In this paper, we first study continuous linear functionals on a fuzzy quasi-normed space, obtain a characterization of continuous linear functionals, and point out that the set of all continuous linear functionals forms a convex cone and can be equipped with a weak fuzzy quasi-norm. Next, we prove a theorem of Hahn-Banach type and two separation theorems for convex subsets of fuzzy quasinormed spaces.
Citation: Ruini Li, Jianrong Wu. Hahn-Banach type theorems and the separation of convex sets for fuzzy quasi-normed spaces[J]. AIMS Mathematics, 2022, 7(3): 3290-3302. doi: 10.3934/math.2022183
In this paper, we first study continuous linear functionals on a fuzzy quasi-normed space, obtain a characterization of continuous linear functionals, and point out that the set of all continuous linear functionals forms a convex cone and can be equipped with a weak fuzzy quasi-norm. Next, we prove a theorem of Hahn-Banach type and two separation theorems for convex subsets of fuzzy quasinormed spaces.
[1] | C. Alegre, S. Romaguera, On paratopological vector spaces, Acta Math. Hungar., 101 (2003), 237–261. doi: 10.1023/B:AMHU.0000003908.28255.22. doi: 10.1023/B:AMHU.0000003908.28255.22 |
[2] | C. Alegre, S. Romaguera, Characterizations of metrizable topological vector spaces and their asymmetric generalizations in terms of fuzzy (quasi-)norms, Fuzzy Sets Syst., 161 (2010), 2181–2192. doi: 10.1016/j.fss.2010.04.002. doi: 10.1016/j.fss.2010.04.002 |
[3] | C. Alegre, S. Romaguera, The Hahn-Banach extension theorem for fuzzy normed spaces revisited, Abstr. Appl. Anal., 2014 (2014), 1–8. doi: 10.1155/2014/151472. doi: 10.1155/2014/151472 |
[4] | C. Alegre, S. Romaguera, On the uniform boundedness theorem in fuzzy quasi-normed spaces, Fuzzy Sets Syst., 282 (2016), 143–153. doi: 10.1016/j.fss.2015.02.009. doi: 10.1016/j.fss.2015.02.009 |
[5] | T. Bag, S. K. Samanta, Finite dimensional fuzzy normed linear spaces, Fuzzy Math., 6 (2003), 687–705. |
[6] | S. Cobzas, Functional Analysis in Asymmetric Normed Spaces, Springer Basel, 2013. doi: 10.1007/978-3-0348-0478-3. |
[7] | R. Gao, X. Li, J. Wu, The decomposition theorem for a fuzzy quasinorm, J. Math., 2020 (2020), 1–7. doi: 10.1155/2020/8845283. doi: 10.1155/2020/8845283 |
[8] | A. George, P. Veeramani, On some results in fuzzy metric space, Fuzzy Sets Syst., 64 (1994), 395–399. doi: 10.1016/0165-0114(94)90162-7. doi: 10.1016/0165-0114(94)90162-7 |
[9] | B.Y. Hussein, F.K. Al-Basri, On the completion of quasi-fuzzy normed algebra over fuzzy field, J. Interdiplinary Math., 25 (2020), 1–13. |
[10] | B. Schweizer, A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), 314–334. doi: 10.2140/pjm.1960.10.313. doi: 10.2140/pjm.1960.10.313 |