that

u(x, t) =Gφ(x, t) ∗ (Mφδφ + divΦ) +Gψ(x, t) ∗ (Mψδψ + divΨ)
=MφGφ(x, t) + ∇Gφ(x, t) • ∗ Φ(x) + MψGψ(x, t) + ∇Gψ(x, t) • ∗ Ψ(x),

where •∗ means the convolution between two vector functions. Further there holds

u(x, t) − MφGφ(x, t) − MψGψ(x, t) = ∇Gφ(x, t) • ∗ Φ(x) + ∇Gψ(x, t) • ∗ Ψ(x). (2.49)
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By using Young’s inequality for convolution (57) in [21], and taking (2.40) and (2.42) into account, we
obtain

||u(x, t) − MφGφ(x, t) − MψGψ(x, t)||p ≤||∇Gφ(x, t)||p||Φ(x)||1 + ||∇Gψ(x, t)||p||Ψ(x)||1

≤Ctα−2− α
2s−

αd
2s (1− 1

p ) +Ctα−1− α
2s−

αd
2s (1− 1

p )

for 1 ≤ p < κ∗(d, s), which gives

t
αd
2s (1− 1

p )+1−α
||u(x, t) − MφGφ(x, t) − MψGψ(x, t)||p ≤ Ct−

α
2s−1 +Ct−

α
2s ,

and the claim (2.46) holds. For the limit case p = d
d+1−4s , applying Young’s inequality for

convolution (58) in [21], (2.41) and (2.43) to (2.49) we immediately know that (2.47) is true.
(2) Let a sequence {ηm(x)} ⊆ C∞0 (Rd) satisfy

∫
Rd ηm(x)dx = Mφ for all m and ηm(x) → φ(x) as

m → ∞ in L1(Rd). Likewise, set a sequence {ζn(x)} ⊆ C∞0 (Rd) satisfy
∫
Rd ζn(x)dx = Mψ for all n and

ζn(x)→ ψ(x) as n→ ∞ in L1(Rd). Now we use Young’s inequality for convolution (57) in [21], (2.14),
(2.22) and the conclusion of (1) to derive for any m, n

||u(x, t) − MφGφ(x, t) − MψGψ(x, t)||p
≤||Gφ(x, t) ∗ φ(x) − MφGφ(x, t)||p + ||Gψ(x, t) ∗ ψ(x) − MψGψ(x, t)||p
≤||Gφ(x, t) ∗ (φ(x) − ηm(x))||p + ||Gφ(x, t) ∗ ηm(x) − MφGφ(x, t)||p
+ ||Gψ(x, t) ∗ (ψ(x) − ζn(x))||p + ||Gψ(x, t) ∗ ζn(x) − MψGψ(x, t)||p

≤Ctα−2− αd
2s (1− 1

p )
||φ − ηm||1 +Cmtα−2− α

2s−
αd
2s (1− 1

p ) +Ctα−1− αd
2s (1− 1

p )
||ψ − ζn||1 +Cntα−1− α

2s−
αd
2s (1− 1

p ).

Consequently,

t
αd
2s (1− 1

p )+1−α
||u(x, t) − MφGφ(x, t) − MψGψ(x, t)||p ≤ Ct−1||φ − ηm||1 +C||ψ − ζn||1 +Cmt−

α
2s−1 +Cnt−

α
2s ,

from which we have

lim sup
t→∞

t
αd
2s (1− 1

p )+1−α
||u(x, t) − MφGφ(x, t) − MψGψ(x, t)||p ≤ C||ψ − ζn||1,

and the claimed result (2.48) can be achieved by letting n → ∞. The proof of this theorem is now
ended. □

Theorem 2.6. Let d ∈ N, 1 < α < 2 and 0 < s < 1. Let φ ≡ ψ ≡ 0 and denote M f =
∫ ∞

0

∫
Rd f (x, t)dxdt.

Moreover, let us assume that f (x, t) ∈ L1
(
Rd × (0,∞)

)
and there exists some γ > 1 such that

|| f (x, t)||1 ≤ C(1 + t)−γ, t > 0.

Then it holds that
t1−α+ αd

2s (1− 1
p )
||u(x, t) − M f G f (x, t)||p → 0

as t → ∞ for any 1 ≤ p ≤ ∞, if d < 4s,

1 ≤ p < κ(d, s), if d ≥ 4s.

Proof. The proof can be completed by using the methods provided by Theorem 2.21 in [18] or
Theorem 3.16 in [20] and the details are omitted here. □
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3. Decay estimates of solution for Eq (1.2)

In this section we shall deal with decay behaviors of the solution for Eq (1.2). Similar to the
previous section, we present the asymptotics of the fundamental solution, decay estimates of the
solution, gradient estimates and large time behaviors. In particular the optimal L2-decay estimates
are provided by virtue of Plancherel’s theorem and the boundedness of Mittag-Leffler function. For the
most of theorems and lemmas in the section, we directly give results without proofs since their proof
techniques are very similar to ones of corresponding conclusions in the previous section.

3.1. Decay behaviors of the solution

We first construct the solution of Eq (1.2) by integral transforms. Applying Fourier and Laplace
transforms to Eq (1.2), and noticing that formula (2.248) in [28] and equality (A4), there holds

λαû(ω, λ) − ϕ̂(ω) + |ω|2sû(ω, λ) = ĝ(ω, λ). (3.1)

Then we get

û(ω, λ) =
1

λα + |ω|2s ϕ̂(ω) +
1

λα + |ω|2s ĝ(ω, λ)

:= Ĝ(ω, λ)ϕ̂(ω) + Ĝ(ω, λ)̂g(ω, λ). (3.2)

Performing the inverse Fourier transform and inverse Laplace transform on both sides of (3.2), the
solution of Eq (1.2) reads as

u(x, t) =G(x, t) ∗ ϕ(x) + G(x, t) ⋆ g(x, t)

=

∫
Rd
G(x − y, t)ϕ(y)dy +

∫ t

0

∫
Rd
G(x − y, t − τ)g(y, τ)dydτ, (3.3)

where the fundamental solution [18]

G(x, t) =
tα−1

|x|dπ
d
2

H21
23

(
|x|2s

22stα

∣∣∣∣∣ (1, 1); (α, α)
(1, 1), ( d

2 , s); (1, s)

)
. (3.4)

Lemma 3.1. [18] Let d ∈ N, 0 < α < 1 and 0 < s < 1. Suppose R = t−α|x|2s. Then for the fundamental
solution G(x, t) in (3.4) we have

|G(x, t)| ≤ Ct2α−1|x|−d−2s (3.5)

for R > 1, and

|G(x, t)| ≤


Ct−α−1|x|−d+4s, d > 4s,

Ct−α−1
(
1 +

∣∣∣∣log
(
(|x|/2)2st−α

)∣∣∣∣) , d = 4s,

Ctα−1− αd
2s , d < 4s

(3.6)

for R ≤ 1.

AIMS Mathematics Volume 8, Issue 8, 19210–19239.



19228

Lemma 3.2. [18] Let d ∈ N, 0 < α < 1 and 0 < s < 1. If 1 ≤ p < κ(d, s), then we have
G(x, t) ∈ Lp(Rd) for all t > 0 and

||G(x, t)||p ≤ Ctα−1− αd
2s (1− 1

p ), t > 0. (3.7)

And if moreover p = d
d−4s for d > 4s, then it follows that G(x, t) ∈ L

d
d−4s ,∞(Rd) for all t > 0 and

||G(x, t)|| d
d−4s ,∞

≤ Ct−α−1, t > 0. (3.8)

Remark 3.1. If d < 4s, by the third inequality of (3.6) in Lemma 3.1, it is clear that G(·, t) ∈ L∞(Rd)
and ||G(x, t)||∞ ≤ Ctα−1− αd

2s hold for all t > 0.

Theorem 3.1. Let d ∈ N, 0 < α < 1 and 0 < s < 1. Let 1 ≤ q ≤ ∞ and g ≡ 0. Then the solution
u(x, t) = G(x, t) ∗ ϕ(x) to Eq (1.2) with ϕ ∈ Lq(Rd) has the following decay estimates:
(1) If q = ∞, then

||u(x, t)||∞ ≤ Ctα−1||ϕ(x)||∞, t > 0.

(2) If 1 ≤ q < ∞, then

||u(x, t)||r ≤ Ctα−1− αd
2s ( 1

q−
1
r )
||ϕ(x)||q, t > 0

holds for any 
r ∈

[
q,

dq
d − 4sq

)
, if d > 4sq,

r ∈ [q,∞), if d = 4sq,

r ∈ [q,∞], if d < 4sq.

If moreover d > 4sq, then

||u(x, t)|| dq
d−4sq ,∞

≤ Ct−α−1||ϕ(x)||q, t > 0.

Theorem 3.2. [18] Let d ∈ N, 0 < α < 1 and 0 < s < 1. Let 1 ≤ q < ∞ and ϕ ≡ 0. Assume that
g(·, t) ∈ Lq(Rd) for all t > 0 and there is some γ > 0 such that

||g(x, t)||q ≤ C(1 + t)−γ, t > 0. (3.9)

Then the solution u(x, t) = G(x, t) ⋆ g(x, t) satisfies the following

||u(x, t)||r ≤ Ctα−min{1,γ}− αd
2s ( 1

q−
1
r ), γ , 1,

and
||u(x, t)||r ≤ Ctα−1− αd

2s ( 1
q−

1
r ) log(1 + t), γ = 1,

for any t > 0 and r ∈
[
q,

dq
d − 2sq

)
, for 1 ≤ q < ∞ and d > 2sq,

r ∈ [q,∞), for 1 < q < ∞ and d ≤ 2sq.
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3.2. Gradient estimates and large time behaviors

The gradient estimates and large time behaviors of the solution for Eq (1.2) are provided in the
subsection.

Lemma 3.3. [18] Let d ∈ N, 0 < α < 1 and 0 < s < 1. Suppose R = t−α|x|2s. Then the spatial and
time derivatives of the fundamental solution G(x, t) in (3.4) have the following decay behaviors:
(1) If R > 1, then

|∇G(x, t)| ≤ Ct2α−1|x|−(d+1)−2s, d ≥ 1, 0 < s < 1, (3.10)

and if R ≤ 1, then

|∇G(x, t)| ≤


Ct−α−1|x|−(d+1)+4s, d + 2 > 4s,

Ct−α−1|x|
(
1 +

∣∣∣∣log
(
(|x|/2)2st−α

)∣∣∣∣) , d + 2 = 4s,

Ctα−1− α(d+2)
2s |x|, d + 2 < 4s.

(3.11)

(2) If R > 1, then

|∂tG(x, t)| ≤ Ct2α−2|x|−d−2s, d ≥ 1, 0 < s < 1, (3.12)

and if R ≤ 1, then

|∂tG(x, t)| ≤


Ct−α−2|x|−d+4s, d > 4s,

Ct−α−2|x|
(
1 +

∣∣∣∣log
(
(|x|/2)2st−α

)∣∣∣∣) , d = 4s,

Ctα−2− αd
2s , d < 4s.

(3.13)

Lemma 3.4. Let d ∈ N, 0 < α < 1 and 0 < s < 1. For 1 ≤ p < κ∗(d, s), it holds that ∇G(x, t) ∈
Lp(Rd;Rd) for any t > 0 and

||∇G(x, t)||p ≤ Ctα−1− α
2s−

αd
2s (1− 1

p ), t > 0. (3.14)

Moreover, if p = d
d+1−4s for d + 2 > 4s, we have ∇G(x, t) ∈ L

d
d+1−4s ,∞(Rd;Rd) for any t > 0 and

||∇G(x, t)|| d
d+1−4s ,∞

≤ Ct−α−1, t > 0. (3.15)

Theorem 3.3. Let d ∈ N, 0 < α < 1 and 0 < s < 1. Let 1 ≤ q ≤ ∞ and g ≡ 0. Then for
∇u(x, t) = ∇G(x, t) ∗ ϕ(x) with ϕ ∈ Lq(Rd), we have:
(1) If q = ∞, then

||∇u(x, t)||∞ ≤ Ctα−1− α
2s ||ϕ(x)||∞, t > 0.

(2) If 1 ≤ q < ∞, then

||∇u(x, t)||r ≤ Ctα−1− α
2s−

αd
2s ( 1

q−
1
r )
||ϕ(x)||q, t > 0

for any r ∈
[
q,

dq
d − (4s − 1)q

)
, if d > (4s − 1)q,

r ∈ [q,∞), if d ≤ (4s − 1)q.
Moreover if d > (4s − 1)q, then

||∇u(x, t)|| dq
d−(4s−1)q ,∞

≤ Ct−α−1||ϕ(x)||q, t > 0.
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Theorem 3.4. Let d ∈ N, 0 < α < 1 and 0 < s < 1. Let 1 ≤ q < ∞ and ϕ ≡ 0. Assume that
g(·, t) ∈ Lq(Rd) for any t > 0 and the assumption (3.9) holds. Then ∇u(x, t) = ∇G(x, t) ⋆ g(x, t) has the
estimates

||∇u(x, t)||r ≤ Ctα−min{1,γ}− α
2s−

αd
2s ( 1

q−
1
r ), γ , 1,

and

||∇u(x, t)||r ≤ Ctα−1− α
2s−

αd
2s ( 1

q−
1
r ) log (1 + t) , γ = 1,

for all t > 0 and for everyr ∈
[
q,

dq
d − (4s − 1)q

)
, if 1 ≤ q < ∞ and d > (4s − 1)q,

r ∈ [q,∞), if 1 < q < ∞ and d ≤ (4s − 1)q.

Theorem 3.5. Let d ∈ N, 0 < α < 1 and 0 < s < 1. Let 1 ≤ p < κ∗(d, s) and g ≡ 0. Assume ϕ ∈ L1(Rd)
and denote Mϕ =

∫
Rd ϕ(x)dx. Then the following results hold.

(1) If || |x|ϕ(x)||1 < ∞, then

t1−α+ αd
2s (1− 1

p )
||u(x, t) − MϕG(x, t)||p ≤ Ct−

α
2s , t > 0.

When p = d
d+1−4s , one gets

t1−α+ α(4s−1)
2s ||u(x, t) − MϕG(x, t)|| d

d+1−4s ,∞
≤ Ct−

α
2s , t > 0.

(2) It follows that

t1−α+ αd
2s (1− 1

p )
||u(x, t) − MϕG(x, t)||p → 0

as t → ∞.

Theorem 3.6. Let d ∈ N, 0 < α < 1 and 0 < s < 1. Let ϕ ≡ 0 and denote Mg =
∫ ∞

0

∫
Rd g(x, t)dxdt. Let

us assume g(x, t) ∈ L1
(
Rd × (0,∞)

)
and there exists some γ > 1 such that

||g(x, t)||1 ≤ C(1 + t)−γ, t > 0.

Then for all 1 ≤ p ≤ ∞, if d < 4s,

1 ≤ p < κ(d, s), if d ≥ 4s,

it holds that

t1−α+ αd
2s (1− 1

p )
||u(x, t) − MgG(x, t)||p → 0

as t → ∞.
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3.3. The optimal L2-decay estimate

In this subsection our attention will be restricted to decay estimate of the solution for Eq (1.2) in
the sense of L2-norm when g ≡ 0. To do this, let us consider the solution of Eq (1.2) under the Fourier
transform. By using the inverse Laplace transform on both sides of (3.1) we obtain

û(ω, t) = Ĝ(ω, t)ϕ̂(ω) +
∫ t

0
Ĝ(ω, t − τ)̂g(ω, τ)dτ,

where
Ĝ(ω, t) = tα−1Eα,α(−|ω|2stα).

To derive optimal L2 decay rate, we need investigate some properties of the Mittag-Leffler function
Eα,α(−η).

Lemma 3.5. [13] Let 0 < α < 1. Then the Mittag-Leffler function Eα,α(−η) > 0 for η ∈ (0,∞).

Lemma 3.6. [13] Let 0 ≤ α ≤ 1 and β ≥ α. Then the Mittag-Leffler function Eα,β(−η) is completely
monotone for η ∈ (0,∞).

Lemma 3.7. Let 0 < α < 1. Then there are positive constants C1 and C2 such that

C1

1 + η2 ≤ Eα,α(−η) ≤
C2

1 + η2 , η ≥ 0.

Proof. First of all, we know that Eα,α(−η) > 0 for 0 < α < 1 and η ≥ 0. In fact, one has Eα,α(0) =
1/Γ(α) > 0. For η > 0, it is evident that Eα,α(−η) > 0 by Lemma 3.5.

In view of asymptotic expansions for the Mittag-Leffler function (see Theorem 1.4 in [28]) we
obtain

Eα,α(−η) = −
1
Γ(−α)

1
η2 + O(η3), η→ ∞.

This implies the function Eα,α(−η) behaves as C0/η
2 when η→ ∞ with some positive constant C0, i.e.,

there exist a positive real number X and two positive constants C3 and C4 such that

C3

1 + η2 ≤ Eα,α(−η) ≤
C4

1 + η2 , η > X. (3.16)

Since the Mittag-Leffler function Eα,α(−η) is analytic for any η ∈ R, then it is bound on the interval
[0, X]. Moreover, it follows from Lemma 3.6 that the Mittag-Leffler function Eα,α(−η) is monotonically
decreasing for η ∈ (0,∞). Therefore, there are positive constants C5 and C6 satisfying C5 ≤ Eα,α(−η) ≤
C6 with 0 ≤ η ≤ X. We further obtain

C7

1 + η2 ≤ Eα,α(−η) ≤
C8

1 + η2 , η ∈ [0, X] (3.17)

with positive constants C7 and C8.
The desired result follows from (3.16) and (3.17) and the proof is complete. □

We first present the estimates of lower bound for the solution u(x, t) = G(x, t) ∗ϕ(x) to Eq (1.2) with
g ≡ 0 in the sense of L2-norm.
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Theorem 3.7. Let d ∈ N, 0 < α < 1, 0 < s < 1, and d , 8s. Let g ≡ 0 in Eq (1.2). If ϕ ∈
L1(Rd)

⋂
L2(Rd) and

∫
Rd ϕ(x)dx , 0, then the solution u(x, t) = G(x, t) ∗ ϕ(x) to Eq (1.2) has the lower

bound estimate
||u(x, t)||2 ≥ Ct−min{α+1,1−α+ αd

4s }, t > t0 > 0.

Proof. Let ρ = ρ(t) ∈ (0, ρ0] with t > 0 and ρ0 > 0. According to Plancherel’s theorem and the estimate
for the Mittag-Leffler function in Lemma 3.7, it follows that

||u(x, t)||22 = ||̂u(ω, t)||22 =
∫
Rd
|Ĝ(ω, t)|2 |̂ϕ(ω)|2dω

≥

∫
Bρ(0)
|tα−1Eα,α(−|ω|2stα)|2 |̂ϕ(ω)|2dω

≥
Ct2α−2

(1 + ρ4st2α)2

∫
Bρ(0)
|̂ϕ(ω)|2dω

=
Ct2α−2

(1 + ρ4st2α)2ρ
d

(
ρ−d

∫
Bρ(0)
|̂ϕ(ω)|2dω

)
. (3.18)

From the Plancherel’s theorem and Riemann-Lebesgue lemma, it is easy to verify that ϕ̂ ∈
C0(Rd)

⋂
L2(Rd) holds. By making use of Lebesgue differentiation theorem we have for a sufficient

small ρ0

ρ−d
∫

Bρ(0)
|̂ϕ(ω)|2dω ≥

|̂ϕ(0)|2

2
, ρ ∈ (0, ρ0].

Substituting this into (3.18) leads to

||u(x, t)||22 ≥
Ct2α−2 |̂ϕ(0)|2ρd

2(1 + ρ4st2α)2 . (3.19)

Now letting ρ = ρ0 in (3.19) one gets

||u(x, t)||22 ≥ Ct−2α−2, t > t0 > 0. (3.20)

On the other hand, we may take ρ = ρ0
(1+t2α)1/4s in (3.19) to derive

||u(x, t)||22 ≥ Ct2α−2− αd
2s , t > t0 > 0. (3.21)

Together with (3.20) and (3.21), the desired lower bound is established and the proof is thus
completed. □

The upper bound for the solution u(x, t) = G(x, t) ∗ ϕ(x) to Eq (1.2) is estimated in the following
theorem when g ≡ 0.

Theorem 3.8. Let d ∈ N, 0 < α < 1, 0 < s < 1, and d , 8s. Let g ≡ 0 in Eq (1.2). If ϕ ∈
L1(Rd) ∩ L2(Rd) and

∫
Rd ϕ(x)dx , 0, then the solution u(x, t) = G(x, t) ∗ ϕ(x) to Eq (1.2) satisfies the

upper bound estimate
||u(x, t)||2 ≤ Ct−min{α+1,1−α+ αd

4s }, t > 0. (3.22)

For d = 8s one has
||u(x, t)||2,∞ ≤ Ct−α−1, t > 0. (3.23)
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Proof. We divide into two cases to prove the assertion (3.22). When d < 8s, applying Plancherel’s
theorem and Lemma 3.7 one gets

||u(x, t)||22 = ||̂u(ω, t)||22 =
∫
Rd
|Ĝ(ω, t)|2 |̂ϕ(ω)|2dω

≤ ||̂ϕ||2∞

∫
Rd
|Ĝ(ω, t)|2dω ≤ C||ϕ||21

∫
Rd

t2α−2

(1 + |ω|4st2α)2 dω

= C||ϕ||21t2α−2
∫ ∞

0

ρd−1dρ
(1 + ρ4st2α)2

= Ct2α−2− αd
2s ||ϕ||21

∫ ∞

0

ρd−1
1 dρ1

(1 + ρ4s
1 )2

,

i.e.,
||u(x, t)||2 ≤ Ctα−1− αd

4s . (3.24)

If d > 8s, then ϕ ∈ L1(Rd)
⋂

L2(Rd) implies ϕ ∈ L
2d

d+8s (Rd) by interpolation. Furthermore,
Theorem 8.5 in [18] gives

||(−∆)−2sϕ||2 ≤ C||ϕ|| 2d
d+8s

< ∞. (3.25)

It follows from Plancherel’s theorem and Lemma 3.7 that

||u(x, t)||22 = ||̂u(ω, t)||22 =
∫
Rd
|Ĝ(ω, t)|2 |̂ϕ(ω)|2dω

≤ C
∫
Rd

t2α−2

(1 + |ω|4st2α)2 |̂ϕ(ω)|2dω

= Ct−2α−2
∫
Rd

|ω|8st4α

(1 + |ω|4st2α)2 ||ω|
−4sϕ̂(ω)|2dω

≤ Ct−2α−2
∫
Rd
||ω|−4sϕ̂(ω)|2dω

= Ct−2α−2||(−∆)−2sϕ||22. (3.26)

Substituting (3.25) into (3.26) we have

||u(x, t)||2 ≤ Ct−α−1. (3.27)

Based on (3.24) with (3.27), the expected inequality (3.22) is proved.
If d = 8s, then by using Young’s inequality for convolution and (2.15) in Lemma 2.2 it is evident

that
||u(x, t)||2,∞ = ||G(x, t) ∗ ϕ(x)||2,∞ ≤ C||G(x, t)||2,∞||ϕ||1 ≤ Ct−α−1, t > 0,

which is the required result (3.23). This finishes the proof of theorem. □

Remark 3.2. For 1 < α < 2, we have not give the optimal L2-norm estimates for the solution of
Eq (1.1). The reason is as follows. We can apply the inverse Laplace transform to equality (2.1) to
obtain the solution of Eq (1.1) in the Fourier domain

û(ω, t) = Ĝφ(ω, t)φ̂(ω) + Ĝψ(ω, t)ψ̂(ω),
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where
Ĝφ(ω, t) = tα−2Eα,α−1(−|ω|2stα)

and
Ĝψ(ω, t) = tα−1Eα,α(−|ω|2stα).

However, we can not derive positive lower bounds for the Mittag-Leffler functions Eα,α−1(−η) and
Eα,α(−η) with η ≥ 0 and 1 < α < 2 as Lemma 3.7 since these two functions have zeros on the
real axis. In fact, using the result of Theorem 2 in [29] we immediately see that the Mittag-Leffler
function Eα,α−1(−η) exists real zeros. For the Mittag-Leffler function Eα,α(−η), it is obvious that
Eα,α(0) = 1/Γ(α) > 0. Additionally, In view of asymptotic expansion of the Mittag-Leffler function, see
Theorem 1.4 in [28], we have

Eα,α(−η) = −
p∑

k=1

(−η)k

Γ(α − αk)
+ O(η−1−p) = −

1
Γ(−α)η2 + O(η−3)

when η → ∞. Since 1 < α < 2, then one gets Γ(−α) > 0. Hence the Mittag-Leffler function Eα,α(−η)
behaves like

Eα,α(−η) ∼ −
1
η2 , η→ ∞,

which implies Eα,α(−η) < 0 for sufficiently large η. Combining the above analysis and taking the
analyticity of the Mittag-Leffler function Eα,α(−η) into account, we find that Eα,α(−η) has one real
zeros at least. In Figure 1, we depict graphs of the Mittag-Leffler functions Eα,α−1(−η) and Eα,α(−η)
with η ∈ [0, 50], where the parameter α takes α = 1.2, 1.5, 1.9, respectively.
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Figure 1. Plots of the Mittag-Leffler functions Eα,α−1(−η) and Eα,α(−η).

4. Conclusions

This work investigates asymptotic behaviors of solutions of Cauchy problems for superdiffusion
equation (1.1) and subdiffusion equation (1.2) with integral initial conditions in the sense of Lp(Rd)
and Lp,∞(Rd). For these two kinds of equations, we construct their fundamental solutions and solutions,
analyze asymptotic behaviors of solutions, and study gradient estimates and large time behaviors. In
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particular, the optimal L2 decay estimate of solution is derived for Eq (1.2). Compared with the cases
of Caputo derivative in the time direction [7, 18] in Eqs (1.1) and (1.2), it is not difficult to see that the
asymptotic rates are faster in the cases of Riemann-Liouville derivative.
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Appendix

In the appendix we recall several concepts of integral transforms [5] such as Laplace transform,
Mellin transform and Fourier transform, which play an important role on the process of deriving the
solutions of Eqs (1.1) and (1.2). Moreover, we introduce the definition of the Fox H-function too.

The standard Laplace transform of a function f (t) is defined by

f (λ) = L [ f (t), λ] :=
∫ ∞

0
e−λt f (t)dt, λ ∈ C.

Correspondingly, the inverse Laplace transform is given by

f (t) = L −1[ f (λ), t] :=
1

2πi

∫ c+i∞

c−i∞
eλt f (λ)dλ, c = Re(λ), t > 0.

In particular, the Laplace transforms of the Riemann-Liouville fractional integral (1.3) and
derivative (1.4) with the starting point a = 0 can be written as [28]

L [RLD−α0,t f (t), λ] = λ−αL [ f (t), λ] (A1)
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and

L [RLDα
0,t f (t), λ] = λαL [ f (t), λ] −

n−1∑
k=0

λk[RLDα−k−1
0,t f (t)]|t=0 (A2)

for n − 1 < α < n ∈ N.
The standard Mellin transform of a function f (t) is defined by

f̃ (ξ) =M [ f (t), ξ] :=
∫ ∞

0
tξ−1 f (t)dt, ξ ∈ C.

The inverse Mellin transform is correspondingly represented as

f (t) =M −1[ f̃ (ξ), t] :=
1

2πi

∫ c+i∞

c−i∞
t−ξ f̃ (ξ)dξ, c = Re(ξ), t > 0.

The relation connecting the Laplace transform and the Mellin transform has the following form [6]:

M [ f (t), ξ] =
1

Γ(1 − ξ)
M [L [ f (t), λ], 1 − ξ]. (A3)

The Fourier transform of a function f (x) is defined by

f̂ (ω) = F [ f (x), ω] :=
∫
Rd

eiω·x f (x)dx, ω ∈ Rd,

while the corresponding inverse Fourier transform can be written as

f (x) = F −1[ f̂ (ω), x] :=
1

(2π)d

∫
Rd

e−ix·ω f̂ (ω)dω, x ∈ Rd.

Then the Fourier transform of the integral fractional Laplacian (1.5) is given by [8]

F [(−∆)sv(x), ω] = |ω|2sF [v(x), ω], x ∈ Rd, s ∈ (0, 1). (A4)

Next, let us briefly recall the definition of the Fox H-function. The Fox H-function are special
functions, where the fundamental solutions of Eqs (1.1) and (1.2) are written by means of these
functions, and they paly a basic role in asymptotic analysis of the solutions.

According to the contour integral of Mellin-Barnes type, the Fox H-function can be represented as

Hmn
µν (z) ≡ Hmn

µν

(
z
∣∣∣∣∣ (a1, α1), · · · , (an, αn); (an+1, αn+1), · · · , (aµ, αµ)

(b1, β1), · · · , (bm, βm); (bm+1, βm+1), · · · , (bν, βν)

)
:=

1
2πi

∫
L

Hmn
µν (τ)z−τdτ, (A5)

where

Hmn
µν (τ) :=

∏m
j=1 Γ(b j + β jτ)

∏n
l=1 Γ(1 − al − αlτ)∏µ

l=n+1 Γ(al + αlτ)
∏ν

j=m+1 Γ(1 − b j − β jτ)
, (A6)
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and m, n, µ, ν are nonnegative integers with 0 ≤ m ≤ ν and 0 ≤ n ≤ µ, and αl, β j are positive real
numbers and al, b j are complex numbers for l = 1, . . . , µ; j = 1, . . . , ν. All the poles

b jσ = −
b j + σ

β j
, j = 1, . . . ,m; σ = 0, 1, 2, . . .

of the gamma functions Γ(b j + β jτ) and

alk =
1 − al + k

αl
, l = 1, . . . , n; k = 0, 1, 2, . . .

of the gamma functions Γ(1 − al − αlτ) are not equal, i.e.,

αl(b j + σ) , β j(al − k − 1), j = 1, . . . ,m; l = 1, . . . , n; σ, k = 0, 1, 2, . . .

The contour L is an infinite contour in the complex plane which separates all the poles b jσ from all the
poles alk, and it may take L = L−∞ or L = L+∞ or L = Liγ∞ with γ ∈ R and i2 = −1. Besides, we denote

a∗ =
n∑

l=1

αl −

µ∑
l=n+1

αl +

m∑
j=1

β j −

ν∑
j=m+1

β j.

A comprehensive and detailed description for the Fox H-function can be available from [2, 14, 15, 30].
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