Research article Special Issues

Functions of bounded $ {\bf (2, k)} $-variation in 2-normed spaces

  • Received: 01 June 2024 Revised: 30 June 2024 Accepted: 05 July 2024 Published: 15 August 2024
  • MSC : 42C15, 46C05, 46C20

  • In this work, the notion of function of bounded variation in 2-normed spaces was established (Definition 4.2), the set of functions of bounded $ (2, k) $-variation was endowed with a norm (Theorem 4.5), and it was proved that such a set is a Banach space (Theorem 4.6). In addition, the fundamental properties of the functions of bounded $ (2, k) $-variation in the formalism of 2-Hilbert and 2-normed spaces were studied (see Theorems 4.1, 4.3, 4.4). Also, it was shown how to endow a 2-normed space with a function of bounded $ (2, k) $-variation from a classical Hilbert space (Proposition 4.1). A series of examples and counterexamples are presented that enrich the results obtained in this work (4.1 and 4.2).

    Citation: Cure Arenas Jaffeth, Ferrer Sotelo Kandy, Ferrer Villar Osmin. Functions of bounded $ {\bf (2, k)} $-variation in 2-normed spaces[J]. AIMS Mathematics, 2024, 9(9): 24166-24183. doi: 10.3934/math.20241175

    Related Papers:

  • In this work, the notion of function of bounded variation in 2-normed spaces was established (Definition 4.2), the set of functions of bounded $ (2, k) $-variation was endowed with a norm (Theorem 4.5), and it was proved that such a set is a Banach space (Theorem 4.6). In addition, the fundamental properties of the functions of bounded $ (2, k) $-variation in the formalism of 2-Hilbert and 2-normed spaces were studied (see Theorems 4.1, 4.3, 4.4). Also, it was shown how to endow a 2-normed space with a function of bounded $ (2, k) $-variation from a classical Hilbert space (Proposition 4.1). A series of examples and counterexamples are presented that enrich the results obtained in this work (4.1 and 4.2).



    加载中


    [1] J. Brokman, M. Burger, G. Gilboa, Spectral total-variation processing of shapes-theory and applications, ACM T. Graphic., 43 (2024), 1–20. https://doi.org/10.1145/3641845 doi: 10.1145/3641845
    [2] D. Bugajewska, D. Bugajewski, H. Hudzik, $BV_{\phi}$-solutions of nonlinear integral equations, J. Math. Anal. Appl., 287 (2003), 265–278. https://doi.org/10.1016/S0022-247X(03)00550-X doi: 10.1016/S0022-247X(03)00550-X
    [3] D. Bugajewska, D. Bugajewski, G. Lewicki, On nonlinear integral equations in the space of functions of bounded generalized $\phi$-variation, J. Integral Equ. Appl., 21 (2009), 1–20. https://doi.org/10.1216/JIE-2009-21-1-1 doi: 10.1216/JIE-2009-21-1-1
    [4] V. V. Chistyakov, On mappings of bounded variation, J. Dyn. Control Syst., 3 (1997), 261–289. https://doi.org/10.1007/BF02465896 doi: 10.1007/BF02465896
    [5] V. V. Chistyakov, On the theory of multivalued mappings of bounded variation of one real variable, Sb. Math., 189 (1998), 797–819. https://doi.org/10.1070/SM1998v189n05ABEH000321 doi: 10.1070/SM1998v189n05ABEH000321
    [6] V. V. Chistyakov, Metric-valued mappings of bounded variation, J. Math. Sci., 111 (2002), 3387–3429. https://doi.org/10.1023/A:1016054010760 doi: 10.1023/A:1016054010760
    [7] Y. J. Cho, Theory of 2-inner product spaces, Nova Publishers, 2001.
    [8] C. Diminnie, S. Gähler, A. White, Strictly convex linear 2-normed spaces, Math. Nachr., 59 (1974), 319–324. https://doi.org/10.1002/mana.19740590127 doi: 10.1002/mana.19740590127
    [9] C. Diminnie, S. Gähler, A. White, Remarks on strictly convex and strictly 2-convex 2-normed spaces, Math. Nachr., 88 (1979), 363–372. https://doi.org/10.1002/mana.19790880128 doi: 10.1002/mana.19790880128
    [10] O. Ferrer, C. Guzmán, J. Naranjo, Strongly bounded variation functions in Krein spaces, J. Math. Comput. Sci., 36 (2025), 237–250. https://doi.org/10.22436/jmcs.036.02.08 doi: 10.22436/jmcs.036.02.08
    [11] S. Gähler, Lineare 2-normierte Räume, Math. Nachr., 28 (1964), 1–43. https://doi.org/10.1002/mana.19640280102 doi: 10.1002/mana.19640280102
    [12] C. Jordan, Sur la serie de Fourier, CR Acad. Sci. Paris, 92 (1881), 228–230.
    [13] H. Mazaheri, R. Kazemi, Some results on 2-inner product spaces, Novi Sad J. Math., 37 (2007), 35–40.
    [14] Z. Lewandowska, Bounded 2-linear operators on 2-normed sets, Galsnik Mathematicki, 39 (2004), 303–314. https://doi.org/10.3336/gm.39.2.11 doi: 10.3336/gm.39.2.11
    [15] S. N. Lal, S. Bhattacharya, C. Sreedhar, Complex 2-normed linear spaces and extension of linear 2-functionals, Z. Anal. Anwend., 20 (2001), 35–53. https://doi.org/10.4171/ZAA/1003 doi: 10.4171/ZAA/1003
    [16] A. Weerasinghe, A bounded variation control problem for diffusion processes, SIAM J. Control Optim., 44 (2005), 389–417. https://doi.org/10.1137/S0363012903436119 doi: 10.1137/S0363012903436119
    [17] A. G. White, 2-Banach spaces, Math. Nachr., 42 (1967), 43–60. https://doi.org/10.1002/mana.19690420104 doi: 10.1002/mana.19690420104
    [18] X. Xie, Y. Liu, P. Li, J. Huang, The bounded variation capacity and Sobolev-type inequalities on Dirichlet spaces, Adv. Nonlinear Anal., 13 (2024), 20230119. https://doi.org/10.1515/anona-2023-0119 doi: 10.1515/anona-2023-0119
    [19] M. Yazdi, E. Zarei, S. Adumene, R. Abbassi, P. Rahnamayiezekavat, Uncertainty modeling in risk assessment of digitalized process systems, Method. Chem. Process Saf., 6 (2022), 389–416. https://doi.org/10.1016/bs.mcps.2022.04.005 doi: 10.1016/bs.mcps.2022.04.005
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(542) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog