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Hölder class; generalized Minkowski inequality
Mathematics Subject Classification: 26A16, 41A25, 42A50

1. Introduction

Already we know well that the approximation theory is concerned with how functions can best be
approximated with simpler functions and with quantitatively characterizing the errors introduced. A
closely related topic is the approximation of functions by Fourier series. Staying in this particular
topic, the approximation of 2π-periodic and integrable functions by their Fourier series in the Hölder
metric has been studied regularly by lots of researchers. Das et al. studied the degree of approximation
of functions by matrix means of their Fourier series in the generalized Hölder metric [6], generalizing
some well-known previous results. Again, Das et al. [7] studied the rate of the convergence problem
of the Fourier series in a new Banach space of functions conceived as a generalization of the spaces
introduced by Prössdorf [26] and Leindler [20]. Later on, Nayak et al. [24, 25] studied the rate of the
convergence problem of the Fourier series by delayed arithmetic mean in the generalized Hölder metric
space, which was earlier introduced in [7]. This obtained a sharper estimate of Jackson’s order and was
the main objective of their results. In [18], Kim treated the degree of approximation of functions in the
same generalized Hölder metric by using the so-called even-type delayed arithmetic mean of Fourier
series. Intentionally, we do not want to mention all published results here because they are somehow

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024166


3387

beyond the topic treated here. However, for the sake of the interested reader, recent results on that topic
can be found in references [14–18, 24, 25] and the references therein.

We return back again to the paper of Prössdorf, referenced by [26], who studied the degree of
approximation problems of Fourier series of functions from Hα (0 < α ≤ 1) space in the Hölder
metric. Let C2π be the Banach space of 2π-periodic continuous functions defined in [−π, π] under the
sup-norm. For 0 < α ≤ 1 and some positive constant K, the function space Hα is given by

Hα = { f ∈ C2π : | f (x) − f (y)| ≤ K|x − y|α} .

The space Hα is a Banach space with the norm ‖ f ‖α defined by

‖ f ‖α = ‖ f ‖C + sup
x,y
{∆α f (x, y)},

where
‖ f ‖C = sup

−π≤x≤π
| f (x)|

and
∆α f (x, y) := | f (x) − f (y)||x − y|−α, x , y.

At this stage, we agree to write (by convention) ∆0 f (x, y) := 0.
Now, let us recall the well-known Picard, Picard-Cauchy and Gauss-Weierstrass singular integrals

given by

Pξ( f ; x) =
1
2ξ

∫ ∞

−∞

f (x + t)e−
|t|
ξ dt, (1.1)

Qξ( f ; x) =
ξ

π

∫ π

−π

f (x + t)
t2 + ξ2 dt (1.2)

and
Wξ( f ; x) =

1
√
πξ

∫ π

−π

f (x + t)e−
t2
ξ dt, (1.3)

respectively, where ξ is a positive parameter that tends to zero.
Everywhere in this paper, we write

ϕx(t) :=
1
2

[ f (x + t) + f (x − t) − 2 f (x)]

and u = O(v), whenever there exists a positive constant K, not necessarily the same at each occurrence,
such that u ≤ Kv.

Let f be a bounded real valued function defined on the real line R or (−π, π). By B we denote the
Banach space of such functions under the sup-norm.

Mohapatra and Rodrigez [23] yielded the error bound of f ∈ Hα in the norm ‖ · ‖β for (0 ≤ β <

α ≤ 1). Among others, they proved the following theorems.

Theorem 1.1. Let f ∈ B and

ω(δ) = sup
|t|≤δ
| f (x + t) − f (x)|, (δ > 0),

such that ω(t)/t is a nonincreasing function of t, then as ξ → 0+, the following hold:
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‖ f − Pξ( f ; ·)‖C = O (ω(ξ)) , (1.4)
‖ f − Qξ( f ; ·)‖C = O (ω(ξ)| ln(1/ξ)|) , (1.5)

‖ f −Wξ( f ; ·)‖C = O
(
ω(ξ)ξ−

1
2
)
. (1.6)

Theorem 1.2. Let 0 ≤ β < α ≤ 1 and f ∈ Hα, then as ξ → 0+,

‖ f − Pξ( f ; ·)‖β = O
(
ξα−β

)
,

‖ f − Qξ( f ; ·)‖β = O
(
ξα−β| ln(1/ξ)|

)
,

‖ f −Wξ( f ; ·)‖β = O
(
ξα−β−

1
2
)
.

Seemingly wishing to generalize the Hölder metric (see [20]), Leindler introduced the function
space Hω (a truly generalization) given by

Hω := { f ∈ C[−π, π] : | f (x + t) − f (x)| = O (ω(|t|))} ,

where ω(δ, f ) is the modulus of continuity of f and ω is a modulus of continuity; that is, ω is a
positive nondecreasing continuous function on [0, 2π] having the properties ω(0) = 0 and ω(δ1 + δ2) ≤
ω(δ1) + ω(δ2) for 0 ≤ δ1 ≤ δ2 ≤ 2π.

He also introduced the norm ‖ · ‖ω on the space Hω by

‖ f ‖ω = ‖ f ‖C + sup
t,0

| f (x + t) − f (x)|
ω(|t|)

.

In the case when ω(δ) = δα, 0 < α ≤ 1 the space Hω reduces to Hα space and the norm ‖ ·
‖ω clearly becomes ‖ · ‖α–norm, which, as we mentioned above, was introduced by Prössdorf. It is
known (see [26]) that

Hα ⊆ Hβ ⊆ C2π, 0 ≤ β < α ≤ 1.

Das, Nath and Ray [7] generalized further the space Hω by

H(ω)
p :=

{
f ∈ Lp[0, 2π] : sup

t,0

‖ f (· + t) − f (·)‖p

ω(|t|)
< ∞

}
and

‖ f ‖(ω)
p := ‖ f ‖p + sup

t,0

‖ f (· + t) − f (·)‖p

ω(|t|)
,

where

‖ f ‖p :=
(

1
2π

∫ 2π

0
| f (x)|p dx

) 1
p

for 1 ≤ p < ∞, while for p = ∞,
‖ f ‖∞ := ess sup

x∈(0,2π)
{| f (x)|} .

Choosing ω(t) and v(t) so that ω(t)/v(t) is nondecreasing, then

‖ f ‖(v)
p ≤ max (1, ω(2π)/v(2π)) ‖ f ‖(ω)

p ,

which shows the relations
H(ω)

p ⊆ H(v)
p ⊆ Lp, p ≥ 1.
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The singular integrals Pξ( f ; x), Qξ( f ; x), Wξ( f ; x), as well as their generalizations, are widely used
in the problems of approximation of certain class functions. The approximation of functions, belonging
to a certain class of functions, have been studied by Khan and Umar [12], Gal [9, 10], Deeba et al. [5],
Mezei [22], Anastassiou and Mezei [1], Anastassiou and Gal [2], Anastassiou and Aral [3], Rempulska
and Tomczak [27], Firlejy and Rempulska [8], Bogalska et al. [4], Leśniewicz et al. [19], Khan and
Ram [13] and, of course, there are many other results established by numerous researchers.

Following from [3], for q > 0 and for all nonnegative real ξ, the q-ξ real number [ξ]q is defined by

[ξ]q :=
1 − qξ

1 − q
for q , 1 and [ξ]q := ξ for q = 1.

Now, we are in able to introduce the following generalizations of the integrals (1.1)–(1.3):

Pξ;q( f ; x) :=
1

2[ξ]q

∫ ∞

−∞

f (x + t)e−
|t|

[ξ]q dt,

Qξ;q( f ; x) :=
[ξ]q

π

∫ π

−π

f (x + t)
t2 + [ξ]2

q
dt

and
Wξ;q( f ; x) :=

1√
π[ξ]q

∫ π

−π

f (x + t)e−
t2

[ξ]q dt.

Since, for q = 1, these integrals reduce to the singular integrals Pξ( f ; x), Qξ( f ; x) and
Wξ( f ; x), respectively, it make sense to name the integrals Pξ;q( f ; x), Qξ;q( f ; x) and Wξ;q( f ; x) the
q-Picard singular integrals, the q-Picard-Cauchy singular integrals and q-Gauss-Weierstrass singular
integrals, respectively.

Before we pass to the aim of this paper, we introduce the integral

Pξ;q( f ; x) :=
1

2
(
1 − e−

π
[ξ]q

)
[ξ]q

∫ π

−π

f (x + t)e−
|t|

[ξ]q dt,

which we name it “the q-truncated Picard singular integral”. The idea of introducing such an integral
is that it enables Lemma 2.1 (see section two) to be applied in the proof of the main results, and in this
way it might enlarge its applicability and usefulness in approximations problems. As we will see, the
application of the q-truncated Picard singular integral, in approximation of a function f , provides the
same degree of approximation, which we are going to show in section three.

The purpose of this paper is to prove the homologous of Theorems 1.1 and 1.2 in the metric ‖ · ‖(·)p

of the space H(·)
p . To my best knowledge and the accessible literature, such results are not reported so

far. For the proofs of the main results, we use the same lines of the arguments of [23, 26].

2. Helpful lemmas

The generalized Minkowski’s inequality for integrals states that the norm of an integral is less or
equal to the integral of the corresponding norm. For the Lp spaces, it can be formulated as follows.

Lemma 2.1. (Generalized Minkowski inequality [11]) If z(x, t) is a function in two variables defined
for c ≤ t ≤ d, a ≤ x ≤ b, then
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a

∣∣∣∣∣∣
∫ d

c
z(x, t)dt

∣∣∣∣∣∣p dx
} 1

p

≤

∫ d

c

{∫ b

a
|z(x, t)|pdx

} 1
p

dt, p ≥ 1.

Lemma 2.2. Let f ∈ H(ω)
p (p ≥ 1) and ω and v be two moduli of continuity, such that ω/v is a

nondecreasing function of t, then

(i) ‖ϕ·(t)‖p = O(ω(t));
(ii) ‖ϕ·+h(t) − ϕ·(t)‖p = O(ω(t));

(iii) ‖ϕ·+h(t) − ϕ·(t)‖p = v(|h|)O(ω(t)/v(t)).

Proof. The proof can be done in the same way as Lemma 1 in [7]. �

3. Main results

First we report the following first main result.

Theorem 3.1. Let qξ ∈ (0, 1) such that qξ → 1 as ξ → 0+. Let f ∈ H(ω)
p with p ≥ 1 and ω(t)/t be a

nonincreasing function of t, then

‖Pξ;qξ( f ; ·) − f ‖p = O
(
ω([ξ]qξ)

)
, (3.1)

‖Qξ;qξ( f ; ·) − f ‖p = O
(
ω([ξ]qξ)| ln(1/[ξ]qξ)|

)
, (3.2)

‖Wξ;qξ( f ; ·) − f ‖p = O

(
ω([ξ]qξ)[ξ]

− 1
2

qξ

)
. (3.3)

Proof. Throughout the proof (for simplicity of notation) we simply write q instead of qξ. Taking into
account the equality ∫ π

−π

e−
|t|

[ξ]q dt = 2(1 − e−
π

[ξ]q )[ξ]q

and the truncated Picard singular integral Pξ;q( f ; x) we can write

Pξ;q( f ; x) − f (x) =
1

(1 − e−
π

[ξ]q )ξ

∫ π

0
ϕx(t)e

−
|t|

[ξ]q dt.

Therefore, using Lemma 2.1, we have

‖Pξ;q( f ; ·) − f ‖p =

 1
2π

∫ 2π

0

∣∣∣∣∣∣∣ 1

(1 − e−
π

[ξ]q )[ξ]q

∫ π

0
ϕx(t)e

−
|t|

[ξ]q dt

∣∣∣∣∣∣∣
p

dx


1
p

≤
1

(1 − e−
π

[ξ]q )[ξ]q

∫ π

0

{
1

2π

∫ 2π

0
|ϕx(t)|p dx

} 1
p

e−
|t|

[ξ]q dt

=
1

(1 − e−
π

[ξ]q )[ξ]q

∫ [ξ]q

0
‖ϕ·(t)‖p e−

|t|
[ξ]q dt︸                                         ︷︷                                         ︸

:=P1

+
1

(1 − e−
π

[ξ]q )[ξ]q

∫ π

[ξ]q

‖ϕ·(t)‖p e−
|t|

[ξ]q dt︸                                        ︷︷                                        ︸
:=P2

, (3.4)

where 0 < [ξ]q < π.
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Since ω(t) is monotonically increasing, Lemma 2.1 (i) implies

P1 = O(1)
1

(1 − e−
π

[ξ]q )[ξ]q

∫ [ξ]q

0
ω(t)e−

|t|
[ξ]q dt

= O(1)
ω([ξ]q)

(1 − e−
π

[ξ]q )[ξ]q

∫ ξ

0
e−

|t|
[ξ]q dt

= O(1)
ω([ξ]q)

(1 − e−
π

[ξ]q )[ξ]q

·
e − 1

e
[ξ]q

= O(ω([ξ]q)). (3.5)

Moreover, using the condition that ω(t)/t is nonincreasing and integrated by parts, we also obtain

P2 =O(1)
1

[ξ]q

∫ π

[ξ]q

ω(t)e−
|t|

[ξ]q dt

=O(1)
1

[ξ]q

∫ π

[ξ]q

ω(t)
t

te−
|t|

[ξ]q dt

=O(1)
ω([ξ]q)

[ξ]2
q

∫ π

[ξ]q

te−
|t|

[ξ]q dt

=O(1)
ω([ξ]q)

[ξ]2
q

[ξ]q

(
2ξe−1 − e−

π
[ξ]q ([ξ]q + π)

)
=O(ω([ξ]q)). (3.6)

Consequently, (3.4) along with (3.5) and (3.6) imply (3.1).
By (1.2) and some appropriate operations, we arrive at

Qξ;q( f ; x) − f (x) =
2[ξ]q

π

∫ π

0

ϕx(t)
t2 + [ξ]2

q
dt − f (x)L([ξ]q), (3.7)

where

L([ξ]q) := −
2[ξ]q

π

∫ π

0

dt
t2 + [ξ]2

q
+ 1.

The L’hospital’s rule gives us

lim
[ξ]q→0+

L([ξ]q)
[ξ]q

= lim
[ξ]q→0+

(
1

[ξ]q
−

2
π

1
[ξ]q

arctan
(
π

[ξ]q

))
=

2
π2

and therefore (0 < [ξ]q ≤ π)

L([ξ]q) =O([ξ]q) = O

(
[ξ]q

ω([ξ]q)
ω([ξ]q)

)
=O

(
π

ω(π)
ω([ξ]q)

)
= O

(
ω([ξ]q)

)
, (3.8)

since t/ω(t) is an increasing function of t.
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Now, we need to estimate from upper the integral appearing in (3.7). Indeed, first we write

q :=
2[ξ]q

π

∫ π

0

ϕx(t)
t2 + [ξ]2

q
dt

=
2[ξ]q

π

( ∫ [ξ]q

0

ϕx(t)
t2 + [ξ]2

q
dt︸               ︷︷               ︸

:=Q1

+

∫ π

[ξ]q

ϕx(t)
t2 + [ξ]2

q
dt︸             ︷︷             ︸

:=Q2

)
,

then, using Lemma 2.1 and f ∈ H(ω)
p , we obtain

‖Q1‖p =O(1)
∫ [ξ]q

0

‖ϕ·(t)‖p

t2 + [ξ]2
q
dt = O(1)

∫ [ξ]q

0

ω(t)
t2 + [ξ]2

q
dt

=O(ω([ξ]q))
∫ [ξ]q

0

dt
t2 + [ξ]2

q
= O(ω([ξ]q)/[ξ]q).

Once more, using Lemma 2.1, f ∈ H(ω)
p and the assumption, we get

‖Q2‖p =O(1)
∫ π

[ξ]q

‖ϕ·(t)‖p

t2 + [ξ]2
q
dt = O(1)

∫ π

[ξ]q

ω(t)t
t(t2 + [ξ]2

q)
dt

=O
(
ω([ξ]q)/[ξ]q

) ∫ π

[ξ]q

tdt
t2 + [ξ]2

q
= O(ω([ξ]q)/[ξ]q) ln

π2 + [ξ]2
q

2[ξ]2
q
.

Besides that, the limit

lim
[ξ]q→0+

ln
π2+[ξ]2

q

2[ξ]2
q

ln
(

1
[ξ]q

) = lim
[ξ]q→0+

2π2

π2 + [ξ]2
q

= 2

implies
‖Q2‖p = O

(
(ω([ξ]q)/[ξ]q)| ln(1/[ξ]q)|

)
.

Thus,

‖q‖p = O([ξ]q)
(
‖Q1‖p + ‖Q2‖p

)
= O

(
ω([ξ]q)| ln(1/[ξ]q)|

)
. (3.9)

Consequently, (3.7)–(3.9) imply

‖Qξ;q( f ; ·) − f ‖p ≤ ‖q‖p + ‖ f ‖p|L([ξ]q)| = O
(
ω([ξ]q) ln

∣∣∣1/[ξ]q

∣∣∣) ,
which is (3.2).

When all was said and done, we can write

Wξ;q( f ; x) =
2√
π[ξ]q

∫ π

0
ϕx(t)e

− t2
[ξ]q dt +

2 f (x)√
π[ξ]q

∫ π

0
e−

t2
[ξ]q dt,

and taking into account that ∫ ∞

−∞

e−
t2

[ξ]q dt =

√
π[ξ]q ([ξ]q > 0), (3.10)
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we get

Wξ;q( f ; x) − f (x)

=
2√
π[ξ]q

∫ π

0
ϕx(t)e

− t2
[ξ]q dt︸                         ︷︷                         ︸

:=W1

−
1√
π[ξ]q

(∫ ∞

−∞

−

∫ π

−π

)
f (x)e−

t2
[ξ]q dt︸                                    ︷︷                                    ︸

:=W2

. (3.11)

Using Lemma 2.1 and f ∈ H(ω)
p , we have

‖W1‖p =O

 1√
[ξ]q

 ∫ π

0
‖ϕ·(t)‖pe−

t2
[ξ]q dt

=O

 1√
[ξ]q

 ( ∫ [ξ]q

0
ω(t)e−

t2
[ξ]q dt︸               ︷︷               ︸

:=W11

+

∫ π

[ξ]q

ω(t)e−
t2

[ξ]q dt︸              ︷︷              ︸
:=W12

)
. (3.12)

ForW11 (using (3.10)), we have

W11 ≤ ω([ξ]q)
∫ [ξ]q

0
e−

t2
[ξ]q dt

≤ ω([ξ]q)
∫ ∞

0
e−

t2
[ξ]q dt =

√
π

2
[ξ]

1
2
qω([ξ]q) ≤

π

2
ω([ξ]q), (3.13)

while forW12, we obtain

W12 ≤ ω([ξ]q)
∫ π

[ξ]q

t
[ξ]q

e−
t2

[ξ]q dt

≤ ω([ξ]q)
∫ ∞

[ξ]q

t
[ξ]q

e−
t2

[ξ]q dt =
1

2e[ξ]q
ω([ξ]q) ≤

1
2
ω([ξ]q). (3.14)

Thus, from (3.12)–(3.14), we get

‖W1‖p = O

 1√
[ξ]q

 (W11 +W12) = O

ω([ξ]q)√
[ξ]q

 . (3.15)

ForW2, we can write

W2 =
2 f (x)√
π[ξ]q

∫ ∞

π

e−
t2

[ξ]q dt

and, therefore, using the assumption that t/ω(t) is increasing with respect to t, we find that

‖W2‖p ≤
2‖ f ‖p

π
√
π[ξ]q

∫ ∞

π

te−
t2

[ξ]q dt =
‖ f ‖p

π
√
π[ξ]q

·
[ξ]q

e
π2

[ξ]q

·
ω([ξ]q)

[ξ]q
·

[ξ]q

ω([ξ]q)

≤
‖ f ‖p

ω(π)
√
πe

π2
[ξ]q

·
ω([ξ]q)√

[ξ]q
= O

ω([ξ]q)√
[ξ]q

 for 0 < [ξ]q < π. (3.16)
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Combining (3.11), (3.15) and (3.16), we obtain

‖Wξ;q( f ; ·) − f ‖p ≤ ‖W1‖p + ‖W2‖p = O

ω([ξ]q)√
[ξ]q

 ,
which is (3.3).

The proof is completed. �

Remark 3.1. The assumption in Theorem 3.1, qξ ∈ (0, 1) such that qξ → 1 as ξ → 0+ is significant to
the rate of convergence in the metric ‖ · ‖p. Otherwise, if q ∈ (0, 1), then

lim
ξ→0

[ξ]q =
1

1 − q
, 0.

To overcome this inconvenience, for example, let us choose qξ so that

1
2
≤ 1 − ξ ≤ qξ < 1

for some ξ > 0, then

[ξ]qξ =
1 − qξξ
1 − qξ

≤ 2(1 − qξ) ≤ 2ξ,

which shows that [ξ]qξ → 0 as ξ → 0.

If we replace the function ω(t) by tα (0 < α ≤ 1) in definition of the H(ω)
p space, then it reduces to

the Banach space H(α, p) equipped with the norm ‖ · ‖(α,p) (for more details, see [6], p. 140). In this
case, the condition that ω(t)/t has to be a nonincreasing function of t is satisfied automatically. For this
reason, Theorem 3.1 implies the following corollary.

Corollary 3.1. Let qξ ∈ (0, 1) such that qξ → 1 as ξ → 0+. Moreover, let f ∈ H(α, p) with p ≥ 1 and
0 < α ≤ 1, then

‖Pξ;qξ( f ; ·) − f ‖(α,p) = O
(
[ξ]αqξ

)
,

‖Qξ;qξ( f ; ·) − f ‖(α,p) = O
(
[ξ]αqξ | ln(1/[ξ]qξ)|

)
,

‖Wξ;qξ( f ; ·) − f ‖(α,p) = O

(
[ξ]α−

1
2

qξ

)
.

Note here that H(α,∞) is the familiar Hα space introduced earlier by Prössdorf [26]. Therefore,
from Theorem 3.1 (q = 1), we also derive the following.

Corollary 3.2. [23] Let f ∈ Hα with 0 < α ≤ 1, then as ξ → 0+,

‖Qξ( f ; ·) − f ‖C = O (ξα| ln(1/ξ)|) ,

‖Wξ( f ; ·) − f ‖C = O
(
ξα−

1
2
)
.

Remark 3.2. Note that Theorem 1.1 (recalled in the introduction of this article) can be implied from
Theorem 3.1 as a special case (except relation (3.14)).

Now, we prove the homologous statement of Theorem 1.2.

AIMS Mathematics Volume 9, Issue 2, 3386–3398.



3395

Theorem 3.2. Let qξ ∈ (0, 1) such that qξ → 1 as ξ → 0+. Moreover, let f ∈ H(ω)
p with p ≥ 1, ω(t)

v(t) be a
nondecreasing function, ω(t)/t be a nonincreasing function and h ∈ [[ξ]qξ , π], then

‖ f − Pξ;qξ( f ; ·)‖(v)
p = O

(
ω([ξ]qξ)
v([ξ]qξ)

)
, (3.17)

‖ f − Qξ;qξ( f ; ·)‖(v)
p = O

(
ω([ξ]qξ)
v([ξ]qξ)

| ln(1/[ξ]qξ)|
)
, (3.18)

‖ f −Wξ;qξ( f ; ·)‖(v)
p = O

 ω([ξ]qξ)

v([ξ]qξ)
√

[ξ]qξ

 . (3.19)

Proof. For simplicity (only in the proof), we write q instead of qξ. If we put

Dξ;q( f ; x) := Pξ;q( f ; x) − f (x),

then we can write

Dξ;q( f ; x + h) − Dξ;q( f ; x)

=
1

(1 − e−
π

[ξ]q )[ξ]q

∫ π

0
[ϕx+h(t) − ϕx(t)]e

−
|t|

[ξ]q dt

=
1

(1 − e−
π

[ξ]q )[ξ]q

( ∫ [ξ]q

0
[ϕx+h(t) − ϕx(t)]e

−
|t|

[ξ]q dt︸                               ︷︷                               ︸
:=D1

+

∫ π

[ξ]q

[ϕx+h(t) − ϕx(t)]e
−
|t|

[ξ]q dt︸                             ︷︷                             ︸
:=D2

)
, (3.20)

where 0 < [ξ]q ≤ h ≤ π.
Using Lemma 2.1 and Lemma 2.2 (iii), we find that

‖D1‖p =O(1)
∫ [ξ]q

0
‖ϕ·+h(t) − ϕ·(t)‖pe−

|t|
[ξ]q dt = O(v(|h|))

∫ [ξ]q

0

ω(t)
v(t)

e−
|t|

[ξ]q dt

=O(v(|h|))
ω([ξ]q)
v([ξ]q)

∫ π

0
e−

|t|
[ξ]q dt = O

(
(1 − e−

π
[ξ]q )[ξ]qv(|h|)

ω([ξ]q)
v([ξ]q)

)
. (3.21)

Analogously, using Lemma 2.1, Lemma 2.2 (ii), and the assumption that ω(t)/t is a nonincreasing
function of t, we have

‖D2‖p =O(1)
∫ π

[ξ]q

‖ϕ·+h(t) − ϕ·(t)‖pe−
|t|

[ξ]q dt = O(1)
∫ π

[ξ]q

ω(t)
t

te−
|t|

[ξ]q dt

=O

(ω([ξ]q)
[ξ]q

) ∫ π

[ξ]q

te−
|t|

[ξ]q dt = O

(ω([ξ]q)
[ξ]q

)
π

∫ π

0
e−

|t|
[ξ]q dt

=O

(
(1 − e−

π
[ξ]q )[ξ]q

ω([ξ]q)
v([ξ]q)

v([ξ]q)
)

= O

(
(1 − e−

π
[ξ]q )[ξ]qv(|h|)

ω([ξ]q)
v([ξ]q)

)
(3.22)
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for 0 < [ξ]q ≤ h ≤ π.
Using Minkowski’s inequality in (3.20), and keeping in mind (3.21) and (3.22), we obtain

‖Dξ;q( f ; · + h) − Dξ;q( f ; ·)‖p

v(|h|)
=O

 1

(1 − e−
π

[ξ]q )[ξ]q

 (‖D1‖p + ‖D2‖p

)
=O

(ω([ξ]q)
v([ξ]q)

)
. (3.23)

Based on relation (3.1) of Theorem 3.1, we can write

‖Pξ;q( f ; ·) − f ‖p = O
(
ω([ξ]q)

)
= O

(ω([ξ]q)
v([ξ]q)

v([ξ]q)
)

= O

(ω([ξ]q)
v([ξ]q)

)
(3.24)

because of v([ξ]q) ≤ v(π).
Thus, using (3.23) and (3.24), we have

‖ f − Pξ;q( f ; ·)‖(v)
p = O

(ω([ξ]q)
v([ξ]q)

)
,

which is (3.17) as requested.
The proofs of (3.18) and (3.19) can be done in a similar way as (3.17). Therefore, we have

intentionally skipped them.
The proof is completed. �

Let ω(t) = tα, v(t) = tβ, 0 ≤ β < α ≤ 1. These conditions enable us (from Theorem 1.2) to extract
the following.

Corollary 3.3. Let qξ ∈ (0, 1) such that qξ → 1 as ξ → 0+. Moreover, let f ∈ H(α, p) with p ≥ 1,
0 ≤ β < α ≤ 1 and h ∈ [[ξ]qξ , π], then

‖ f − Pξ;qξ( f ; ·)‖(β,p) = O
(
[ξ]α−βqξ

)
,

‖ f − Qξ;qξ( f ; ·)‖(β,p) = O
(
[ξ]α−βqξ | ln(1/[ξ]qξ)|

)
,

‖ f −Wξ;qξ( f ; ·)‖(β,p) = O
(
[ξ]α−β−1/2

qξ

)
.

Remark 3.3. Let ω(t) = tα, v(t) = tβ, 0 ≤ β < α ≤ 1 and f ∈ Hα, then Theorem 1.2 can be implied by
Theorem 3.2 (except relation (3.17)).

Remark 3.4. We note that, even the singular integrals Pξ( f ; x) and Pξ;1( f ; x) differ in their limits of
integration and they give the same order of approximation in various metrics.

4. Conclusions

In this paper we have introduced the q-Picard, the q-Picard-Cauchy, the q-Gauss-Weierstrass, and
the q-truncated Picard singular integrals in a simple form. The deviations, in the Lp-norm and in
the generalized Hölder-norm, between these integrals and the functions from a generalized Hölder
space has been obtained. We have demonstrated that the obtained degrees of approximation are of
Jackson’s order, with exception in the case when the q-Picard-Cauchy singular integral has been used.
To achieve these degrees of approximation, we have shown that the values of the number q > 0 have to
be restricted. These results, in the point of view for future research, open new perspectives for further
generalizations.
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11. G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, London: Cambridge University Press, 1967.

12. A. Khan, S. Umar, On the order of approximation to a function by generalized Gauss-Weierstrass
singular integrals, Commun. Fac. Sci. Univ., 30 (1981), 55–62.

13. H. H. Khan, G. Ram, On the degree of approximation by Gauss Weierstrass integrals, Int. J. Math.
Math. Sci., 23 (2000), 645–649. https://doi.org/10.1155/S0161171200002489

AIMS Mathematics Volume 9, Issue 2, 3386–3398.

http://dx.doi.org/https://doi.org/10.4067/S0719-06462013000200001
http://dx.doi.org/https://doi.org/10.1155/JIA/2006/17231
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2008.09.026
http://dx.doi.org/https://doi.org/10.1007/BF02837167
http://dx.doi.org/https://doi.org/10.1002/mana.19941700108
http://dx.doi.org/https://doi.org/10.1002/mana.19931640114
http://dx.doi.org/https://doi.org/10.1155/S0161171200002489


3398

14. Xh. Z. Krasniqi, W. Lenski, B. Szal, Seminormed approximation by deferred matrix means of
integrable functions in H(ω)

P space, Results Math., 77 (2022). https://doi.org/10.1007/s00025-022-
01696-3

15. Xh. Z. Krasniqi, Approximation of functions by superimposing of de la Vallée Poussin mean
into deferred matrix mean of their Fourier series in Hölder metric with weight, Acta Math. Univ.
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