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Abstract: Let n be an integer greater than 1. In this paper, we obtained the stability of the multivariable
Cauchy-Jensen functional equation

yl+.+yn)
nflxy+---+x,,——| = Xi, Vi
f( 1 " 1<§,.j<nf( yj)
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1. Introduction

Hyers-Ulam stability in functional equations relates to the characteristic where a function may not
perfectly satisfy a given equation but remains close to the actual solution if the error is within a limited
range. This concept of stability can be applied to many types of functional equations. The concept of
Hyers-Ulam stability is named after the mathematicians David Hyers and Stanislaw Ulam, who both
discovered it in the 1940s. In 1978, Rassias [1] published the result that stability can be obtained even
after generalizing the error from a constant to a variable. The stability problem where the error is a
variable is called the Hyers-Ulam-Rassias stability.

This theory extends beyond the Cauchy equation to various other types of functional equations.
For instance, it can be considered in more complex forms of functional equations involving power
functions, trigonometric functions, exponential functions, and more. Additionally, this concept can be
effectively applied in other mathematical structures like differential equations or integral equations.

Hyers-Ulam stability serves as an important tool in mathematical analysis and applied mathematics,
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playing a significant role in finding approximate solutions. It helps in finding exact solutions in real-
world problems where errors are allowed and is useful in providing approximate interpretations in
complex systems.

We would like to introduce the definition of the Cauchy-Jensen equation and past work.
Definition 1. /2] A mapping f : X X X — Y is called a Cauchy-Jensen mapping if f satisfies the
system of equations

fx+y,2) = f(x,2) + f(1,2),
2f(x.5) = fx0) + £(x,2).

In 2006, W. G. Park and J. H. Bae [2] obtained the general solution of the Cauchy-Jensen functional

equation
Z+w

255 55 ) = f D+ fw) + 10,0 + Fw) (.0
and its stability. Subsequent papers have been published since 2007 by several authors [3-5].
In 2012, J. H. Bae and W. G. Park [6] introduced the following multivariable Cauchy-Jensen
functional equation

y1+---+yn)
n

= D fGyy, (12)

1<i,j<n

nf(x1+~-+x,,,

where 7 is an integer greater than 1. In Theorem 2.2 of [6], we proved that the functional Eqs (1.1)
and (1.2) are equivalent. The functional Eq (1.1) is the case where n = 2 in the function Eq (1.2).

In 2011, W. G. Park [7] investigated the approximate additive and Jensen and quadratic mappings
in 2-Banach spaces. In 2015, S. Yun [8] corrected the statements of results in [7] and proved the
corrected theorems.

In this paper, we investigate the stability of the functional Eq (1.2) in Banach spaces, quasi-Banach
spaces, and normed 2-Banach spaces.

2. Main results
Let X be a normed space and Y a Banach space.

Theorem 1. Letr € (0,1), € > 0, and 5 > 0, and let f : X X X — Y be a mapping satisfying
f(x,0) = 0 such that

nf(x1 +...+XH,W)_ Z Fxiy))

<o+ 5(2 ll + ||yj||') @.1)
i=1 j=1

1<i,j<n
forall x,x1, -+ , X, Y1, ,Vu € X, then there exists a Cauchy-Jensen mapping F : X X X — Y such
that
I1f(x,y) = f(x,0) = F(x,y)l
2¢e o|lx||" 26[3n+ 1+ 4(n+ D)yl
<(n*+3n+1 + 2.2
<@ " )n(n2+n—1) n(n+1)—n”] nn+1)—-m+1) 2.2)

forall x,y € X.

AIMS Mathematics Volume 9, Issue 3, 7084-7094.



7086

Proof. Let g(x,y) := f(x,y)—f(0,y) for all x,y € X, then g(x,0) = g(0,y) = 0forall x,y € X. By (2.1),
g satisfies

y1+---+yn)
nglx +---+x, /| — Xi,
g(1 " Z 8(xi, y;)

<26+ 5(2 el 2] ||y,||’) 2.3)

1<i,j<n J=1
for all xy, -, x,,y1, -,y € X. Letting x; = --- = x,, = xin (2.3), we gain
Y1
|g(nx, ) Zg(x ») 28+6(n||x|| #23 I )] (2.4)
Jj=1
for all x,yy,---,y, € X. Puttingy; =y,y, = —y,and y; = --- =y, = 0 in (2.4), we get
1

llg(x,y) + g(x, =yl < [23 + o(nllx|l” + 4lIyllD)]

for all x,y € X. Setting y; =--- =y, = yin (2.4), we have
2 r r
llg(nx,y) — ng(x, )l < P O (Ilxl” + 2yl
for all x,y € X. By the above two inequalities, we obtain
2 r r
llg(nx, y) + ng(x, =yl < (n+ 1) P Slix(") + 66]lll (2.5)
forall x,y € X. Taking y; = y,y, = —(n+ 1)yand y; = 0 (3 < j < n) in (2.4), we gain
1
lg(nx, =y) = 8(x.y) = g0, ~(n+ DY) < ~ |26+ 8(nlldl” + 2[1 + (2 + 1Y ]iyIF)|
for all x,y € X. By (2.5) and the above inequality, we get
2 r 1 r r
12+ Dg(x,y) + g(x, =(n + Dy)ll < (n + 2) | & + ol | + 25(3 + ;[1 +(n+1) ])Il)’ll (2.6)

for all x,y € X. Replacing y by (n + 1)y in (2.5), we have

2
lg (nx, (n + 1)y) + ng (x, ~(n + D)l < (n + 1) (58 + 6||x||r) +66(n + 1|yl
for all x,y € X. By (2.6) and the above inequality, we obtain
ln(n + 1)g(x,y) — gnx, (n + 1)y)|| < (n +3+ )(28 +nd|lxl|") +26[3n+ 1 + 4+ 1)]|yl"

for all x,y € X. Replacing x by n‘x and y by (n+1)*y in the above inequality and dividing n**!(n+ 1)1,
we see that

0 1)

1 k k
=g(n"x, (n+ 1)%y) - U

nk(n+ 1)
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n’+3n+1
- nk+2(n + 1)k+1

20[3n+ 1 +4(n+1)]

L+kr r
(2e + on " Ixl") + W (5 4 1R

Il

for all x,y € X and all nonnegative integers k. Thus, we have

1
e o DY) - ¢ (", (n + 1)) H

m—1
n+3n+1 ke v 203n+ 1+4(m+ 1)
< - (nk+2(n + 1)k+1 (28 +on't || )+ I’lk+1(l’l n 1)k(1—r)+1 ||y|| 2.7)

for all integers [, m(0 < [ < m), and all x,y € X. Thus, the sequence {nk(nil)kg(n"x (n+ Dky)}is a

Cauchy sequence for all x, y € X. Since Y is complete, the sequence { ——= k(n+ " g(n*x, (n+1)ky)} converges
for all x, y € X. Define F : X x X — Y by

_ 1
F(x.y) = lim mg(n"x, (n+ Dy)

for all x,y € X. By (2.3), we have

1 X yrtoo k k
m ng(n (x1+--+x,),(n+ 1) T) - 1<Z'Z:qulg(n x,(n+1) yj)
1 kr C r kr C r
< m 28+6(n ;”xz” +2(n+1) ;”y]” )]
forall xy,---, Xx,,y1,- -+ ,ya € X, and all nonnegative integers k. Letting k — oo in the above inequality,

we obtain that F satisfies (1.2). By [6], F is a Cauchy-Jensen mapping. Setting [ = 0 and taking m — oo
in (2.7), one can obtain the inequality (2.2).

In [9-11], one can find the concept of quasi-Banach spaces.
Definition 2. Let X be a real vector space. A quasi-norm is a real-valued function on X satisfying the
following:

(1) ||x|l = O for all x € X, and ||x|| = O if, and only if, x = 0.

(ii) ||Ax]| = |A]||x]| for all A € R and all x € X.

(iii) There is a constant K > 1 such that ||x + y|| < K(||x]| + ||y||) for all x, y € X.
Definition 3. The pair (X, || - ||) is called a quasi-normed space if || - || is a quasi-norm on X. The
smallest possible K is called the modulus of concavity of || - ||. A quasi-Banach space is a complete
quasi-normed space. A quasi-norm || - || is called a p-norm (0 < p < 1) if

[l + Y117 < Nl + [Iy1l?

for all x, y € X. In this case, a quasi-Banach space is called a p-Banach space.
We will use the following lemma in the proof of the next theorem.
Lemma 1. [12] Let O < p < 1 and let x, x5, - - - , X,, be nonnegative real numbers, then

o+ x4+ x) <x]+ x5+ + 4.

From now on, assume that X is a quasi-normed space with quasi-norm || - || and that V is a p-Banach
space with p-norm || - ||y.
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The following theorem proves the stability of the Eq (1.2) in quasi-Banach spaces.
Theorem 2. Letr € (0,1), € > 0, and 5 > 0, and let f : X X X — Y be a mapping satisfying
f(x,0) = 0 such that

nf(x1 +...+xmw>_ Z £ y))

1<i,j<n

<g+ 5( Dol + ||y,-||’) (2.8)
Y i=1 Jj=1

forall x,x1,--+ , X4, Y1, -+ ,yn € X, then there exists a Cauchy-Jensen mapping F : X X X — Y such
that

2eP orn?||x||"”?
nn+ 1)y -1 nP(mn+ 1) —n'?

1
1£Ge3) = £0,) = FGoyly < ((n +341)

n

L

207 ((2”n+np)[%(n+l)rp+1]+[1+(n+1)r]p))p (2.9)

n?(n+ 1) —(n+ 1)

forall x,y € X.
Proof. Let g(x,y) := f(x,y)— f(0,y) forall x,y € X, then g(x,0) = g(0,y) = 0 for all x,y € X. By (2.8)
and by using Lemma 1, g satisfies

P n p n p
+ “ e + n , ,
g4+ ) N gy <267 47 ( ) ) * 2(2 Iyl ) } (2.10)
1<i,j<n Y i=1 j=1
for all xy,--- ,x,,y1, -,y € X. Letting x; = --- = x,, = xin (2.10), we gain

RS AN ol S

Hg(nx, DI Y g < | 267+ 07 [l + 2(2 ||yj||’) 2.11)
n j=1 y I j=1
for all x,yy,---,y, € X. Puttingy; =y,y, = —y,and y; =--- =y, =01in (2.11), we get

1
llgCx, ») + g(x, =YY, < ;[28" + 67 (nP||x]|"7 + 27yl
for all x,y € X. Settingy; =--- =y, =yin (2.11), we have
1
lg(nx,y) — ng(x, yliy, < ’;[28” + 6 (P |IxI” + 2n”IyII™)]
for all x,y € X. By the above two inequalities, we obtain
1
lg(nx, y) + ng(x, =y, < =[(n + 1)(2” + 6" n”[IxlI"") + 2(2"n + n”)6" Iyl ] (2.12)
n
forall x,y € X. Taking y; = y,y, = —(n+ 1)y,and y; =--- =y, = 0in (2.11), we gain
1
lg(nx, =y) = 8(x.y) = g0, ~(n+ DYy < ~ [ 267 + 67 (w7 Il +2[1 + (1 + D) IylI”) |
for all x,y € X. By (2.12) and the above inequality, we get

|2+ Dg(x, y)+8(x, —(n+Dy)}, < (1 + %) &P + 5pnp||x||rp)+%(2pn+np+[1+(n+1)r]p)”y”rp (2.13)
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for all x,y € X. Replacing y by (n + 1)y in (2.12), we have
1
llg (nx, (n + 1)y) + ng (x,—(n + Dy)|I¥, < =[(n + 1)Q2&” + 6" n?||x||'?) + 2(2°n + n’)(n + 1)P8P||y||"?]
n
for all x,y € X. By (2.13) and the above inequality, we obtain

||n(n + 1)g(x, y) — g(nx, (n + Dy)”;
< (342 )26+ W) 4 20720+ 0+ 1P 4 2 [0+ ot Y

for all x,y € X. Replacing x by n*x and y by (n + 1)*y in the above inequality and dividing n**Vr(n +
D*+Dr we see that

1
nk(n + l)kg
1
<
= 00 Dp( + 1)rDp
267(n + 1)
A Dp( + 1)k Dp

p
(rx, (n + 1)) - e 1)

k+l( + 1)k+

(n 13+ )(2,91’ T 5P PR 7

I
(—(2Pn S+ 1P+ 2n 4+ 1+ (n+ 1)?]”)||y||”’
n

for all x,y € X and all nonnegative integers k. Thus, we have

I
l(n T8

m—

)

k=1

(nlx, (n+ 1)ly) — m

4 p ., p(1+kr) rp
(k+l)p(n + 1)k+Dp (n +3+ )(28 +6"n lIxII"?)

267(n + 1)kP
n®k+Dp (g + 1)k+Dp

(%(2”1@ F P+ 1) 2+ 1+ (n+ 1)’]")||y||”’] 2.14)

for all integers I, m(0 < [ < m), and all x,y € X. Thus, the sequence {mg(nkx, (n+ Dfy)}is a

Cauchy sequence for all x, y € X. Since Y is complete, the sequence {Wlﬂ)k g(nfx, (n+1)ky)} converges
forall x, y € X. Define F : X x X — Y by

1 1 k k
F(x,y) = ]}1_{{)10 mg(n x, (n+1)%y)
for all x,y € X. By (2.10), we have

p

k ky1+"'+yn) k k
+o X)), () ———— ) = i (n+ 1)fy;
ng(n (x1 Xa), (n+ 1) - § g (n'xi. (n+ Dly))

1<i,j<n

n p n p
n’”P( > ||x,-||’) +2n + 1)’”( > ||yj||’) D
i=1 j=1

forall xy,---,x,,y1,- -+ ,yx € X, and all nonnegative integers k. Letting k — oo in the above inequality,
we obtain that F satisfies (1.2). By [6], F is a Cauchy-Jensen mapping. Setting [ = 0 and taking m — oo
in (2.14), one can obtain the inequality (2.9).

nkP(n + 1)kp N

1

< ——— 28" + 6"
- n"l’(n+1)k1’[ ©
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Taking n = 2 and 6 = 0 in Theorem 2, we obtain the following corollary.
Corollary 1. Let € > 0 be fixed. Suppose that a mapping f : X X X — Y is a mapping satisfying
f(x,0) = 0 such that

+w
2

HZf(x + Y, )— f(x,2)— f(x, w) = f(y, 2) — f(y, W)Hy <e

for all x,y,z,w € X, then there exists a unique bi-additive mapping F : X X X — Y satisfying

1\
Ilf(x, y) = f(O, y) — F(x, y)lly < 8(6,, _ 1)

forall x,y € X.
We introduce some definitions on 2-Banach spaces [13—15].

Definition 4. Let X be a real vector space with dimX > 2 and ||, || : X* — R be a function,
then (X, ||, -||) is called a linear 2-normed space if the following conditions hold:

(a) ||lx, y|]| = 0 if, and only if, x and y are linearly dependent,

(®) llx, yII = Iy, I,

(©) llex, yll = lelllx, yll,

(d) llx, y + 2l < [l yll + [lox, 2l
for all @ € R and x,y, z € X. In this case, the function ||, -|| is called a 2-norm on X.
Definition 5. A sequence {x,} in a linear 2-normed space X is called a Cauchy sequence if there are
two linearly independent points y,z € X such that for any £ > 0, there exists N € N such that for all
m,n > N, %, —x,, Y| < &, and ||x,,— x,,, z|| < &. For convenience, we will write lim,, ,_, [|X, =X, || = 0
for a Cauchy sequence {x,}.
Definition 6. Let {x,} be a sequence in a linear 2-normed space X. The sequence {x,} is said to
convergent in X if there exits an element x € X such that

lim [lx, — x, y|l = 0
n—oo

for all y € X. In this case, we say that a sequence {x,} converges to the limit x, simply denoted by
lim, e X, = X.
Definition 7. A 2-Banach space is defined to be a linear 2-normed space in which every Cauchy
sequence is convergent. (X, || -, |-, -||) is called a normed 2-Banach space if (X, || -||) is a normed space
such that (X, ||-, -||) is a 2-Banach space.

In the following lemma, we obtain some basic properties in a linear 2-normed space, which will be
used to prove the stability results.
Lemma 2. [7] Let (X, |-, -||) be a linear 2-normed space and x € X.

(a) If ||x, y|l = O for all y € X, then x = 0.

(0) [llx, 2ll = 1y, 2ll| < llx =y 2l for all x,y, z € X.

(c) If a sequence {x,} is convergent in X, then lim,,_,, ||x,,, ¥|| = || lim,_« X, y|| for all y € X.

From now on, let X be a normed space and Y a normed 2-Banach space. The following theorem
proves the stability of the Eq (1.2) in normed 2-Banach spaces.
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Theorem 3. Letr € (0,1), e >0, 6, andn > 0, and let f : X X X — Y be a mapping satisfying
f(x,0) = 0 such that

y1+-~-+y,l)
ot X, /| - HYi)s
nf(xl X " § Sy, z

1<i,j<n

<o+ 5(2 il + ||yj||’) - 215)
i=1 =1

for all x,x1,--+ , X, V1, , ¥, € X, and all 7 € Y, then there exists a Cauchy-Jensen mapping F :
X X X = Y such that

||f(x,)’) - f(oay) - F(-x7y)9zl|
2(e +nllzll) N ollx]l" N 26[3n+1+4m+ D]yl
nmn*+n-1) nn+1)—-n nn+1)—(m+1)

<(n*+3n+ 1)[ (2.16)

forall x,ye Xandallz€ Y.

Proof. Let g(x,y) := f(x,y) — f(0,y) for all x,y € X, then g(x,0) = g(0,y) = 0 for all x,y € X.
By (2.15), g satisfies

y1+---+yn)
ng{x;+---+x, —— | — Xi,¥i)s
g(1 " § g(xi,yj),z

<2e+ 6( Dol +2 ) ||y,-||') + 27zl (2.17)
i=1

1<i,j<n =1
forall xi,--+ , X, y1,-- ,y, € X,and all z € Y. Letting x; = --- = x, = xin (2.17), we gain
Vit + W . 1 . - .
g(nx,—)— gy, z|| < = 28+5(HIIXII +2 )yl ) + 27zl (2.18)
forall x,yy,---,y, € X,and all z € Y. Putting y; = y,y, = —y,and y; = --- =y, = 0in (2.18), we get

1
l1g(x, y) + g(x, =y), zll < ;[ 2& + o(nllx|l” + 4Iyll") + 2nllzll]

forall x,y € Xand all z € Y. Setting y; = --- =y, = yin (2.18), we have

[2& + no(llxl” + 2IylI") + 2nllzll]

S | =

llg(nx, y) — ng(x, y), zll <
for all x,y € X and all z € Y. By the above two inequalities, we obtain
llg(nx, y) + ng(x, —y), zll < (1 + %)(28 + nd|lxl” + 2n1izll) + 66IIyll" (2.19)
forall x,y € Xandall z € Y. Taking y; = y,y, = —(n+ l)yand y; = --- =y, = 0in (2.18), we gain
llg(nx, =) = g(x, ) — gx, =(n + D)y), 2ll < % |26 + 6(nllxll” + 2[1 + (2 + 1Y) + 2nli2l]
for all x,y € X and all z € Y. By (2.19) and the above inequality, we get
lI(n + Dg(x,y) + g(x, =(n + 1)y), 2|

AIMS Mathematics Volume 9, Issue 3, 7084-7094.



7092

2 1+(n+1)
< (1 + —)(23 + n||xll” + 27llzl) + [3 + T+ 1y 26|Iyll" (2.20)
n n

for all x,y € X and all z € M. Replacing y by (n + 1)y in (2.19), we have
llig (nx, (n + D)y) + ng (x,—(n+ 1)y), 2|l < (1 + )(28 +ndllxll” + 2nllzll) + 66(n + 1)yl

for all x,y € X and all z € Y. By (2.20) and the above inequality, we obtain

In(n + Dg(x,y) — gnx, (n + Dy), zl|
(n 434 )(28 T Snllxll” + 2nllzll) + [3n + 1+ 4(n + 1Y 2611

forall x,y € X and all z € Y. Replacing x by n*x and y by (n+ 1)*y in the above inequality and dividing
7 (n + 1)**!, we see that

1

P k+1
o+ 1)F8

k+1

1
(nkx, (n+ 1)ky) - mg(n x,(n+1)7"y),z

n’+3n+1
- nk+2(n + 1)k+1

3n+1+4n+1)
nk+l(n + 1)k(1—r)+l

3n+1+4(n+ 1) St
W+ (n + A=+ Iyl

(2& + 6n" ™ ||xII” + 27llzll) + 261yl

forall x,y € X, all z € Y, and all nonnegative integers k. Thus, we have

1
’(n Y

m—

)

k=1

1
(nlx, (n+ l)ly) - mg n"x,(n+ 1)"y),z

n?+3n+1
nk+2(n + 1)k+1

(28 T+ on |l + 277||z||) + 2.21)

for all integers [, m(0 < [ < m), all x,y € X, and all z € Y. Thus, the sequence {mg(nkx, (n +
D)¥y)} is a Cauchy sequence in (Y, ||-,|)) for all x, y € X. Since (Y, ||, -||) is complete, the sequence
{Wlﬂ)" g(n*x, (n + 1)¥y)} converges for all x, y € X.

Define F : X x X —» Y by

1 k k
F(x,y) = hm Yy 1)kg(n x,(n+ 1))

for all x,y € X. By (2.17), we have

1
nk(n + 1)k

k ky1+"'+yn) k k
+otx,),(n+ 1) ———" ) - L+ 1)),
g (i (xy Xy (n+ D > g (nx (n+ Dy) 2

1<i,j<n
n n
k k
Al + 200+ 1D Iy
i=1 j=1

forall xi,--- , X, y1, -+ ,y. € X, all z € Y, and all nonnegative integers k. Letting k — oo in the above
inequality and using Lemma 2, we obtain that F' satisfies (1.2). By [6], F is a Cauchy-Jensen mapping.
Setting [/ = 0 and taking m — oo in (2.21), using Lemma 2, one can obtain the inequality (2.16).

(2s+5

< W + 27]”2“)
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3. Conclusions

This paper deals with the stability of the Cauchy-Jensen functional equation, presenting connections
to three different types of spaces: normed spaces, quasi-normed spaces, and normed 2-normed spaces.
These spaces differ in the criteria used to measure the distance and magnitude of the function. A norm
provide functions that measure the length or size of vectors, which play an important role in many
mathematical analyses and optimization problems. Quasi-normed spaces have less stringent conditions
and do not have to satisfy all the properties of a norm, allowing for analysis in more general situations.
A 2-normed space is a space whose norms are defined specifically by Euclidean norms (or 2-norms),
which are a generalization of distances and angles in vector spaces.

By proving the stability of the Cauchy-Jensen functional equation on these three spaces, the paper
shows how the equation can be applied in these different contexts. In other words, the paper shows
that the Cauchy-Jensen equation maintains consistent properties in these different types of spaces, and
gives a set of conditions that guarantee the existence of the solution of the equation in each space.
This suggests that the equation is a powerful tool with a wide range of applications across a variety of
mathematical structures.
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