Hilbert series is a simplest way to calculate the dimension and the degree of an algebraic variety by an explicit polynomial equation. The mixed braid group $ B_{m, n} $ is a subgroup of the Artin braid group $ B_{m+n} $. In this paper we find the ambiguity-free presentation and the Hilbert series of canonical words of mixed braid monoid $ M\!B_{2, 2} $.
Citation: Zaffar Iqbal, Xiujun Zhang, Mobeen Munir, Ghina Mubashar. Hilbert series of mixed braid monoid $ MB_{2, 2} $[J]. AIMS Mathematics, 2022, 7(9): 17080-17090. doi: 10.3934/math.2022939
Hilbert series is a simplest way to calculate the dimension and the degree of an algebraic variety by an explicit polynomial equation. The mixed braid group $ B_{m, n} $ is a subgroup of the Artin braid group $ B_{m+n} $. In this paper we find the ambiguity-free presentation and the Hilbert series of canonical words of mixed braid monoid $ M\!B_{2, 2} $.
[1] | E. Aljadeff, A. Kanel-Belov, Hilbert series of PI relatively free $G$-graded algebras are rational functions, Bull. London Math. Soc., 44 (2012), 520–532. https://doi.org/10.1112/blms/bdr116 doi: 10.1112/blms/bdr116 |
[2] | A. Y. Belov, Rationality of Hilbert series with respect to free algebras, Usp. Mat. Nauk, 52 (1997), 153–154. |
[3] | E. Artin, Theory of braids, Ann. Math., 48 (1947), 101–126. https://doi.org/10.2307/1969218 doi: 10.2307/1969218 |
[4] | G. M. Bergman, The diamond lemma for ring theory, Adv. Math., 29 (1978), 178–218. https://doi.org/10.1016/0001-8708(78)90010-5 doi: 10.1016/0001-8708(78)90010-5 |
[5] | J. S. Birman, Braids, links, and mapping-class groups, Princeton University Press, 1974. |
[6] | L. A. Bokut, Y. Fong, W. F. Ke, L. S. Shiao, Gröbner-Shirshov bases for braid semigroup, Adv. Algebra, 2003, 60–72. https://doi.org/10.1142/9789812705808_0005 doi: 10.1142/9789812705808_0005 |
[7] | B. Berceanu, Z. Iqbal, Universal upper bound for the growth of Artin monoids, Commun. Algebra, 43 (2015), 1967–1982. https://doi.org/10.1080/00927872.2014.881834 doi: 10.1080/00927872.2014.881834 |
[8] | P. Deligne, Les immeubles des groupes de tresses generalises, Invent. Math., 17 (1972), 273–302. https://doi.org/10.1007/BF01406236 doi: 10.1007/BF01406236 |
[9] | P. D. Harpe, Topics in geometric group theory, University of Chicago Press, 2000. |
[10] | Z. Iqbal, S. Yousaf, Hilbert series of braid monoid $MB_{4}$ in band generators, Turk. J. Math., 38 (2014), 977–984. https://doi.org/10.3906/mat-1401-58 doi: 10.3906/mat-1401-58 |
[11] | Z. Iqbal, Hilbert series of positive braids, Algebra Colloq., 18 (2011), 1017–1028. https://doi.org/10.1142/S1005386711000897 doi: 10.1142/S1005386711000897 |
[12] | S. Lambropoulou, Braid structures in knot complements, handle-bodies and 3-manifolds, Knots in Hellas '98, Proceedings of the International Conference on Knot Theory and Its Ramifications, World Scientific Press, 24 (2000), 274–289. https://doi.org/10.1142/9789812792679_0017 |
[13] | Z. Iqbal, U. Ali, Hilbert series of Artin Monoid $M(I_{2}(p))$, SE. Asian Bull. Math., 37 (2013), 475–480. |
[14] | K. Saito, Growth functions associated with Artin monoids of finite type, Proc. Japan Acad., Ser. A, Math. Sci., 84 (2008), 179–183. https://doi.org/10.3792/pjaa.84.179 doi: 10.3792/pjaa.84.179 |