Research article Special Issues

A new algorithm based on compressed Legendre polynomials for solving boundary value problems

  • Received: 21 September 2021 Accepted: 18 November 2021 Published: 29 November 2021
  • MSC : 65L05, 65L10

  • In this paper, we discuss a novel numerical algorithm for solving boundary value problems. We introduce an orthonormal basis generated from compressed Legendre polynomials. This basis can avoid Runge phenomenon caused by high-order polynomial approximation. Based on the new basis, a numerical algorithm of two-point boundary value problems is established. The convergence and stability of the method are proved. The whole analysis is also applicable to higher order equations or equations with more complex boundary conditions. Four numerical examples are tested to illustrate the accuracy and efficiency of the algorithm. The results show that our algorithm have higher accuracy for solving linear and nonlinear problems.

    Citation: Hui Zhu, Liangcai Mei, Yingzhen Lin. A new algorithm based on compressed Legendre polynomials for solving boundary value problems[J]. AIMS Mathematics, 2022, 7(3): 3277-3289. doi: 10.3934/math.2022182

    Related Papers:

  • In this paper, we discuss a novel numerical algorithm for solving boundary value problems. We introduce an orthonormal basis generated from compressed Legendre polynomials. This basis can avoid Runge phenomenon caused by high-order polynomial approximation. Based on the new basis, a numerical algorithm of two-point boundary value problems is established. The convergence and stability of the method are proved. The whole analysis is also applicable to higher order equations or equations with more complex boundary conditions. Four numerical examples are tested to illustrate the accuracy and efficiency of the algorithm. The results show that our algorithm have higher accuracy for solving linear and nonlinear problems.



    加载中


    [1] A. Saadatmandi, M. Dehghan, The use of Sinc-collocation method for solving multi-point boundary value problems, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 593–601. doi: 10.1016/j.cnsns.2011.06.018. doi: 10.1016/j.cnsns.2011.06.018
    [2] P. Roul, V. M. K. P. Goura, R. Agarwal, A compact finite difference method for a general class of nonlinear singular boundary value problems with Neumann and Robin boundary conditions, Appl. Math. Comput., 350 (2019), 283–304. doi: 10.1016/j.amc.2019.01.001. doi: 10.1016/j.amc.2019.01.001
    [3] G. Arora, R. Kumar, H. Kaur, A novel wavelet based hybrid method for finding the solutions of higher order boundary value problems, Ain Shams Eng. J., 9 (2018), 3015–3031. doi: 10.1016/j.asej.2017.12.006. doi: 10.1016/j.asej.2017.12.006
    [4] E. Keshavarz, Y. Ordokhani, M. Razzaghi, The Taylor wavelets method for solving the initial and boundary value problems of Bratu-type equations, Appl. Numer. Math., 128 (2018), 205–216. doi: 10.1016/j.apnum.2018.02.001. doi: 10.1016/j.apnum.2018.02.001
    [5] X. C. Zhong, Q. A. Huang, Approximate solution of three-point boundary value problems for second-order ordinary differential equations with variable coefficients, Appl. Math. Comput., 247 (2014), 18–29. doi: 10.1016/j.amc.2014.08.076. doi: 10.1016/j.amc.2014.08.076
    [6] L. J. Xie, C. L. Zhou, S. Xu, An effective computational method for solving linear multi-point boundary value problems, Appl. Math. Comput., 321 (2018), 255–266. doi: 10.1016/j.amc.2017.10.016. doi: 10.1016/j.amc.2017.10.016
    [7] E. Ideon, P. Oja, Linear/linear rational spline collocation for linear boundary value problems, J. Comput. Appl. Math., 263 (2014), 32–44. doi: 10.1016/j.cam.2013.11.028. doi: 10.1016/j.cam.2013.11.028
    [8] P. Roul, U. Warbhe, A novel numerical approach and its convergence for numerical solution of nonlinear doubly singular boundary value problems, J. Comput. Appl. Math., 296 (2016), 661–676. doi: 10.1016/j.cam.2015.10.020. doi: 10.1016/j.cam.2015.10.020
    [9] R. K. Lodhi, H. K. Mishra, Quintic B-spline method for solving second order linear and nonlinear singularly perturbed two-point boundary value problems, J. Comput. Appl. Math., 319 (2017), 170–187. doi: 10.1016/j.cam.2017.01.011. doi: 10.1016/j.cam.2017.01.011
    [10] M. Ahmadinia, Z. Safari, Numerical solution of singularly perturbed boundary value problems by improved least squares method, J. Comput. Appl. Math., 331 (2018), 156–165. doi: 10.1016/j.cam.2017.09.023. doi: 10.1016/j.cam.2017.09.023
    [11] P. Roul, K. Thula, A new high-order numerical method for solving singular two-point boundary value problems, J. Comput. Appl. Math., 343 (2018), 556–574. doi: 10.1016/j.cam.2018.04.056. doi: 10.1016/j.cam.2018.04.056
    [12] F. Z. Geng, Z. Q. Tang, Piecewise shooting reproducing kernel method for linear singularly perturbed boundary value problems, Appl. Math. Lett., 62 (2016), 1–8. doi: 10.1016/j.aml.2016.06.009. doi: 10.1016/j.aml.2016.06.009
    [13] H. Zhu, J. Niu, R. M. Zhang, Y. Z. Lin, A new approach for solving nonlinear singular boundary value problems, Math. Model. Anal., 23 (2018), 33–43. doi: 10.3846/mma.2018.003. doi: 10.3846/mma.2018.003
    [14] M. Khaleghi, M. Talebi Moghaddam, E. Babolian, S. Abbasbandy, Solving a class of singular two-point boundary value problems using new effective reproducing kernel technique, Appl. Math. Comput., 331 (2018), 264–273. doi: 10.1016/j.amc.2018.03.023. doi: 10.1016/j.amc.2018.03.023
    [15] M. Q. Xu, E. Tohidi, A Legendre reproducing kernel method with higher convergence order for a class of singular two-point boundary value problems, J. Appl. Math. Comput., 67 (2021), 405–421. doi: 10.1007/s12190-020-01494-6. doi: 10.1007/s12190-020-01494-6
    [16] M. H. Heydari, A. Atangana, Z. Avazzadeh, Numerical solution of nonlinear fractal-fractional optimal control problems by Legendre polynomials, Math. Meth. Appl. Sci., (2020), 1–12. doi: 10.1002/mma.6326.
    [17] Y. C. Zhang, H. B. Sun, Y. T. Jia, Y. Z. Lin, An algorithm of the boundary value problem based on multiscale orthogonal compact base, Appl. Math. Lett., 101 (2020). doi: 10.1016/j.aml.2019.106044.
    [18] Y. Q. Zheng, Y. Z. Lin, Y. Shen, A new multiscale algorithm for solving second order boundary value problems, Appl. Numer. Math., 156 (2020), 528–541. doi: 10.1016/j.apnum.2020.05.020. doi: 10.1016/j.apnum.2020.05.020
    [19] B. Y. Wu, Y. Z. Lin, Application-Oriented the Reproducing Kernel Space, Beijing: Beijing Science Press, 2012.
    [20] C. Canuto, A. Quarteroni, M. Y. Hussaini, T. A. Zang, Spectral methods: Fundamentals in single domains, Springer, 2006.
    [21] N. Bello, A. Jibril Alkali, A. Roko, A fixed point iterative method for the solution of two-point boundary value problems for a second order differential equations, Alex. Eng. J., 57 (2018), 2515–2520. doi: 10.1016/j.aej.2017.09.010. doi: 10.1016/j.aej.2017.09.010
    [22] M. A. Noor, S. T. Mohyud-Din, Homotopy perturbation method for solving sixth-order boundary value problems, Comput. Math. Appl., 55 (2008), 2953–2972. doi: 10.1016/j.camwa.2007.11.026. doi: 10.1016/j.camwa.2007.11.026
    [23] M. Sohaib, S. Haq, S. Mukhtar, I. Khan, Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method, Results Phys., 8 (2018), 1204–1208. doi: 10.1016/j.rinp.2018.01.065. doi: 10.1016/j.rinp.2018.01.065
    [24] F. Z. Geng, A new reproducing kernel Hilbert space method for solving nonlinear fourth-order boundary value problems, Appl. Math. Comput., 213 (2009), 163–169. doi: 10.1016/j.amc.2009.02.053. doi: 10.1016/j.amc.2009.02.053
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1943) PDF downloads(98) Cited by(1)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog