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Abstract: We endeavored to investigate directed strongly regular Cayley graphs (or DSRCG for short)
over dicyclic groups Dic4n = ⟨α, β | α

n = β4 = 1, β−1αβ = α−1⟩, where n is odd. We derived several
DSRCGs over Dic4n for n odd. We then derived a criterion for a certain class of Cayley graph to be
directed strongly regular.
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1. Introduction

The directed strongly regular graph (or DSRG for short) is a potential generalization of the well-
established strongly regular graphs. It was introduced by Duval in [4] in 1988. Although it has received
less attention compared to its undirected counterparts, DSRGs have gained popularity in recent years.

A DSRG can be interpreted in the framework of adjacency matrices. The adjacency matrix of a
directed graph X of order n is denoted by A = A(X) = (ai j)n×n. We employ the notation I = In and
J = Jn to represent the identity matrix and all-one matrix of size n, respectively. A directed graph X is
a DSRG with parameters (n, k, µ, λ, t) if and only if it satisfies:

(i) JA = AJ = kJ,

(ii) A2 = tI + λA + µ(J − I − A).

When t = k, X becomes undirected strongly regular graph. Duval [4] demonstrated that DSRGs with
t = 0 correspond to the doubly regular tournaments. Consequently, it is customary to assume that
0 < t < k.

From history, many infinite families of DSRGs were constructed in light of several parameters of
DSRGs as well as some sporadic examples. Despite the extensive literature on the existence, structure,

https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.20241176


24185

and construction of DSRGs for various parameter values [8,10], a significant number of DSRGs remain
shrouded in mystery, with their existence yet to be determined. In fact, it is a challenging problem
for the complete characterization of DSRGs. By using representation theory as a powerful tool, He
and Zhang [6] obtained a large family of DSRGs on dihedral groups, which extended certain findings
presented in [10]. S. Hayat, J. H. Koolen and M. Riaz gave a similar conclusion for undirected strongly
regular graphs in [5]. For more results, one may refer to [1, 9].

Our objective is to derive novel infinite families of DSRGs. Inspired by the methodology outlined
in [6], we explore directed strongly regular Cayley graphs derived from Dic4n, where n is odd. As
previously noted in [3], the dicyclic group exhibits a distinct nature compared to the dihedral group.
Consequently, it would be intriguing to investigate the potential applications of this group.

This paper is structured as follows. Initially, we introduce several classes of directed strongly regular
Cayley graphs (or DSRCGs for short) over dicyclic groups. Subsequently, we provide a criterion for
the Cayley graph C(Dic4n,M ∪ Mb ∪ Mb2 ∪ Mb3) with M ∩ M(−1) = ∅ to be directed strongly regular.

2. Preliminaries

For comprehensive insights into representation theory and associated concepts, we follow [7].
Let G be a finite group. We denote by IRR(G) (resp. Irr(G)) the set of all non-equivalent irreducible

representations (resp. irreducible characters) of G. Our subsequent discussion needs the characters
associated with cyclic groups.

Lemma 2.1 ( [7]). For a cyclic group Cn = ⟨ν⟩ of order n, IRR(Cn) = {ℓs | 0 ≤ s ≤ n − 1}, with
ℓs(νk) = ωsk

n (0 ≤ s, k ≤ n − 1), where ωn = e
2πi
n represents the n-th primitive root of unity.

We denote the group algebra of a group G over the complex field C as CG. It contains all formal
sums of the form

∑
g∈G mgg, where mg ∈ C. The multiplication is defined as:∑

g∈G

mgg


∑

h∈G

nhh

 =∑
g∈G

∑
h∈G

mgnhgh.

Lemma 2.2. [7] For an elementA =
∑

g∈G mgg ∈ CG with G being abelian group, we have

mg =
1
|G|

∑
χ∈Irr(G)

χ(A)χ(g), ∀g ∈ G.

We now introduce some notations regarding multisets. LetA represent a multiset characterized by
a multiplicity function, denoted as δA : S → N. Here, δA(x) denotes the frequency of occurrence
of x in A. We define x is an element of A (i.e., x ∈ A) if and only if the multiplicity of x, as
determined by δA(x), is greater than zero. For two multisets A and B, with multiplicity functions
δA and δB, respectively, their union, represented as A ⊎ B, is determined by the function δA⊎B =
δA + δB. For instance, consider A = {1, 1, 2, 3}, and B = {1, 2, 3, 3, 4, }, then the union A ⊎ B =
{1, 1, 1, 2, 2, 3, 3, 3, 4}.

LetX be an element in CG corresponding to any multisubsetX of the group G. Xmay be expressed
as

X =
∑
x∈X

δX(x)x.
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Let S be a non-empty subset of a finite group G. We denote the set {s−1 | s ∈ S} as S(−1). If
S ∩ S(−1) = ∅, then it is called antisymmetric. Let us assume that the identity element e < S. In this
case, the graph Γ = C(G,S) is a directed Cayley graph, its vertex set is V(Γ) = G, and there is an arc
from x to y, represented by x→ y, if yx−1 ∈ S.

Utilizing the group algebra, the lemma presented below establishes a criterion for a Cayley graph
to be DSRG.

Lemma 2.3. [4] C(G,S) is a DSRG with parameters (n, k, µ, λ, t) if and only if |G| = n, |S| = k, and

S
2
= te + λS + µ(G − e − S).

Our primary focus is on a non-abelian group–the dicyclic group. It is denoted as Dic4n, and is
typically presented with the following group presentation:

Dic4n = ⟨x, y | x2n = 1, xn = y2, y−1xy = x−1⟩.

For n odd, let x2 = α and y = β. Then, we have

Dic4n = ⟨α, β | α
n = β4 = 1, β−1αβ = α−1⟩ (2.1)

= {αk, αkβ, αkβ2, αkβ3 | 0 ≤ k ≤ n − 1}.

The following relationships will be commonly referenced within the context of our discussion.

Lemma 2.4. Given that n is odd, for the dicyclic group Dic4n, we can observe the following properties:

(i) αkβ = βα−k; αkβ2 = β2αk; αkβ3 = β3α−k;

(ii) (αkβ)−1 = αkβ3; (αkβ2)−1 = α−kβ2.

Proof: Using (2.1), the conclusions are immediate.

3. DSRCGs over Dic4n

We aim to present various constructions of DSRCGs derived over Dic4n, with n being an odd integer.
Any subset S of Dic4n can be expressed as S = S 0 ∪ S 1b ∪ S 2b2 ∪ S 3b3 with S 0, S 1, S 2, S 3 ⊆ Cn.

Our first main result is:

Theorem 3.1. Γ = C(Dic4n, S 0∪S 1b∪S 2b2∪S 3b3) is a DSRG with parameters (4n, |S 0|+ |S 1|+ |S 2|+

|S 3|), µ, λ, t) if and only if the following four statements hold:

(i) S 0
2
+ S 1 S (−1)

3 + S 2
2
+ S 3 S (−1)

1 = (t − µ)e + (λ − µ)S 0 + µCn;

(ii) S 0 S 1 + S 1 S (−1)
0 + S 2 S 3 + S 3 S (−1)

2 = (λ − µ)S 1 + µCn;

(iii) 2S 0 S 2 + S 1 S (−1)
1 + S 3 S (−1)

3 = (λ − µ)S 2 + µCn;

(iv) S 0 S 3 + S 1 S (−1)
2 + S 2 S 1 + S 3 S (−1)

0 = (λ − µ)S 3 + µCn.
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Proof: According to Lemma 2.4, the following holds:(
S 0 ∪ S 1b ∪ S 2b2 ∪ S 3b3

)2
= S 0

2
+ S 0 S 1b + S 0 S 2b2 + S 0 S 3b3 + S 1 S (−1)

0 b + S 1 S (−1)
1 b2

+S 1 S (−1)
2 b3 + S 1 S (−1)

3 + S 2 S 0b2 + S 2 S 1b3 + S 2
2
+ S 2 S 3b +

S 3 S (−1)
0 b3 + S 3 S (−1)

1 + S 3 S (−1)
2 b + S 3 S (−1)

3 b2

= S 0
2
+ S 1 S (−1)

3 + S 2
2
+ S 3 S (−1)

1

+

(
S 0 S 1 + S 1 S (−1)

0 + S 2 S 3 + S 3 S (−1)
2

)
b

+

(
2S 0 S 2 + S 1 S (−1)

1 + S 3 S (−1)
3

)
b2

+

(
S 0 S 3 + S 1 S (−1)

2 + S 2 S 1 + S 3 S (−1)
0

)
b3.

From Lemma 2.3, the Cayley graph Γ = C(Dic4n, S 0 ∪ S 1b ∪ S 2b2 ∪ S 3b3) is recognized as a DSRG
with parameters (4n, |S 0| + |S 1| + |S 2| + |S 3|), µ, λ, t) if and only if(

S 0 ∪ S 1b ∪ S 2b2 ∪ S 3b3
)2

= te + λ
(
S 0 ∪ S 1b ∪ S 2b2 ∪ S 3b3

)
+ µ
(
Cn +Cnb +Cnb2 +Cnb3

)
−µe − µ

(
S 0 ∪ S 1b ∪ S 2b2 ∪ S 3b3

)
=
(
(t − µ)e + (λ − µ)S 0 + µCn

)
+
(
(λ − µ)S 1 + µCn

)
b

+
(
(λ − µ)S 2 + µCn

)
b2 +
(
(λ − µ)S 3 + µCn

)
b3.

From the above two equations, we complete the proof.
Let S 0 = S 2 = M and S 1 = S 3 = N in Theorem 3.1, then we have:

Theorem 3.2. Γ = C(Dic4n,M ∪Nb∪Mb2 ∪Nb3) is a DSRG with parameters (4n, 2(|M|+ |N |), µ, λ, t)
if and only if the following two conditions hold for t = µ and M, N:

(i) 2
(
M

2
+ N N(−1)

)
= (λ − µ)M + µCn;

(ii) 2N
(
M + M(−1)

)
= (λ − µ)N + µCn.

Proof: As S 0 = S 2 = M and S 1 = S 3 = N, from (i), (iii) of Theorem 3.1, we derive

2
(
M

2
+ N N(−1)

)
= (t − µ)e + (λ − µ)M + µCn,

and
2
(
M

2
+ N N(−1)

)
= (λ − µ)M + µCn.

Therefore, comparing the above two equations, we have t = µ and 2
(
M

2
+ NN(−1)

)
= (λ − µ)M + µCn.
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Similarly, as S 0 = S 2 = M and S 1 = S 3 = N, from (ii), (iv) of Theorem 3.1, we have
2N
(
M + M(−1)

)
= (λ − µ)N + µCn.

This completes the proof.
Setting N = M in Theorem 3.2, we have:

Theorem 3.3. C(Dic4n,M∪Mb∪Mb2∪Mb3) is a DSRG with parameters (4n, 4|M|, µ, λ, t) if and only
if the following two conditions hold for t, µ and M:

(i) t = µ;

(ii) 2M
(
M + M(−1)

)
= (λ − µ)M + µCn.

Remark 3.1. Theorem 3.3 (ii) also implied that

2M(−1)
(
M + M(−1)

)
= (λ − µ)M(−1) + µCn.

Thus, by Theorem 3.3 (ii) and Remark 3.1, we derive

2
(
M + M(−1)

)2
= (λ − µ)

(
M + M(−1)

)
+ 2µCn.

Next, we can get several classes of DSRGs from the above results.

Corollary 3.1. For an odd number n, suppose that the two conditions hold for M,N ⊆ Cn:

(i) M + M(−1) = Cn − e;

(ii) N N(−1) − M M(−1) = εCn, ε = 0 or 1.

Then, Γ = C(Dic4n,M ∪ Nb∪Mb2 ∪ Nb3) is a DSRG with parameters (4n, 2n − 2 + 2ε, n − 1 + 2ε, n −
3 + 2ε, n − 1 + 2ε).

Furthermore, if M satisfies (i), and N = Mh or N = M(−1)h for h ∈ Cn, then Γ is a DSRG with
parameters (4n, 2n − 2, n − 1, n − 3, n − 1).
Proof: By (i), we have |M| = n−1

2 . By (ii), we have |N |2 = |M|2 + εn = (|M| + ε)2, because ε = 0 or 1,
and |M| = n−1

2 . Thus, we obtain |N| = |M| + ε = n−1
2 + ε. By (i) and (ii), we obtain:

2
(
M

2
+ N N(−1)

)
= 2

(
M

2
+ M M(−1) + εCn

)
= 2M

(
M + M(−1)

)
+ 2εCn

= 2M(Cn − e) + 2εCn

= −2M + 2(|M| + ε)Cn

= −2M + (n − 1 + 2ε)Cn,

and

2N
(
M + M(−1)

)
= 2N(Cn − e) = 2|N |Cn − 2N = −2N + (n − 1 + 2ε)Cn.
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Therefore, the desired result is obtained through Theorem 3.2.
In the following, we denote l = n

v where v | n. Given that ⟨av⟩ is a subgroup of Cn, a corresponding
transversal within Cn consists of the elements {e, a, a2, · · · , av−1}. Let T ⊆ {e, a, a2, · · · , av−1} as a
subset. We define:

T ⟨av⟩ =
⋃
at∈T

at⟨av⟩,

where at⟨av⟩ are coset of ⟨a⟩ in Cn, for at ∈ T. Then we have:

Corollary 3.2. Let T ⊆ {e, a, a2, · · · , av−1} as a subset, with v | n, and the following two conditions
hold for M,N ⊆ Cn:

(i) N = T ⟨av⟩ = M ∪ ⟨av⟩;

(ii) N
⊎

N(−1) = Cn
⊎
⟨av⟩.

Then, Γ = C(Dic4n,M ∪ Nb ∪ Mb2 ∪ Nb3) is a DSRG with parameters (4n, 2n, n + l, n − l, n + l).
Proof: According to (i) and (ii), we derive |N | = |M| + l = n+l

2 , and M + M(−1) = Cn − ⟨av⟩. Therefore,

2
(
M

2
+ NN(−1)

)
= 2

(
M

2
+
(
M + ⟨av⟩

) (
M(−1) + ⟨av⟩

))
= 2

(
M

2
+ M M(−1) +

(
M + M(−1)

)
⟨av⟩ + l ⟨av⟩

)
= 2

(
M + ⟨av⟩

) (
M + M(−1)

)
+ 2l ⟨av⟩

= 2
(
M + ⟨av⟩

) (
Cn − ⟨av⟩

)
+ 2l ⟨av⟩

= (n + l)Cn − 2M ⟨av⟩ − 2⟨av⟩ ⟨av⟩ + 2l ⟨av⟩

= (n + l)Cn − 2l M − 2l ⟨av⟩ + 2l⟨av⟩

= −2l M + (n + l)Cn,

and

2N
(
M + M(−1)

)
= 2N

(
Cn − ⟨av⟩

)
= 2|N|Cn − 2N ⟨av⟩ = −2lN + (n + l)Cn.

Therefore, the result is obtained through Theorem 3.2.

Corollary 3.3. Let T ⊆ {e, a, a2, · · · , av−1} be a subset, with v | n. Assume that the following conditions
hold for M ⊆ Cn:

(i) M = T ⟨av⟩;

(ii) M ∪ M(−1) = Cn \ ⟨av⟩.

Then, Γ = C(Dic4n,M ∪ Mb ∪ Mb2 ∪ Mb3) is a DSRG with parameters (4n, 4|M|, n − l, n − 3l, n − l).
Proof: According to (i) and (ii), we derive

2M
(
M + M(−1)

)
= 2M

(
Cn − ⟨Mv⟩

)
= 2|M|Cn − 2lM = −2lM + (n − l)Cn.

By Theorem 3.3, we obtain the result.
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Remark 3.2. If Γ = C(Dic4n,M ∪ Mb ∪ Mb2 ∪ Mb3) is a DSRG in Corollary 3.3 , then we derive
M ∩ M(−1) = ∅.

Now, we give an example to illustrate our results, whose parameters are listed in [2].

Example 3.1. Let Dic36 = ⟨a, b | a9 = b4 = 1, b−1ab = a−1⟩ be the dicyclic group of order 36 and υ = 3,
then l = 9

3 = 3 and ⟨a3⟩ = {e, a3, a6}. Let T = {a2} ⊆ {e, a, a2}. Then, we have M = {a2}⟨a3⟩ = {a, a4, a7}

and M(−1) = {a2, a5, a8}. Thus, M ∪ M(−1) = {a, a2, a4, a5, a7, a8} = C9 \ ⟨a3⟩ satisfies the condition of
Corollary 3.3. By direct computation, we have

S
2
= 6e + 0S + 6(Dic36 − e − S),

whereS = M∪Mb∪Mb2∪Mb3. Therefore, by Lemma 2.3, we have Γ = C(Dic36,M∪Mb∪Mb2∪Mb3)
is a DSRG with parameters (36, 12, 6, 0, 6).

Suppose that M ∩ M(−1) = ∅, i.e., M is an antisymmetric subset of Cn. We end this paper with a
criterion for certain Cayley graph to be a DSRG.

Theorem 3.4. Γ = C(Dic4n,M ∪ Mb ∪ Mb2 ∪ Mb3) with M ∩ M(−1) = ∅ is a DSRG with parameters
(4n, 4|M|, µ, λ, t) if and only if the following conditions hold for a subset T of {a, a2, · · · , av−1}:

(i) M = T ⟨av⟩;

(ii) M ∪ M(−1) = Cn \ ⟨av⟩, where v = 2n
µ−λ

is an odd positive integer.

Proof: Let W = M ∪ M(−1) ⊆ Cn. Then, δW(h) = 0 or 1 for any h ∈ W. Hence, W = M + M(−1).
By Corollary 3.3, if Γ = C(Dic4n,M ∪ Mb ∪ Mb2 ∪ Mb3) satisfying (i) and (ii) is a DSRG, then
M ∩ M(−1) = ∅.

Now, we consider the converse part. Suppose that Γ = C(Dic4n,M ∪ Mb ∪ Mb2 ∪ Mb3) is a DSRG
with parameters (4n, 4|M|, µ, λ, t), where n is odd. By Theorem 3.3 and Remark 3.1, we have

2W
2
= (λ − µ)W + 2µ(Cn). (3.1)

Therefore, we have χ(W) ∈ {0, λ−µ2 } for any non-principal characters χ(W) of Cn. Now, we define

W =

{
j
∣∣∣∣ j = 1, 2, · · · , n − 1, χ j(W) =

λ − µ

2

}
.

By Lemma 2.2, we have that

δW(h) =
1
n

∑
χ∈Irr(Cn)

χ(W)χ(h) =
λ − µ

2n

∑
j∈W

χ j(h) +
2|M|

n
. (3.2)

As e < W, hence, we obtain δW(e) = 0, and therefore,

δW(e) =
λ − µ

2n
|W| +

2|M|
n
= 0.

Then, we have 4|M| = (µ − λ)|W|. Thus, the expression (3.2) becomes

δW(h) =
µ − λ

2n

|W| −∑
j∈W

χ j(h)

 . (3.3)
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By Eq (3.3), we have |W| −
∑

j∈W χ j(h) ∈ Q. Note that |W| −
∑

j∈W χ j(h) ∈ Z[ωn]. Therefore,

2n
µ − λ

∈ Z.

By Eq (3.3), we also have

δW(h) = 0⇔ |W| −
∑
j∈W

χ j(h) = 0⇔ χ j(h) = 1⇔ g ∈
⋂
j∈W

Kχ j ,

where j ∈ W). Let R def
=
⋂

j∈WKχ j is some subgroup of Cn. Thus, |R|
∣∣∣|Cn|. Since |Cn| = n is odd, |R| is

odd too. Thus, we have W = Cn − R.Moreover,

2W
2
= 2(Cn − R)2 = 2(n − 2|R|)Cn + 2|R|R = −2|R|W + 2(n − |R|)Cn,

then, we have |R| = µ−λ2 , n − |R| = µ, and |M| = n−|R|
2 =

µ

2 . Therfore, R = ⟨a
2n
µ−λ ⟩ = ⟨av⟩. Since |Cn| = n

and |R| = µ−λ2 are all odds, we have µ = 2n
µ−λ

is odd too. Thus, we proved (ii). In this case, by Theorem
3.3, we have

(λ − µ)M + µCn = 2M W = 2M
(
Cn − ⟨av⟩

)
= µCn − 2M ⟨av⟩,

i.e., µ−λ2 M = M ⟨av⟩. Thus, we have M = T ⟨av⟩ for some subset T of {a, a2, · · · , av−1}; therefore, we
proved (i).
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