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1. Introduction

Complex networks, such as metabolic networks [1], the World Wide Web [2], social networks [3],
and the genetic regulatory networks [4], have significant impacts on our lives. In theory, these complex
networks can be described in terms of nodes and edges, where each node denotes a fundamental
unit, and the edges represent connections between the nodes. In recent decades, various interesting
dynamic behaviors of complex networks have attracted increasing interest [5, 6], such as stability,
control, synchronization, etc. In such scenarios, synchronization is a paradigmatic dynamic behavior
of complex networks. It not only can explain many emerging collective behaviors well but also has
a wide range of applications in the real world, such as secure communication [7], nuclear magnetic
resonance [8], information science [9], and multi-robot coordination [10].

The correspondence between L’Hôpital and Leibniz in 1695, discussing the implications of a
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derivative order of 1
2 , led to the birth of fractional calculus. Compared to classic integer-order calculus,

fractional calculus exhibits a long memory property and offers more degrees of freedom [11]. Since
then, fractional calculus has been extensively studied in the field of mathematics. In recent decades,
it has garnered increasing interest from scholars due to its wide-ranging applications in chemistry,
biology, electrical engineering, control [12–15], etc. Various definitions of fractional calculus have
been proposed to describe different non-local characteristics in practical problems, such as Riemann-
Liouville [11], Caputo [16], and exponential fractional derivatives [17], the Hadamard derivative [18],
and the Caputo Hadamard derivative [19]. To unify these definitions, generalized fractional operators
(ψ-fractional calculus) with a general kernel function ψ(t) have been introduced [20–22], including the
generalized fractional integral I α,ψ

t0,t , generalized Riemann-Liouville derivative RLD
α,ψ
t0,t , and generalized

Caputo derivative CDα,ψ
t0,t . It is worth noting that fractional order theory is introduced into complex

networks to describe memory properties in real networks more accurately [23, 24]. In this paper,
generalized fractional calculus is introduced into complex networks to characterize more extensive
memory features.

In complex networks, due to numerous physical limitations and unpredictable environmental
fluctuations, many communication constraints exist in the synchronization process, such as random
perturbations [25], information transmission with time delay [26], discontinuous subsystems, pulse
perturbations [27], and uncertain parameters [28]. However, the synchronization problem of a complex
network with partial communication channel losses is still not fully investigated. The information
of each node encompasses multiple levels of information, which requires multiple communication
channels to transmit the corresponding levels of information. For example, in sensor networks, the
inner coupling divides into multiple information channels to transmit the multiple information for each
agent [29, 30]. Most existing research [25–28, 31] assumes that all the channels of the connection
can transmit information, which is inconsistent with the real world. Unfortunately, the phenomenon
of partial communication channel losses is ubiquitous. For instance, a study found that only 5%
of synapse excitations can be transmitted perfectly between two connected cortical regions of brain
networks [32]. Therefore, the research of partial communication channel losses can provide a deep
understanding of the underlying physical mechanisms. Notably, [33] studied synchronization and
consensus behaviors with partial information transmission in complex networks. In [34], the finite-
time synchronization of complex networks with partial communication channels failure is studied.
However, the above studies mainly focus on integer order complex networks. The synchronization
problem of fractional complex networks with partial information losses has not been discussed until
now.

Based on the preceding discussions, this paper presents a study of generalized complex networks
with partial information transmission. The primary contributions of this work can be listed as follows:

• Generalized fractional calculus can more accurately portray complex long memory and genetic
traits in networks. This work introduces generalized fractional derivatives into complex networks
for the first time. The generalized fractional complex network models are more general than the
existing models and further fill the gap in the field of complex network models.
• A generalized stability theorem for nonlinear fractional systems is proved, which broadens the

existing results in the study of kinetics of fractional systems. Using this method, asymptotic
stability of such fractional systems can be easily obtained.
• By employing the new stability theorem and a state layered method, synchronization criteria for
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two generalized complex networks with partial information losses are obtained.
• The generalized fractional complex networks greatly enrich the dynamic behavior of the

networks. Moreover, two numerical examples with different kernel functions are given to verify
the validity and universality of the proposed results.

The article is structured as follows. In Section 2, necessary preparations are presented. Section 3
proves the stability theorem for nonlinear generalized fractional systems. Synchronization of
generalized fractional complex networks is studied in the following section. Two numerical examples
are shown in Section 5. The last section concludes this paper.

Notations: Let diag{· · · } represent a diagonal matrix. The superscript T represents the transpose.
We use λmax(·) and λ2(·) to denote the maximum and second largest eigenvalues of a real symmetric
matrix, respectively. sign(·) denotes the sign function. 1N = (1, 1, . . . , 1)T︸          ︷︷          ︸

N

.

2. Preliminaries

The required concepts of generalized fractional calculus, lemmas, and graph theory knowledge will
be recalled. The function space Xp

c (t0,T ) is defined in [35].

Definition 2.1. [20,21] For a given function x(t) ∈ Xp
c (t0,T ), the definitions of a generalized fractional

integral and the generalized Caputo fractional derivative of order β can be expressed as:

I β,ψ
t0,t x(t) =

1
Γ(β)

∫ t

t0
(ψ(t) − ψ(s))β−1x(s)ψ′(s)ds (2.1)

and

CDβ,ψ
t0,t x(t) =

1
Γ(1 − β)

∫ t

t0
(ψ(t) − ψ(s))−βx′(s)ds, (2.2)

respectively, where 0 < β < 1, t ∈ [t0,T ], ψ(t) ∈ C1[t0,T ] is an increasing function, and ψ′(t) , 0, for
all t ∈ [t0,T ].

Remark 2.1. Generalized fractional calculus depends on the kernel function ψ, and for specific
functions ψ, we can obtain some classic fractional calculus formulations like Riemann-Liouville,
Caputo, Hadamard, Caputo-Hadamard, and exponential fractional calculus. In addition, the
generalized fractional calculus still retains the non-local behavior and semi-group properties of classic
fractional calculus. It has been realized that these types of fractional operators have been successfully
used to describe and simulate many societal and natural phenomena [36].

Lemma 2.1. [20, 21] If x(t) ∈ C1[t0,T ], then

I β,ψ
t0,t CDβ,ψ

t0,t x(t) = x(t) − x(t0), β ∈ (0, 1). (2.3)

Lemma 2.2. [37] Let x(t) ∈ Xp
c (t0,T ) and Lψ be the generalized Laplace transform. Then,

(i) Lψ{I
β,ψ

t0,t x(t)} =
Lψ{x(t)}

sβ
; (2.4)

(ii) Lψ{CDβ,ψ
t0,t x(t)} = sβLψ{x(t)} − sβ−1x(t0), (2.5)

where 0 < β < 1.

AIMS Mathematics Volume 9, Issue 3, 7063–7083.



7066

Lemma 2.3. [37] Let Eβ,γ(z) =
∞∑

i=0

zi

Γ(βi+γ) be the Mittag-Leffler function. Then,

Lψ

{
(ψ(t) − ψ(t0))γ−1 Eβ,γ

(
±λ (ψ(t) − ψ(t0))β

)}
=

sβ−γ

sβ ∓ λ
, (2.6)

whereℜ(β) > 0, | λsβ | < 1, z ∈ C.

Lemma 2.4. [38] If n ∈ N, ρ > 1, xk ∈ R
+, k = 1, 2, . . . , n, then∥∥∥∥∥∥∥

n∑
k=1

xk

∥∥∥∥∥∥∥
ρ

≤ nρ−1
n∑

k=1

∥xk∥
ρ . (2.7)

In particular, when ρ = 2, one has ∥∥∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥∥∥
2

≤ n
n∑

k=1

∥xk∥
2 . (2.8)

Lemma 2.5. [39] If x(t) ∈ Rn is a differentiable vector value function, then the inequality

CDβ,ψ
t0,t

(
xT (t)Mx(t)

)
≤ 2x(t)T M CDβ,ψ

t0,t x(t) (2.9)

holds, where β ∈ (0, 1), t > t0, and M ∈ Rn×n is a symmetric and positive definite matrix.

Let G = (V,E,A) be an undirected graph, in which V = {1, 2, . . . ,N} ,E ⊂ V × V = {(i, j) |
i, j ∈ V}, and A =

{
ai j

}
∈ RN×N represent the graph nodes collection, the set of edges, and weighted

adjacency matrix of G, respectively. The edge e = (i, j) ∈ E means that information can be exchanged
between nodes i and j. If ( j, i) ∈ E, then ai j > 0, that is, the element ai j of matrix A is determined by
the connection between nodes. Assume that there is no self-loop (aii = 0, i ∈ V), and G is connected.

The Laplace matrix L = [li j] ∈ RN×N of graph G is expressed as

li j =


N∑

k=1
aik, j = i,

−ai j, j , i.

3. Stability of nonlinear generalized fractional system

In this part, a new theorem of Mittag-Leffler stability for a generalized fractional system is
discussed.

Consider the following initial value problem with generalized Caputo derivative:{
CDβ,ψ

t0,t x(t) = h(t, x(t)),
x(t0) = xa,

(3.1)

in which β ∈ (0, 1),Ω ⊆ Rn, h(t, x) : [t0,∞) × Ω → Rn is piecewise continuous with t and locally
Lipschitz with x, and the origin x = 0 ∈ Ω.

For convenience, let the equilibrium of system (3.1) be xe = 0.
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Theorem 3.1. Consider the generalized Caputo fractional system (3.1). Suppose that G(x(t)) is a
continuous, positive definite function and satisfies

a1∥x(t)∥a2 ≤ G(x(t)), (3.2)

CDβ,ψ
t0,t G(x(t)) ≤ −a3Gµ(x(t)), (3.3)

where β ∈ (0, 1), µ ∈ (0, 1], a1, a2, a3 ∈ R
+. Then, xe = 0 of (3.1) is Mittag-Leffler stable. G(x(t)) can

be estimated as

G(x(t)) ≤ G (x (t0)) Eβ

(
−a3Gµ−1 (x (t0)) (ψ(t) − ψ(t0))β

)
.

Proof. Let G(t) = G(x(t)). According to (3.3), one obtains

CDβ,ψ
t0,t G(t) = −a3Gµ(t) − m1(t), (3.4)

where m1(t) ≥ 0. Taking the β-order generalized fractional integral on (3.4), one can derive that

G(t) = G (t0) − a3I
β,ψ

t0,t Gµ(t) −I β,ψ
t0,t m1(t)

= G (t0) −
1
Γ(β)

∫ t

t0

a3Gµ(s) + m1(s)
(ψ(t) − ψ(s))1−β ψ

′(s)ds

≤ G (t0) . (3.5)

If G (t0) = 0, then it follows from (3.5) that G(t) = 0, which implies the solution of (3.1) is x(t) = 0.
If G (t0) , 0, that is, G (t0) > 0, then it follows from (3.5) that

Gµ−1(t) ≥ Gµ−1 (t0) , 0 < µ ≤ 1. (3.6)

Multiplying both sides of (3.6) by G(t), one has

Gµ(t) ≥ Gµ−1 (t0) G(t). (3.7)

Substituting (3.7) into (3.3), the following can be derived:

CDβ,ψ
t0,t G(t) ≤ −a3Gµ−1 (t0) G(t).

Furthermore,

CDβ,ψ
t0,t G(t) = −a3Gµ−1 (t0) G(t) − m2(t), (3.8)

where m2(t) ≥ 0. From the generalized Laplace transform, one has

sβG(s) = sβ−1G(t0) − a3Gµ−1 (t0) G(s) − m2(s)G(s) =
sβ−1G(t0) − m2(s)
sβ + a3Gµ−1 (t0)

,

in which Lψ{G(t)} = G(s). According to Lemma 2.3 and the generalized convolution theorem [37],
the solution of (3.8) is
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G(t) =G (t0) Eβ

(
−a3Gµ−1 (t0) (ψ(t) − ψ(t0))β

)
−

∫ t

t0
(ψ(t) − ψ(s))β−1Eβ,β

(
−a3Gµ−1 (t0) (ψ(t) − ψ(s))β

)
m2(s)ds. (3.9)

Since m2(t) ≥ 0 and
Eβ,β

(
−a3Gµ−1 (t0) (ψ(t) − ψ(t0))β

)
≥ 0,

one gets

G(t) ≤ G (t0) Eβ

(
−a3Gµ−1 (t0) (ψ(t) − ψ(t0))β

)
. (3.10)

Combining (3.2) and (3.10) yields

∥x(t)∥ ≤
[
G (t0)

a1
Eβ

(
−a3Gµ−1 (t0) (ψ(t) − ψ(t0))β

)] 1
a2

.

Let m3 =
G(t0)

a1
≥ 0, and then we have ∥x(t)∥ ≤

[
m3Eβ

(
−a3Gµ−1 (t0) (ψ(t) − ψ(t0))β

)] 1
a2 , where m3 = 0

holds if and only if G(t0) = 0, which implies the Mittag-Leffler stability of system (3.1). □

Remark 3.1. Theorem 3.1 presented in this paper is an extension or improvement of the existing
results. Specifically, when µ = 1, inequality (3.3) becomes CDβ,ψ

t0,t G(x(t)) ≤ −a3G(x(t)), which has been
studied in [39]. When ψ(t) = t, 0 < µ ≤ 1, Theorem 3.1 also holds for the classic Caputo fractional
derivative, which has not been discussed until now. When ψ(t) = t, µ = 1, the inequality (3.3) coincides
with inequality CDβ

t0,tG(x(t)) ≤ −a3G(x(t)), which has been presented in [40]. Compared with existing
stability results, Theorem 3.1 has wider applications in stability analysis of fractional systems.

4. Synchronization of complex networks with generalized Caputo derivative

In this section, two complex network models under a new communication constraint are considered,
which are composed of N coupled nodes. Each node includes n sub-states. The communication
constraint is that partial nodes can transmit information to each other or lose information between
sub-states, which results in only partial sub-information being transmitted perfectly. Furthermore, one
node may have different failed channels for different neighbors, that is, the received information of
the node from different neighbor nodes may be different, increasing dramatically the complexity of
synchronization analysis.

In this paper, we consider the following two generalized fractional complex network models with
partial information losses:

CDβ,ψ
t0,t xi(t) = f (xi(t)) + csigp

 N∑
j=1

ai jKi jB
(
x j(t) − xi(t)

) , (4.1)

CDβ,ψ
t0,t xi(t) = f (xi(t)) + c

N∑
j=1

ai jKi jsigp
(
B

(
x j(t) − xi(t)

))
, (4.2)

in which i ∈ V, xi(t) = (xi1(t), xi2(t), . . . , xin(t))T
∈ Rn indicates the status information, xil(t) is the

l-th (l = 1, 2, . . . , n) layer of the node i, f (xi(t)) = ( f1 (xi1(t)) , f2 (xi2(t)) , . . . , fn (xin(t)))T
∈ Rn
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is a nonlinear function, c denotes coupling strength, and 0 < p < 1. For y = (y1, y2, . . . , yn)T ,
let sigp (yi) = |yi|

p sign (yi) and sigp(y) = (sigp (y1) , sigp (y2) , . . . , sigp (yn))T . The diagonal matrix
B = diag {b1, b2, . . . , bn} represents the inner coupling matrix , with bi > 0, i = 1, 2, . . . , n. Ki j =

diag
{
k1

i j, k
2
i j, . . . , k

n
i j

}
, 0 ≤ kl

i j ≤ 1, indicates the channel matrix, and kl
i j determines the information loss

ratio of the l-th subchannel.

Remark 4.1. Compared with existing network models with partial information transmission, it is easy
to see that the main distinction is 0 ≤ kl

i j ≤ 1. kl
i j can be used to determine the information loss ratio

of the l-th subchannel between nodes i and j. Specifically, kl
i j = 1 means that all sub-information of

the nodes can be transmitted completely. When kl
i j = 0, the l-th information transmission between i

and j is a failure. In addition, 0 < kl
i j < 1 denotes the ratio of information loss. If Ki j = In, complex

networks (4.1) and (4.2) are consistent with the networks in [41]. If Ki j = 0 or 1, and the generalized
fractional derivative is replaced by an integer derivative, then the complex networks (4.1) and (4.2)
are the same as the networks in [34]. Therefore, complex networks (4.1) and (4.2) can be considered
as a generalization of the existing models.

Definition 4.1. [31] Generalized fractional complex network (4.1) or (4.2) is called synchronized
provided

lim
t→∞

∥∥∥xi(t) − x j(t)
∥∥∥ = 0

for any initial value x(t0) =
(
xT

1 (t0), xT
2 (t0), . . . , xT

N(t0)
)T
∈ Rn×N and any i, j ∈ V.

By Definition 4.1, it is not difficult to find that if the complex network can realize synchronization,
then the sub-state of each node is also synchronized. However, because of the communication
restriction, it becomes more difficult to recognize each sub-state from the channel matrix. To overcome
this difficulty, the state layered method [34] is used here.

Setting Mi j = ai jKi j = diag
{
m1

i j,m
2
i j, . . . ,m

n
i j

}
, with i, j ∈ V, it is obvious that Mi j =

diag
{
ai jk1

i j, ai jk2
i j , . . . , ai jkn

i j

}
. The state layered matrix and metric matrix are given as

Ml =


0 ml

12 · · · ml
1N

ml
21 0 · · · ml

2N
...

...
. . .

...

ml
N1 ml

N2 · · · 0

 ,Dl =


dl

1 0 · · · 0
0 dl

2 · · · 0
...

...
. . .

...

0 0 · · · dl
N

 ,

respectively, in which dl
i =

N∑
j=1, j,i

ml
i j, l = 1, 2, . . . , n. Then, the Laplace matrix can be defined as

Wl = Dl − Ml.
Based on the state layered matrix, systems (4.1) and (4.2) are rewritten as l-th layer sub-information:

CDβ,ψ
t0,t xil(t) = fl (xil(t)) + csigp

 N∑
j=1

ml
i jbl

(
x jl − xil

) , (4.3)

CDβ,ψ
t0,t xil(t) = fl (xil(t)) + c

N∑
j=1

ml
i jsigp

(
bl

(
x jl − xil

))
. (4.4)
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Correspondingly, for any initial value xl(t0) = (x1l(t0), x2l(t0), . . . , xNl(t0))T
∈ RN(l = 1, 2, . . . , n),

complex network (4.3) or (4.4) can reach synchronization if the following conditions are true:

lim
t→∞

∣∣∣xil(t) − x jl(t)
∣∣∣ = 0, i, j ∈ V.

Hypothesis 4.1. Suppose that fl(x) ∈ R satisfies the Lipschitz condition, i.e.,

| fl(x1) − fl(x2)| ≤ ηl|x1 − x2|,

in which ηl > 0, l = 1, 2, . . . , n.

Now, two synchronization criteria of generalized fractional complex networks (4.3) and (4.4) are
investigated. First, the synchronization of model (4.3) will be studied.

Theorem 4.1. Under Hypothesis 4.1, consider generalized Caputo fractional complex network (4.3).
If c > rl and the undirected graph of matrix Wl, l = 1, 2, . . . , n, is connected, then the synchronization of

network (4.3) can be realized in region
n⋂

l=1
Dl

r =

xil(t) : 2ηlκ
1−p

2

(2bminλ
l
2)

1+p
2
≤ rl, i ∈ V

 , where κ is a constant,

κ ≥ 1
2blλ

l
N∥xl∥

2, 0 < p < 1, and λl
2 and λl

N denote the minimum positive eigenvalue and maximum
eigenvalue of Wl, respectively.

Proof. Consider the following Lyapunov candidate function:

Gl(t) =
1
2

blxT
l (t)Wlxl(t),

in which l = 1, 2, . . . , n, and xl(t) = (x1l(t), x2l(t), . . . , xNl(t))T .
Let Fl (xl(t)) = ( fl(x1l(t)), fl(x2l(t)), . . . , fl(xNl(t)))T . From Lemma 2.5, one derives

CDβ,ψ
t0,t Gl(t)

≤blxT
l (t)Wl CDβ,ψ

t0,t xl(t)
=blxT

l (t)Wl
[
Fl (xl(t)) − csigp (blWlxl(t))

]
=blxT

l WlFl (xl) − cbl (Wlxl)T sigp (blWlxl)

≤blxT
l WlFl (xl) − cbp+1

l

(
∥Wlxl∥

2
) p+1

2

=
bl

2

N∑
i, j=1

ml
i j

(
xil − x jl

) (
fl (xil) − fl

(
x jl

))
− cbp+1

l

(
∥Wlxl∥

2
) p+1

2

≤
bl

2

N∑
i, j=1

ml
i j

∣∣∣xil − x jl

∣∣∣ · ∣∣∣∣ fl (xil) − fl

(
x jl

)∣∣∣∣ − cbp+1
l

(
∥Wlxl∥

2
) p+1

2

≤
ηl

2
bl

N∑
i, j=1

ml
i j

(
xil − x jl

)2
− cbp+1

l

(
∥Wlxl∥

2
) p+1

2

=ηlblxT
l (t)Wlxl(t) − cbp+1

l

(
∥Wlxl∥

2
) p+1

2

=2ηlGl(t) − cbp+1
l

(
∥Wlxl∥

2
) p+1

2
. (4.5)
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Suppose that λl
i is the eigenvalue of Wl and satisfies 0 = λl

1 ≤ λ
l
2 ≤ . . . ≤ λ

l
N and vl

i is the eigenvector
corresponding to λl

i. Then,
{
vl

i

}
is the standard orthogonal basis in RN . Therefore, for some θi ∈ R, one

has xl =
∑N

i=1 θivl
i. Accordingly, from Wlxl =

N∑
i=1
θiλ

l
iv

l
i, one derives

∥Wlxl∥
2 =

N∑
i=1

θ2
i

(
λl

i

)2
≥ λl

2

N∑
i=1

θ2
i λ

l
i = λ

l
2xT

l Wlxl. (4.6)

Combining (4.5) and (4.6), one gets

CDβ,ψ
t0,t Gl(t)

≤2ηlGl(t) − cbp+1
l

(
∥Wlxl∥

2
) p+1

2

≤2ηlGl(t) − cbp+1
l

(
λl

2xT
l Wlxl

) p+1
2

≤2ηlGl(t) − c
(
2bmin λ

l
2

) p+1
2 G

p+1
2

l (t)

= − c
(
2bminλ

l
2

) p+1
2 G

p+1
2

l (t)

1 − 2ηlG
1−p

2
l (t)

c
(
2bmin λ

l
2

) p+1
2


≤ − c

(
2bminλ

l
2

) p+1
2

1 − 2ηlκ
1−p

2

c
(
2bmin λ

l
2

) p+1
2

G
p+1

2
l (t).

Let ς1 = c
(
2bminλ

l
2

) p+1
2

1 − 2ηlκ
1−p

2

c(2bminλ
l
2)

p+1
2

. Then

CDβ,ψ
t0,t Gl(t) ≤ −ς1G

p+1
2

l (t), (4.7)

where ς1 > 0. According to Theorem 3.1, one gets

Gl(t) ≤ Gl ((t0)) Eβ

(
−ς1G

p−1
2

l (ψ(t) − ψ(t0))β
)
,

which implies

lim
t→∞

Gl(t) = 0.

From Gl(t) = bl
4

∑N
i, j=1 ml

i j

(
xil(t) − x jl(t)

)2
, one obtains

lim
t→∞

∣∣∣xil(t) − x jl(t)
∣∣∣ = 0,

that is, when c > 2ηlκ
1−p

2

(2bminλ
l
2)

1+p
2

, the sub-information of the l-layer can realize synchronization. Therefore,

the synchronization of all nodes can be realized, i.e., the synchronization of network (4.3) can be

reached in region
n⋂

l=1
Dl

r. □
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Next, the synchronization problem of network (4.4) will be discussed.

Theorem 4.2. Under Hypothesis 4.1, consider the generalized Caputo fractional complex
network (4.4). If c > rl and the undirected graph of Wl, l = 1, 2, . . . , n, is connected, then the

synchronization of network (4.4) can be realized in region
n⋂

l=1
Dl

r =
{
xil(t) : 2ηl

z µ
1−p

2 ≤ rl, i ∈ V
}
, where

µ is a constant, µ ≥ bl
2N ||el||

2, 0 < p < 1, z = min
∥el∥=1,eT

l 1N=0
Z (el), and eil(t) and Z (el) will be defined in the

subsequent proof.

Proof. Suppose that sl(t) = 1
N

N∑
i=1

xil, l = 1, 2, . . . , n. Notice that ml
i j = ml

ji, s
l(t) satisfies

CDβ,ψ
t0,t sl(t) =

1
N

N∑
i=1

CDβ,ψ
t0,t xil(t) =

1
N

N∑
i=1

fl (xil(t)) .

Let eil(t) = xil(t) − sl(t), and one gets the error system:

CDβ,ψ
t0,t eil(t) = fl (xil(t)) + c

N∑
j=1

ml
i jsigp

(
bl

(
x jl(t) − xil(t)

))
−

1
N

N∑
i=1

fl (xil(t)) .

Consider the Lyapunov function

Gl(t) =
bl

2N

N∑
i=1

e2
il(t).

From Lemma 2.5, one gets

CDβ,ψ
t0,t Gl(t) ≤

bl

N

N∑
i=1

eil(t) CDβ,ψ
t0,t eil(t)

=
bl

N

N∑
i=1

eil(t)
[
fl (xil(t)) − fl

(
sl(t)

)
+ fl

(
sl(t)

)
−

1
N

N∑
i=1

fl (xil(t))

+ c
N∑

j=1

ml
i jsigp

(
bl

(
x jl(t) − xil(t)

)) ]
.

Set R1 =
bl
N

N∑
i=1

eil(t)
(

fl (xil(t)) − fl

(
sl(t)

))
,R2 =

bl
N

N∑
i=1

eil(t)
(

fl

(
sl(t)

)
− 1

N

N∑
j=1

fl

(
x jl(t)

))
,R3 =

cbl
N ·

N∑
i=1

eil(t)
N∑

j=1
ml

i jsigp
(
bl

(
x jl(t) − xil(t)

))
. Hence CDβ,ψ

t0,t Gl(t) ≤ R1 + R2 + R3.

By Hypothesis 4.1, one obtains

R1 =
bl

N

N∑
i=1

eil(t)
(

fl (xil(t)) − fl

(
sl(t)

))
≤

bl

N

N∑
i=1

|eil(t)| ·
∣∣∣∣ fl (xil(t)) − fl

(
sl(t)

)∣∣∣∣
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≤
bl

N
ηl

N∑
i=1

|eil(t)| · |xil(t) − sl(t)|

≤
bl

N
ηl

N∑
i=1

e2
il(t)

=2ηlGl(t).

For the second item,

R2 =
bl

N

N∑
i=1

eil(t)

 fl

(
sl(t)

)
−

1
N

N∑
j=1

fl

(
x jl(t)

)
=bl

 1
N

N∑
i=1

eil(t)

 ·
 fl

(
sl(t)

)
−

1
N

N∑
j=1

fl

(
x jl(t)

) .
Notice that

1
N

N∑
i=1

eil(t) =
1
N

N∑
i=1

(
xil(t) − sl(t)

)
=

1
N

N∑
i=1

xil(t) −
1
N

N∑
i=1

sl(t) = sl(t) − sl(t) = 0,

that is, R2 = 0.
For the last item,

R3 =
cbl

N
·

N∑
i=1

eil(t)
N∑

j=1

ml
i jsigp

(
bl

(
x jl(t) − xil(t)

))
=

cbl

N

N∑
i, j=1

ml
i jeil(t)sigp

(
bl

(
e jl(t) − eil(t)

))
= −

cbl

2N

N∑
i, j=1

ml
i j

(
e jl(t) − eil(t)

)
sigp

(
bl

(
e jl(t) − eil(t)

))
= −

c
2N

N∑
i, j=1

ml
i j

∣∣∣∣bl

(
e jl(t) − eil(t)

)∣∣∣∣p+1
.

Setting

Zl (el) =
1

2N

N∑
i, j=1

ml
i j

∣∣∣∣bl

(
e jl(t) − eil(t)

)∣∣∣∣p+1
,

in which el = (e1l, e2l, . . . , eNl)T , and Z (el) = Zl (el) G−
p+1

2
l . It is not difficult to find that Z (ael) = Z (el)

for all a ∈ R and a , 0. Let z = min
∥el∥=1,eT

l 1N=0
Z (el). Because Zl (el) ≥ 0,Gl(t) ≥ 0, one gets z ≥ 0.

Suppose that z = 0. Then. there exists an e′l satisfying Zl

(
e′l
)
= 0. From the connectivity of matrix Wl,
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one obtains Zl

(
e′l
)
= 0⇔ e′l = a′1N . With e′Tl 1N = 0, one has e′l = 0, which contradicts

∥∥∥e′l
∥∥∥ = 1. Thus,

z > 0. We have R3 ≤ −czG
p+1

2
l (t).

Through the above analysis, one gets

CDβ,ψ
t0,t Gl(t) ≤2ηlGl(t) − czG

p+1
2

l (t)

= − czG
p+1

2
l (t)

(
1 −

2ηl

cz
G

1−p
2

l (t)
)

≤ − cz
(
1 −

2ηl

cz
µ

1−p
2

)
G

p+1
2

l (t).

Set ς2 = cz
(
1 − 2ηl

cz µ
1−p

2

)
,

CDβ,ψ
t0,t Gl(t) ≤ −ς2G

p+1
2

l (t),

in which ς2 > 0. By virtue of Theorem 3.1, one gets

lim
t→∞
|eil(t)| = 0,

that is, when c > 2ηl
z µ

1−p
2 , the synchronization of the l-th layer sub-information can be achieved, which

implies that the synchronization of network (4.4) can be reached in region
n⋂

l=1
Dl

r. □

Remark 4.2. At present, studies of synchronization in classic fractional complex networks have made
rich achievements. However, the synchronization problem of the fractional complex network with
partial communication channel losses has not been discussed until now. Therefore, the results of
Theorems 4.1 and 4.2 advance the current research on synchronization problems in complex networks
with fractional derivative, also holding for classic fractional complex networks, such as Caputo,
Riemann-Liouville, Hadamard-type, and exponential networks.

5. Numerical example

Two numerical examples with different kernel functions are given to show the effectiveness of the
proposed theories.

Example 5.1. Consider the networks (4.3) and (4.4) with seven (N = 7) nodes, and each node with
three (n = 3) sub-states. The nonlinear function is described as follows:

f (xi(t)) =


1
2 (|xi1(t) + 1| − |xi1(t) − 1|)
1
2 (|xi2(t) + 1| − |xi2(t) − 1|)
1
2 (|xi3(t) + 1| − |xi3(t) − 1|)

 ,
in which xi(t) = (xi1(t), xi2(t), xi3(t))T , i = 1, 2, . . . , 7. It is not difficult to verify that f satisfies the
Lipschitz condition about constants (η1, η2, η3) = (1, 1, 1).
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The inner and outer coupling matrices are represented by

B =


2 0 0
0 3 0
0 0 1

 , A =



0 2 3 1 1 0 0
2 0 2 0 0 3 3
3 2 0 3 0 0 4
1 0 3 0 4 2 0
1 0 0 4 0 4 3
0 3 0 2 4 0 1
0 3 4 0 3 1 0


.

Then, the channel matrices are provided to describe the channel states as follows:

K12 = K21 = diag{0.1, 0, 0.2}, K13 = K31 = diag{0.9, 0.1, 0}, K14 = K41 = diag{1, 0, 0.2},
K15 = K51 = diag{0, 0.1, 0.9}, K23 = K32 = diag{1, 0.5, 0}, K26 = K62 = diag{0.4, 0, 0.8},
K27 = K72 = diag{0, 1, 1}, K34 = K43 = diag{0, 0.25, 1}, K45 = K54 = diag{1, 1, 0},
K46 = K64 = diag{0, 0, 1}, K56 = K65 = diag{1, 1, 0}, K57 = K75 = diag{0, 1, 0.8},
K67 = K76 = diag{0.5, 0, 1}.

Figure 1 displays the topological structure of the connections between each node in the network
and gives an example to show subchannel losses (between sub-node x22 and sub-node x32) and failure
(between sub-node x23 and sub-node x33). Figure 2 presents the topological structure diagram of the
transmissions of the three sub-information layers between seven nodes.

Figure 1. The topology structure of complex networks with partial information losses.

Figure 2. The topological structures of the three sub-information layers.
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From the outer coupling matrix A and the channel matrix Ki j, the corresponding state layer
matrices Ml, l = 1, 2, 3, can be attained. Only M1 is given below, as it is easy to get M2 and M3

similarly.

M1 =



0 0.2 2.7 1 0 0 0
0.2 0 2 0 0 1.2 0
2.7 2 0 0 0 0 0
1 0 0 0 4 0 0
0 0 0 4 0 4 0
0 1.2 0 0 4 0 0.5
0 0 0 0 0 0.5 0


.

The conditions in Theorems 4.1 and 4.2 are easy to verify. It is not difficult to find that the undirected
graph of matrix Gl is connected. Then, the parameters are given as c = 10, p = 0.2, and initial
values of the nodes are chosen randomly from the interval [0, 10]. In order to show the generality
of the proposed method, the logarithmic function log(t) and the inverse hyperbolic cosine function
arccosh(t) = log(t +

√
t2 − 1) are chosen as kernel functions in the generalized Caputo fractional

derivative for networks (4.3) and (4.4).
Figures 3 and 4 show the synchronization of complex network (4.3) with kernel functions ψ(t) =

log(t) and ψ(t) = arccosh(t), respectively. Similarly, Figures 5 and 6 show that the synchronization
errors of network (4.4) with different kernel functions ψ(t) can also tend to 0. These simulation results
demonstrate the feasibility of the proposed theories.
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Figure 3. When ψ(t) = log(t), β = 0.99, t0 = 0.1, the synchronization errors of network (4.3).
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Figure 4. When ψ(t) = arccosh(t), β = 0.97, t0 = 1, the synchronization errors of network
(4.3).
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Figure 5. When ψ(t) = log(t), β = 0.98, t0 = 0.1, the synchronization errors of network (4.4).
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Figure 6. When ψ(t) = arccosh(t), β = 0.94, t0 = 1, the synchronization errors of network
(4.4).

Example 5.2. Using the same parameters as in Example 5.1 except that the nonlinear function is given
as

f (xi(t)) =


0.001xi1(t)xi3(t) + 0.01xi1(t) − 1
0.02xi3(t) − 0.001xi2(t)xi3(t) + 0.8
0.001xi1xi3(t) − 0.01xi3(t) + 1.5

 ,
we can also prove the effectiveness of Theorems 4.1 and 4.2. Figures 7 and 8 show the trajectories of
the synchronization errors for network (4.3) with kernel functions ψ(t) = log(t) and ψ(t) = arccosh(t),
respectively. Figures 9 and 10 reflect the trajectories of the synchronization errors for network (4.4)
with kernel functions ψ(t) = log(t) and ψ(t) = arccosh(t) , respectively. From the simulation results
and graphs, it is clear that (4.3) and (4.4) can achieve asymptotic synchronization.
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Figure 7. When ψ(t) = log(t), β = 0.97, t0 = 0.1, the synchronization errors of network (4.3).
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Figure 8. When ψ(t) = arccosh(t), β = 0.98, t0 = 1, the synchronization errors of network
(4.3).
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Figure 9. When ψ(t) = log(t), β = 0.96, t0 = 0.1, the synchronization errors of network (4.4).
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Figure 10. When ψ(t) = arccosh(t), β = 0.99, t0 = 1, the synchronization errors of network
(4.4).

6. Conclusions

The synchronization of two complex networks with generalized Caputo fractional derivative and
communication constraint has been discussed. In this work, the considered networks are more realistic.
By using the generalized Laplace transform , a new stability theorem for a nonlinear generalized
fractional system is proved. By utilizing the new stability theorem and the state layered method,
synchronization criteria of two nonlinear coupling models with partial information transmission are
derived. Finally, two numerical examples with different kernel functions are given to illustrate the
effectiveness of the proposed results.

There are some potential limitations to this study: a) The conditions in Theorems 4.1 and 4.2 are
too strict, such that some practical networks have difficulty satisfying these conditions; b) The actual
background of generalized fractional complex networks (4.3) and (4.4) remains unclear.

In the future, we may focus on the following meaningful topics: a) considering the stability of a
generalized fractional system in incommensurate systems, switching systems, and time-delay systems;
b) developing the synchronization of a complex network with generalized fractional derivative and
communication constraint in impulse systems, stochastic systems, and time-delay systems.
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