Research article Special Issues

Efficient control chart-based monitoring of scale parameter for a process with heavy-tailed non-normal distribution

  • Received: 04 August 2023 Revised: 28 September 2023 Accepted: 15 October 2023 Published: 06 November 2023
  • MSC : 62P30, 62F25

  • Statistical process control is a procedure of quality control that is widely used in industrial processes to enable monitoring by using statistical techniques. All production processes are faced with natural and unnatural variations. To maintain the stability of the production process and reduce variation, different tools are used. Control charts are significant tools to monitor a production process. In this article, we design an extended exponentially weighted moving average (EEWMA) chart under the assumption of inverse Maxwell (IM) distribution, an IM EEWMA (IMEEWMA) control chart. We have estimated the performance of the proposed chart in terms of various run-length (RL) properties, including the average RL, standard deviation of the RL and median RL. We have also carried out a comparative analysis of the proposed chart with the existing Shewhart-type chart for IM distribution (VIM chart) and IM exponential weighted moving average (IMEWMA) chart. We observed that the proposed IMEEWMA chart performed better than the VIM chart and IMEWMA chart in terms of the ability to detect small and moderate shifts. To demonstrate its practical application, we have applied the IMEEWMA chart, along with existing control charts, to monitor the lifetime of car brake pad data. This real-world example illustrates the superiority of the IMEEWMA chart over its counterparts in industrial scenarios.

    Citation: Mediha Maqsood, Aamir Sanaullah, Yasar Mahmood, Afrah Yahya Al-Rezami, Manal Z. M. Abdalla. Efficient control chart-based monitoring of scale parameter for a process with heavy-tailed non-normal distribution[J]. AIMS Mathematics, 2023, 8(12): 30075-30101. doi: 10.3934/math.20231538

    Related Papers:

  • Statistical process control is a procedure of quality control that is widely used in industrial processes to enable monitoring by using statistical techniques. All production processes are faced with natural and unnatural variations. To maintain the stability of the production process and reduce variation, different tools are used. Control charts are significant tools to monitor a production process. In this article, we design an extended exponentially weighted moving average (EEWMA) chart under the assumption of inverse Maxwell (IM) distribution, an IM EEWMA (IMEEWMA) control chart. We have estimated the performance of the proposed chart in terms of various run-length (RL) properties, including the average RL, standard deviation of the RL and median RL. We have also carried out a comparative analysis of the proposed chart with the existing Shewhart-type chart for IM distribution (VIM chart) and IM exponential weighted moving average (IMEWMA) chart. We observed that the proposed IMEEWMA chart performed better than the VIM chart and IMEWMA chart in terms of the ability to detect small and moderate shifts. To demonstrate its practical application, we have applied the IMEEWMA chart, along with existing control charts, to monitor the lifetime of car brake pad data. This real-world example illustrates the superiority of the IMEEWMA chart over its counterparts in industrial scenarios.



    加载中


    [1] G. Chen, S. W. Cheng, H. Xie, Monitoring process mean and variability with one EWMA chart, J. Qual. Technol., 33 (2001), 223–233. https://doi.org/10.1080/00224065.2001.11980069 doi: 10.1080/00224065.2001.11980069
    [2] B. Yeh, L. Huwang, Y. F. Wu, A Likelihood-Ratio-Based EWMA control chart for monitoring variability of multivariate normal processes, IIE Trans., 36 (2004), 865–879. https://doi.org/10.1080/07408170490473042 doi: 10.1080/07408170490473042
    [3] L. Zhang, G. Chen, An extended EWMA mean chart, Qual. Technol. Quant. Manag., 2 (2005), 39–52. https://doi.org/10.1080/16843703.2005.11673088
    [4] M. B. C. Khoo, V. H. Wong, A double moving average control chart, Commun. Stat.-Simul. Comput., 37 (2008), 1696–1708. https://doi.org/10.1080/03610910701832459 doi: 10.1080/03610910701832459
    [5] Haq, A new hybrid exponentially weighted moving average control chart for monitoring process mean, Qual. Reliab. Eng. Int., 29 (2013), 1015–1025. https://doi.org/10.1002/qre.1453
    [6] J. Shabbir, W. H. Awan, An efficient Shewhart-Type control chart to monitor moderate size shifts in the process mean in Phase II, Qual. Reliab. Eng. Int., 32 (2015), 1597–1619. https://doi.org/10.1002/qre.1893 doi: 10.1002/qre.1893
    [7] M. Naveed, M. Azam, M. S. Nawaz, M. Saleem, M. Aslam, M. Saeed, Design of moving average chart and auxiliary information based chart using extended EWMA, Sci. Rep., 13 (2023), 5562. https://doi.org/10.1038/s41598-023-32781-4 doi: 10.1038/s41598-023-32781-4
    [8] C. M. Borror, D. C. Montgomery, G. C. Runger, Robustness of the EWMA control chart to non-normality, J. Qual. Technol., 31 (1999), 309–316. https://doi.org/10.1080/00224065.1999.11979929 doi: 10.1080/00224065.1999.11979929
    [9] P. E. Maravelakis, J. Panaretos, S. Psarakis, An examination of the robustness to Non-normality of the EWMA control charts for the dispersion, Commun. Stat.-Simul. Comput., 34 (2005), 1069–1079. https://doi.org/10.1080/03610910500308719 doi: 10.1080/03610910500308719
    [10] C. M. Borror, C. W. Champ, S. E. Rigdon, Poisson EWMA control charts, J. Qual. Technol., 30 (1998), 352–361. https://doi.org/10.1080/00224065.1998.11979871
    [11] F. F. Gan, Monitoring observations generated from a binomial distribution using modified exponentially weighted moving average control chart, J. Stat. Comput. Simul., 37 (1990), 45–60. https://doi.org/10.1080/00949659008811293 doi: 10.1080/00949659008811293
    [12] F. F. Gan, Monitoring Poisson observations using modified exponentially weighted moving average control charts, Commun. Stat.-Simul. Comput., 19 (1990), 103–124. https://doi.org/10.1080/03610919008812847 doi: 10.1080/03610919008812847
    [13] F. J. Yu, Y. Y. Yang, M. J. Wang, Z. Wu, Using EWMA control schemes for monitoring wafer quality in negative binomial process, Microelectron. Reliab., 51 (2011), 400–405. https://doi.org/10.1016/j.microrel.2010.07.151 doi: 10.1016/j.microrel.2010.07.151
    [14] F. F. Gan, Exponentially weighted moving average control charts with reflecting boundaries, J. Stat. Comput. Simul., 46 (1993), 45–67. https://doi.org/10.1080/00949659308811492 doi: 10.1080/00949659308811492
    [15] S. A. Abbasi, M. Riaz, A. Miller, S. Ahmad, H. Z. Nazir, EWMA dispersion control charts for normal and nonnormal processes, J. Amer. Math. Soc., 31 (2015), 1691–1704. https://doi.org/10.1002/qre.1702 doi: 10.1002/qre.1702
    [16] S. M. M. Raza, M. Riaz, S. Ali, EWMA control chart for Poisson-Exponential lifetime distribution under Type I censoring, Qual. Reliab. Eng. Int., 32 (2016), 995–1005. https://doi.org/10.1002/qre.1809 doi: 10.1002/qre.1809
    [17] F. Pascual, EWMA charts for the Weibull shape parameter, J. Qual. Technol., 42 (2010), 400–416. https://doi.org/10.1080/00224065.2010.11917836 doi: 10.1080/00224065.2010.11917836
    [18] O. H. Arif, M. Aslam, C. H. Jun, EWMA np control chart for the Weibull distribution, J. Test. Eval., 45 (2017), 1022–1028. https://doi.org/10.1520/JTE20150429 doi: 10.1520/JTE20150429
    [19] K. L. Singh, R. S. Srivastava, Estimation of the parameter in the size-biased inverse maxwell distribution, Int. J. Stat. Math., 10 (2014), 52–55.
    [20] D. Karlis, A. Santourian, Model-based clustering with non-elliptically contoured distributions, Stat. Comput., 19 (2009), 73–83. https://doi.org/10.1007/s11222-008-9072-0 doi: 10.1007/s11222-008-9072-0
    [21] M. P. Hossain, M. H. Omar, M. Riaz, New V control chart for the Maxwell distribution, J. Stat. Comput. Simul., 87 (2017), 594–606. https://doi.org/10.1080/00949655.2016.1222391 doi: 10.1080/00949655.2016.1222391
    [22] M. P. Hossain, R. A. Sanusi, M. H. Omar, M. Riaz, On designing Maxwell CUSUM control chart: An efficient way to monitor failure rates in boring processes, Int. J. Adv. Manuf. Technol., 100 (2019), 1923–1930. https://doi.org/10.1007/s00170-018-2679-1 doi: 10.1007/s00170-018-2679-1
    [23] M. P. Hossain, M. H. Omar, On designing a new control chart for Rayleigh distributed processes with an application to monitor glass fiber strength, Commun. Stat.-Simul. Comput., 51 (2020), 1–17. https://doi.org/10.1080/03610918.2019.1710192 doi: 10.1080/03610918.2019.1710192
    [24] V. H. Morales, C. A. Panza, Control charts for monitoring the mean of Skew-Normal samples, Symmetry, 14 (2022), 2302. https://doi.org/10.3390/sym14112302 doi: 10.3390/sym14112302
    [25] C. H. Lin, M. C. Lu, S. F. Yang, M. Y. Lee, A bayesian control chart for monitoring process variance, Appl. Sci., 11 (2021), 2729. https://doi.org/10.3390/app11062729 doi: 10.3390/app11062729
    [26] A. I. Al-Omari, A. D. Al-Nasser, F. Gogah, M. A. Haq, On the exponentiated generalized inverse Rayleigh distribution based on truncated life tests in a double acceptance sampling plan, Stoch. Qual. Control, 32 (2017), 37–47. https://doi.org/10.1515/eqc-2017-0007 doi: 10.1515/eqc-2017-0007
    [27] K. Kuar, K. K. Mahajan, S. Arora, Bayesian and semi-Bayesian estimation of the parameters of generalized inverse Weibull distribution, J. Mod. Appl. Stat. Methods, 17 (2018), 22. https://doi.org/10.22237/jmasm/1536067915 doi: 10.22237/jmasm/1536067915
    [28] M. Eltehiwy, Logarithmic inverse Lindley distribution: Model, properties and applications, J. King Saud Univ.-Sci., 32 (2018), 136–144. https://doi.org/10.1016/j.jksus.2018.03.025
    [29] Fleishman, A method for simulating non-normal distributions, Psychometrika, 43 (1978), 521–532. https://doi.org/10.1007/BF02293811
    [30] M. P. Hossain, M. H. Omar, M. Riaz, Estimation of mixture Maxwell parameters and its possible industrial application, Comput. Ind. Eng., 107 (2017), 264–275. https://doi.org/10.1016/j.cie.2017.03.023 doi: 10.1016/j.cie.2017.03.023
    [31] M. H. Omar, S. Y. Arafat, M. P. Hossain, M. Riaz, Inverse Maxwell distribution and statistical process control: An efficient approach for monitoring positively skewed process, Symmetry, 13 (2021), 189. https://doi.org/10.3390/sym13020189 doi: 10.3390/sym13020189
    [32] S. Y. Arafat, M. P. Hossain, J. O. Ajadi, M. Riaz, On the development of EWMA control chart for Inverse Maxwell distribution, J. Test. Eval., 49 (2019), 1–18. https://doi.org/10.1520/JTE20190082 doi: 10.1520/JTE20190082
    [33] Z. Keller, A. R. R. Kamath, U. D. Perera, Reliability analysis of CNC machine tools, Reliab. Eng., 3 (1982), 449–473. https://doi.org/10.1016/0143-8174(82)90036-1 doi: 10.1016/0143-8174(82)90036-1
    [34] S. C. Gupta, V. K. Kapoor, Fundamentals of mathematical statistics: A modern approach, 910 Eds., Sultan Chand & Sons, 2000.
    [35] S. W. Roberts, Control chart tests based on geometric moving averages, Technometrics, 1 (1959), 239–250. https://doi.org/10.1080/00401706.1959.10489860 doi: 10.1080/00401706.1959.10489860
    [36] M. Naveed, M. Azam, N. Khan, M. Aslam, Design of a control chart using extended EWMA statistic, Technologies, 6 (2018), 108. https://doi.org/10.3390/technologies6040108 doi: 10.3390/technologies6040108
    [37] M. Xie, T. N. Goh, V. Kuralmani, Statistical models and control charts for high-quality processes, London: Kluwer Academic Publishers, 2002. https://doi.org/10.1007/978-1-4615-1015-4
    [38] J. M. Lucas, M. S. Saccucci, Exponentially weighted moving average control schemes: Properties and Enhancements, Technometrics, 32 (1990), 1–12. https://doi.org/10.1080/00401706.1990.10484583 doi: 10.1080/00401706.1990.10484583
    [39] R. Domangue, S. C. Patch, Some omnibus exponentially weighted moving average statistical process control schemes, Technometrics, 33 (1991), 299–313. https://doi.org/10.1080/00401706.1991.10484836 doi: 10.1080/00401706.1991.10484836
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1093) PDF downloads(70) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog