Let $ H $ be a graph with edge set $ E_H $. The Sombor index and the reduced Sombor index of a graph $ H $ are defined as $ SO(H) = \sum\limits_{uv\in E_H}\sqrt{d_{H}(u)^{2}+d_{H}(v)^{2}} $ and $ SO_{red}(H) = \sum\limits_{uv\in E_H}\sqrt{(d_{H}(u)-1)^{2}+(d_{H}(v)-1)^{2}} $, respectively. Where $ d_{H}(u) $ and $ d_{H}(v) $ are the degrees of the vertices $ u $ and $ v $ in $ H $, respectively. A cactus is a connected graph in which any two cycles have at most one common vertex. Let $ \mathcal{C}(n, k) $ be the class of cacti of order $ n $ with $ k $ cycles. In this paper, the lower bound for the Sombor index of the cacti in $ \mathcal{C}(n, k) $ is obtained and the corresponding extremal cacti are characterized when $ n\geq 4k-2 $ and $ k\geq 2 $. Moreover, the lower bound of the reduced Sombor index of cacti is obtained by similar approach.
Citation: Qiaozhi Geng, Shengjie He, Rong-Xia Hao. On the extremal cacti with minimum Sombor index[J]. AIMS Mathematics, 2023, 8(12): 30059-30074. doi: 10.3934/math.20231537
Let $ H $ be a graph with edge set $ E_H $. The Sombor index and the reduced Sombor index of a graph $ H $ are defined as $ SO(H) = \sum\limits_{uv\in E_H}\sqrt{d_{H}(u)^{2}+d_{H}(v)^{2}} $ and $ SO_{red}(H) = \sum\limits_{uv\in E_H}\sqrt{(d_{H}(u)-1)^{2}+(d_{H}(v)-1)^{2}} $, respectively. Where $ d_{H}(u) $ and $ d_{H}(v) $ are the degrees of the vertices $ u $ and $ v $ in $ H $, respectively. A cactus is a connected graph in which any two cycles have at most one common vertex. Let $ \mathcal{C}(n, k) $ be the class of cacti of order $ n $ with $ k $ cycles. In this paper, the lower bound for the Sombor index of the cacti in $ \mathcal{C}(n, k) $ is obtained and the corresponding extremal cacti are characterized when $ n\geq 4k-2 $ and $ k\geq 2 $. Moreover, the lower bound of the reduced Sombor index of cacti is obtained by similar approach.
[1] | J. A. Bondy, U. S. R. Murty, Graph theory, New York: Springer, 2008. https://doi.org/10.1007/978-1-84628-970-5 |
[2] | H. Wiener, Structral determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005 doi: 10.1021/ja01193a005 |
[3] | I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16. |
[4] | A. Alidadi, A. Parsian, H. Arianpoor, The minimum Sombor index for unicyclic graphs with fixed diameter, MATCH Commun. Math. Comput. Chem., 88 (2022), 561–572. https://doi.org/10.46793/match.88-3.561A doi: 10.46793/match.88-3.561A |
[5] | T. Zhou, Z. Lin, L. Miao, The Sombor index of trees and unicyclic graphs with given maximum degree, Discrete Math. Lett., 7 (2021), 24–29. https://doi.org/10.47443/dml.2021.0035 doi: 10.47443/dml.2021.0035 |
[6] | K. C. Das, I. Gutman, On Sombor index of trees, Appl. Math. Comput., 412 (2022), 126575. https://doi.org/10.1016/j.amc.2021.126575 doi: 10.1016/j.amc.2021.126575 |
[7] | S. Li, Z. Wang, M. Zhang, On the extremal Sombor index of trees with a given diameter, Appl. Math. Comput., 416 (2022), 126731. https://doi.org/10.1016/j.amc.2021.126731 doi: 10.1016/j.amc.2021.126731 |
[8] | X. Sun, J. Du, On Sombor index of trees with fixed domination number, Appl. Math. Comput., 421 (2022), 126946. https://doi.org/10.1016/j.amc.2022.126946 doi: 10.1016/j.amc.2022.126946 |
[9] | R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl. Math. Comput., 399 (2021), 126018. https://doi.org/10.1016/j.amc.2021.126018 doi: 10.1016/j.amc.2021.126018 |
[10] | H. Deng, Z. Tang, R. Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quantum Chem., 121 (2021), e26622. https://doi.org/10.1002/qua.26622 doi: 10.1002/qua.26622 |
[11] | A. Ülker, A. Gürsoy, N. K. Gürsoy, The energy and Sombor index of graphs, MATCH. Commun. Math. Comput., 87 (2022), 51–58. https://doi.org/10.46793/match.87-1.051U doi: 10.46793/match.87-1.051U |
[12] | B. Horoldagva, C. Xu, On Sombor index of graphs, MATCH Commun, MATCH Commun. Math. Comput. Chem., 86 (2021), 703–713. |
[13] | H. Liu, L. You, Z. Tang, J. B. Liu, On the reduced Sombor index and its applications, MATCH Commun. Math. Comput. Chem., 86 (2021), 729–753. |
[14] | R. Cruz, J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, J. Math. Chem., 59 (2021), 1098–1116. https://doi.org/10.1007/s10910-021-01232-8 doi: 10.1007/s10910-021-01232-8 |
[15] | F. Wu, X. An, B. Wu, Sombor indices of cacti, AIMS Mathematics, 8 (2022), 1550–1565. https://doi.org/10.3934/math.2023078 doi: 10.3934/math.2023078 |
[16] | H. Liu, I. Gutman, L. You, Y. Huang, Sombor index: Review of extremal results and bounds, J. Math. Chem., 60 (2022), 771–798. |