We introduced the $ q $-Picard, the $ q $-Picard-Cauchy, the $ q $-Gauss-Weierstrass, and the $ q $-truncated Picard singular integrals. Using the last three mentioned integrals, the orders of approximation for functions from a generalized Hölder space were determined, both in the $ L^{p} $-norm and in the generalized Hölder-norm.
Citation: Xhevat Z. Krasniqi. Approximation of functions in a certain Banach space by some generalized singular integrals[J]. AIMS Mathematics, 2024, 9(2): 3386-3398. doi: 10.3934/math.2024166
We introduced the $ q $-Picard, the $ q $-Picard-Cauchy, the $ q $-Gauss-Weierstrass, and the $ q $-truncated Picard singular integrals. Using the last three mentioned integrals, the orders of approximation for functions from a generalized Hölder space were determined, both in the $ L^{p} $-norm and in the generalized Hölder-norm.
[1] | G. A. Anastassiou, R. A. Mezei, Uniform convergence with rates of general singular operators, Cubo, 15 (2013), 1–19. https://doi.org/10.4067/S0719-06462013000200001 doi: 10.4067/S0719-06462013000200001 |
[2] | G. A. Anastassiou, S. G. Gal, Geometric and approximation properties of some singular integrals in the unit disk, J. Inequal. Appl., 2006, 1–19. https://doi.org/10.1155/JIA/2006/17231 doi: 10.1155/JIA/2006/17231 |
[3] | G. A. Anastassiou, A. Aral, Generalized Picard singular integrals, Comput. Math. Appl., 57 (2009), 821–830. https://doi.org/10.1016/j.camwa.2008.09.026 doi: 10.1016/j.camwa.2008.09.026 |
[4] | K. Bogalska, E. Gojtka, M. Gurdek, L. Rempulska, The Picard and the Gauss-Weierstrass singular integrals of functions of two variables, Matematiche, 52 (1997), 71–85. |
[5] | E. Deeba, R. N. Mohapatra, R. S. Rodriguez, On the degree of approximation of some singular integrals, Rend. Mat. Appl., 7 (1988), 345–355. |
[6] | G. Das, T. Ghosh, B. K. Ray, Degree of approximation of functions by their Fourier series in the generalized Hölder metric, P. Indian A.S.-Math. Sci., 106 (1996), 139–153. https://doi.org/10.1007/BF02837167 doi: 10.1007/BF02837167 |
[7] | G. Das, A. Nath, B. K. Ray, An estimate of the rate of convergence of Fourier series in the generalized Hölder metric, Anal. Appl., 2002, 43–60. |
[8] | B. Firlejy, L. Rempulska, On some singular integrals in Hölder spaces, Math. Nachr., 170 (1994), 93–100. https://doi.org/10.1002/mana.19941700108 doi: 10.1002/mana.19941700108 |
[9] | S. G. Gal, Remark on the degree of approximation of continuous functions by singular integrals, Math. Nachr., 164 (1993), 197–199. https://doi.org/10.1002/mana.19931640114 doi: 10.1002/mana.19931640114 |
[10] | S. G. Gal, Degree of approximation of continuous functions by some singular integrals, J. Numer. Anal. Approx. Theor., 27 (1998), 251–261. |
[11] | G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, London: Cambridge University Press, 1967. |
[12] | A. Khan, S. Umar, On the order of approximation to a function by generalized Gauss-Weierstrass singular integrals, Commun. Fac. Sci. Univ., 30 (1981), 55–62. |
[13] | H. H. Khan, G. Ram, On the degree of approximation by Gauss Weierstrass integrals, Int. J. Math. Math. Sci., 23 (2000), 645–649. https://doi.org/10.1155/S0161171200002489 doi: 10.1155/S0161171200002489 |
[14] | Xh. Z. Krasniqi, W. Lenski, B. Szal, Seminormed approximation by deferred matrix means of integrable functions in $H_P^{(\omega)}$ space, Results Math., 77 (2022). https://doi.org/10.1007/s00025-022-01696-3 doi: 10.1007/s00025-022-01696-3 |
[15] | Xh. Z. Krasniqi, Approximation of functions by superimposing of de la Vallée Poussin mean into deferred matrix mean of their Fourier series in Hölder metric with weight, Acta Math. Univ. Comen., 92 (2023), 35–54. |
[16] | Xh. Z. Krasniqi, Effectiveness of the even-type delayed mean in approximation of conjugate functions, J. Contemp. Math. Anal.+, 58 (2023), 17–32. https://doi.org/10.3103/S1068362323050035 doi: 10.3103/S1068362323050035 |
[17] | Xh. Z. Krasniqi, P. Kórus, B. Szal, Approximation by double second type delayed arithmetic mean of periodic functions in $H_p^{(\omega, \omega)}$ space, Bol. Soc. Mat. Mex., 29 (2023). https://doi.org/10.1007/s40590-023-00491-6 doi: 10.1007/s40590-023-00491-6 |
[18] | J. Kim, Degree of approximation in the space $H^\omega_p$ by the even-type delayed arithmetic mean of Fourier series, Georgian Math. J., 28 (2021), 747–753. https://doi.org/10.1515/gmj-2021-2092 doi: 10.1515/gmj-2021-2092 |
[19] | A. Leśniewicz, L. Rempulska, J. Wasiak, Approximation properties of the Picard singular integral in exponential weighted spaces, Publ. Mat., 40 (1996), 233–242. |
[20] | L. Leindler, Generalizations of Prössdorf's theorems, Stud. Sci. Math. Hung., 14 (1979), 431–439. |
[21] | L. Leindler, A relaxed estimate of the degree of approximation by Fourier series in generalized Hölder metric, Anal. Math., 35 (2009), 51–60. https://doi.org/10.1007/s10476-009-0104-6 doi: 10.1007/s10476-009-0104-6 |
[22] | R. A. Mezei, Applications and Lipschitz results of approximation by smooth Picard and Gauss-Weierstrass type singular integrals, Cubo, 13 (2011), 17–48. http://dx.doi.org/10.4067/S0719-06462011000300002 doi: 10.4067/S0719-06462011000300002 |
[23] | R. N. Mohapatra, R. S. Rodriguez, On the rate of convergence of singular integrals for Hölder continuous functions, Math. Nachr., 149 (1990), 117–124. https://doi.org/10.1002/mana.19901490108 doi: 10.1002/mana.19901490108 |
[24] | L. Nayak, G. Das, B. K. Ray, An estimate of the rate of convergence of Fourier series in the generalized Hölder metric by deferred Cesàro mean, J. Math. Anal. Appl., 420 (2014), 563–575. https://doi.org/10.1016/j.jmaa.2014.06.001 doi: 10.1016/j.jmaa.2014.06.001 |
[25] | L. Nayak, G. Das, B. K. Ray, An estimate of the rate of convergence of the Fourier series in the generalized Hölder metric by delayed arithmetic mean, Int. J. Anal., 2014 (2014). https://doi.org/10.1155/2014/171675 doi: 10.1155/2014/171675 |
[26] | S. Prössdorf, Zur konvergenz der Fourierreihen hölderstetiger funktionen, Math. Nachr., 69 (1975), 7–14. https://doi.org/10.1002/mana.19750690102 doi: 10.1002/mana.19750690102 |
[27] | L. Rempulska, K. Tomczak, On some properties of the Picard operators, Arch. Math.-Brno, 45 (2009), 125–135. |