We endeavored to investigate directed strongly regular Cayley graphs (or DSRCG for short) over dicyclic groups $ \operatorname{Dic}_{4n} = \langle \alpha, \beta\; |\; \alpha^{n} = \beta^4 = 1, \beta^{-1}\alpha\beta = \alpha^{-1}\rangle $, where $ n $ is odd. We derived several DSRCGs over $ \operatorname{Dic}_{4n} $ for $ n $ odd. We then derived a criterion for a certain class of Cayley graph to be directed strongly regular.
Citation: Tao Cheng, Junchao Mao. A new class of directed strongly regular Cayley graphs over dicyclic groups[J]. AIMS Mathematics, 2024, 9(9): 24184-24192. doi: 10.3934/math.20241176
We endeavored to investigate directed strongly regular Cayley graphs (or DSRCG for short) over dicyclic groups $ \operatorname{Dic}_{4n} = \langle \alpha, \beta\; |\; \alpha^{n} = \beta^4 = 1, \beta^{-1}\alpha\beta = \alpha^{-1}\rangle $, where $ n $ is odd. We derived several DSRCGs over $ \operatorname{Dic}_{4n} $ for $ n $ odd. We then derived a criterion for a certain class of Cayley graph to be directed strongly regular.
[1] | M. Abdullah, B. Gebremichel, S. Hayat, J. H. Koolen, Distance-regular graphs with a few $q$-distance eigenvalues, Discerete Math., 347 (2024), 113926. https://doi.org/10.1016/j.disc.2024.113926 doi: 10.1016/j.disc.2024.113926 |
[2] | A. E. Brouwer, S. Hobart, Parameters of directed strongly regular graphs, Available from: Centrum Wiskunde & Informatica. https://homepages.cwi.nl/~aeb/math/dsrg/dsrg.html. |
[3] | T. Cheng, L. H. Feng, H. L. Huang, Integral Cayley graphs over dicyclic group, Linear Algebra Appl., 566 (2019), 121–137. https://doi.org/10.1016/j.laa.2019.01.002 doi: 10.1016/j.laa.2019.01.002 |
[4] | A. M. Duval, A directed graph version of strongly regular graphs, J. Comb. Theory A, 47 (1988), 71–100. https://doi.org/10.1016/0097-3165(88)90043-X doi: 10.1016/0097-3165(88)90043-X |
[5] | S. Hayat, J. H. Koolen, M. Riaz, A spectral characterization of the $s$-clique extension of the square grid graphs, Eur. J. Combin., 76 (2019), 104–116. https://doi.org/10.1016/j.ejc.2018.09.009 doi: 10.1016/j.ejc.2018.09.009 |
[6] | Y. Q. He, B. C. Zhang, The application of representation theory in directed strongly regular graphs, J. Comb. Theory A, 161 (2019), 508–536. https://doi.org/10.1016/j.jcta.2018.09.004 doi: 10.1016/j.jcta.2018.09.004 |
[7] | G. James, M. Liebeck, Representations and characters of groups, 2 Eds., Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511814532 |
[8] | L. K. Jørgensen, Non-existence of directed strongly regular graphs, Discrete Math., 264 (2003), 111–126. https://doi.org/10.1016/S0012-365X(02)00555-1 doi: 10.1016/S0012-365X(02)00555-1 |
[9] | J. H. Koolen, M. Abdullah, B. Gebremichel, S. Hayat, Distance-regular graphs with exactly one positive $q$-distance eigenvalue, Linear Algebra Appl., 689 (2024), 230–246. https://doi.org/10.1016/j.laa.2024.02.030 doi: 10.1016/j.laa.2024.02.030 |
[10] | M. Klin, A. Munemasa, M. Muzychuk, P. H. Zieschang, Directed strongly regular graphs obtained from coherent algebras, Linear Algebra Appl., 377 (2004), 83–109. https://doi.org/10.1016/j.laa.2003.06.020 doi: 10.1016/j.laa.2003.06.020 |